Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 5/2022

01-05-2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Melt Cooling Rate Effect on the Microstrucutre of Al–Si Alloy Doped with Mg, Mn, Fe, Ni, and Cu

Authors: O. V. Gusakova, S. V. Gusakova, V. G. Shepelevich

Published in: Physics of Metals and Metallography | Issue 5/2022

Login to get access
share
SHARE

Abstract

The microstructure, the grain structure, and the elemental composition of the Al–11.8Si–0.6Mg–0.4Mn–0.6Fe–0.8Ni–1.7Cu alloy (wt %) fabricated at melt cooling rates of 102 and 105 K/s have been investigated by scanning electron microscopy, electron backscattered diffraction, and electron-probe microanalysis. An increase in the cooling rate of the melt from 102 to 105 K/s refines the structural constituents of the alloy (grain sizes, intermetallic particle sizes, silicon particle sizes) by two orders of magnitude. The foil formed at a melt cooling rate of 105 K/s has a layered microstructure in the cross-section. High-rate solidification provides a constant concentration of elements in the layers. The formation of nanoinclusions in the foil layer adjacent to the mold has been explained. The composition of submicron (up to 200 nm) compounds localized at the boundaries of eutectic grains in the layer at the freely solidified side has been identified.
Literature
1.
go back to reference A. T. Volochko, “Modification of eutectic and primary silicon particles in silumins. Development prospects,” Lit’e i Metallurgiya, No. 4 (81), 38–45 (2015). A. T. Volochko, “Modification of eutectic and primary silicon particles in silumins. Development prospects,” Lit’e i Metallurgiya, No. 4 (81), 38–45 (2015).
2.
go back to reference C. Jiqiang, L. Chao, W. Feng, Z. Hongjin, and R. Renguo, “Effect of micro alloying end tensile deformation on the internal structures of eutectic Si phase in Al–Si alloy,” J. Mater. Res. Technol. 9, No. 3, 4682–4691 (2020). CrossRef C. Jiqiang, L. Chao, W. Feng, Z. Hongjin, and R. Renguo, “Effect of micro alloying end tensile deformation on the internal structures of eutectic Si phase in Al–Si alloy,” J. Mater. Res. Technol. 9, No. 3, 4682–4691 (2020). CrossRef
3.
go back to reference E. I. Marukovich and V. Yu. Stetsenko, Modification of Alloys (Belarus. Navuka, Minsk, 2009) [in Russian]. E. I. Marukovich and V. Yu. Stetsenko, Modification of Alloys (Belarus. Navuka, Minsk, 2009) [in Russian].
4.
go back to reference H. Shaodong, D. Yanchao, A. Annie, Y. Fautrelle, R. Moreau, Z. Ren, K. Deng, C. Li, and X. Li, “Effect of a magnetic field on macro segregation of the primary silicon phase in hypereutectic Al–Si alloy during directional solidification,” J. Alloys Compd. 722, 108–115 (2017). CrossRef H. Shaodong, D. Yanchao, A. Annie, Y. Fautrelle, R. Moreau, Z. Ren, K. Deng, C. Li, and X. Li, “Effect of a magnetic field on macro segregation of the primary silicon phase in hypereutectic Al–Si alloy during directional solidification,” J. Alloys Compd. 722, 108–115 (2017). CrossRef
5.
go back to reference M. Li, N. Omura, Y. Murakami, I. Matsui, and S. Tada, “A comparative study of the primary phase formation in Al–7 wt. % Si and Al–17 wt. % Si alloys solidified by electromagnetic stirring processing,” Mater. Today Commun. 24, 101146 (2020). CrossRef M. Li, N. Omura, Y. Murakami, I. Matsui, and S. Tada, “A comparative study of the primary phase formation in Al–7 wt. % Si and Al–17 wt. % Si alloys solidified by electromagnetic stirring processing,” Mater. Today Commun. 24, 101146 (2020). CrossRef
6.
go back to reference E. I. Marukovich and V. Yu. Stetsenko, “The main problems of casting silumins. Solutions,” Lit’e i Metallurgiya, No. 3 (84), 28–30 (2016). E. I. Marukovich and V. Yu. Stetsenko, “The main problems of casting silumins. Solutions,” Lit’e i Metallurgiya, No. 3 (84), 28–30 (2016).
7.
go back to reference A. M. Khalil, I. S. Loginova, A. N. Solonin, and A. O. Mosleh, “Controlling liquation behavior and solidification cracks by continuous laser melting process of AA–7075 aluminum alloy,” Mater. Lett. 277, 128364 (2020). CrossRef A. M. Khalil, I. S. Loginova, A. N. Solonin, and A. O. Mosleh, “Controlling liquation behavior and solidification cracks by continuous laser melting process of AA–7075 aluminum alloy,” Mater. Lett. 277, 128364 (2020). CrossRef
8.
go back to reference S. C. Yoon, S-J. Hong, S. Hong, and H. S. Kim, “Mechanical properties of equal channel angular pressed powder extrudates of a rapidly solidified hypereutectic Al–20 wt % Si alloy,” Mater. Sci. Eng., A 449– 451, 966–970 (2007). CrossRef S. C. Yoon, S-J. Hong, S. Hong, and H. S. Kim, “Mechanical properties of equal channel angular pressed powder extrudates of a rapidly solidified hypereutectic Al–20 wt % Si alloy,” Mater. Sci. Eng., A 449451, 966–970 (2007). CrossRef
9.
go back to reference H. Jones, “Formation of phases and microstructures by rapid solidification processing: an update,” Mater. Sci. Eng., A 179, 14180(1–7) (1994). H. Jones, “Formation of phases and microstructures by rapid solidification processing: an update,” Mater. Sci. Eng., A 179, 14180(1–7) (1994).
10.
go back to reference O. V. Gusakova, V. G. Shepelevich, D. V. Aleksandrov, and I. O. Starodumov, “Features of the structure formation in Al–12.2Si–0.2Fe alloys under rapid solidification from the melt,” Rasplavy, No. 2, 138–148 (2020). CrossRef O. V. Gusakova, V. G. Shepelevich, D. V. Aleksandrov, and I. O. Starodumov, “Features of the structure formation in Al–12.2Si–0.2Fe alloys under rapid solidification from the melt,” Rasplavy, No. 2, 138–148 (2020). CrossRef
11.
go back to reference Z. Chen, Y. Lei, and H. Zhang, “Structure and properties of nanostructured A357 alloy produced by melt spinning compared with direct chill ingot,” J. Alloys Compd. 509, 7473–7477 (2011). CrossRef Z. Chen, Y. Lei, and H. Zhang, “Structure and properties of nanostructured A357 alloy produced by melt spinning compared with direct chill ingot,” J. Alloys Compd. 509, 7473–7477 (2011). CrossRef
12.
go back to reference L. Hengcheng, T. Yunyi, S. Xiaojing, L. Guangjin, H. Yiyun, U. S. Dixit, and P. Pavel, “Dispersoid particles precipitated during the solute ionizing course of Al–12 wt % Si–4 wt % Cu–1.2 wt % Mn alloy and their influence on high temperature strength,” Mater. Sci. Eng., A 699, 201–209 (2017). CrossRef L. Hengcheng, T. Yunyi, S. Xiaojing, L. Guangjin, H. Yiyun, U. S. Dixit, and P. Pavel, “Dispersoid particles precipitated during the solute ionizing course of Al–12 wt % Si–4 wt % Cu–1.2 wt % Mn alloy and their influence on high temperature strength,” Mater. Sci. Eng., A 699, 201–209 (2017). CrossRef
13.
go back to reference D. Tianshun, C. Chunxiang, L. Shuangjin, Y. Lijun, and S. Jibing., “Influence of rapid solidification of Cu–P intermediate alloy on wear resistance of Al–Si alloy,” Rare Met. Mater. Eng. 37, No. 4, 0686–0689 (2008). D. Tianshun, C. Chunxiang, L. Shuangjin, Y. Lijun, and S. Jibing., “Influence of rapid solidification of Cu–P intermediate alloy on wear resistance of Al–Si alloy,” Rare Met. Mater. Eng. 37, No. 4, 0686–0689 (2008).
14.
go back to reference S. Liua, X. Zhanga, H-L. Peng, X. Han, H.-Y. Yanga, T.-T. Li, L. Zhu, S. Zhang, F. Qiua, Z.-H. Ba, S.‑M. Chen, W. Zhou, and Q-C. Jianga, “In situ nanocrystals manipulate solidification behavior and microstructures of hypereutectic Al–Si alloys by Zr-based amorphous alloys,” J. Mater. Res. Technol. 9, No. 3, 4644–4654 (2020). CrossRef S. Liua, X. Zhanga, H-L. Peng, X. Han, H.-Y. Yanga, T.-T. Li, L. Zhu, S. Zhang, F. Qiua, Z.-H. Ba, S.‑M. Chen, W. Zhou, and Q-C. Jianga, “In situ nanocrystals manipulate solidification behavior and microstructures of hypereutectic Al–Si alloys by Zr-based amorphous alloys,” J. Mater. Res. Technol. 9, No. 3, 4644–4654 (2020). CrossRef
15.
go back to reference T. Gao, Z.-Q. Li, Y.-X. Zhang, and X.-F. Liu, “Evolution behavior of c-Al 3.5FeSi in Mg melt and a separation method of Fe from Al–Si–Fe alloys,” Acta Metall. Sin. (Eng. Lett.) 31, 48–54 (2018). T. Gao, Z.-Q. Li, Y.-X. Zhang, and X.-F. Liu, “Evolution behavior of c-Al 3.5FeSi in Mg melt and a separation method of Fe from Al–Si–Fe alloys,” Acta Metall. Sin. (Eng. Lett.) 31, 48–54 (2018).
16.
go back to reference I. Johansen and H. J. Roven, “Mechanical properties of a rapidly solidified A1–Si–Ni–Mn alloy,” Mater. Sci. Eng., A 179/180, 605–608 (1994). CrossRef I. Johansen and H. J. Roven, “Mechanical properties of a rapidly solidified A1–Si–Ni–Mn alloy,” Mater. Sci. Eng., A 179/180, 605–608 (1994). CrossRef
17.
go back to reference Z. Zhang, H. Tezuka, E. Kobayashi, and T. Sato, “Effects of the Mn/Fe ratio and cooling rate on the modification of Fe intermetallic compounds in cast A356 based alloy with different Fe contents,” Mater. Trans. 54, No. 8, 1484–1490 (2001). CrossRef Z. Zhang, H. Tezuka, E. Kobayashi, and T. Sato, “Effects of the Mn/Fe ratio and cooling rate on the modification of Fe intermetallic compounds in cast A356 based alloy with different Fe contents,” Mater. Trans. 54, No. 8, 1484–1490 (2001). CrossRef
18.
go back to reference O. Gusakova, V. Shepelevich, D. V. Alexandrov, and I. O. Starodumov, “Formation of the microstructure of rapidly solidied hypoeutectic Al–Si alloy,” Eur. Phys. J. Spec. Top. 229, 417–425 (2020). CrossRef O. Gusakova, V. Shepelevich, D. V. Alexandrov, and I. O. Starodumov, “Formation of the microstructure of rapidly solidied hypoeutectic Al–Si alloy,” Eur. Phys. J. Spec. Top. 229, 417–425 (2020). CrossRef
19.
go back to reference V. G. Shepelevich, O. V. Gusakova, and S. V. Gusakova, “Structural and phase state of Al–Si–Fe–Mn alloys during high-speed solidification,” Proc. of the MNTK Conf. “Materials, Equipment and Resource-Saving Technologies” April 21–23, 2021 (Mogilev, 2021), pp. 160–161. V. G. Shepelevich, O. V. Gusakova, and S. V. Gusakova, “Structural and phase state of Al–Si–Fe–Mn alloys during high-speed solidification,” Proc. of the MNTK Conf. “Materials, Equipment and Resource-Saving Technologies” April 21–23, 2021 (Mogilev, 2021), pp. 160–161.
20.
go back to reference V. G. Shepelevich, O. V. Gusakova, D. V. Aleksandrov, and I. O. Starodumov, “Influence of the melt cooling rate on the microstructure of the Al–Si–Mn alloy,” Proc. of the 5th ISPC “Applied Problems of Optics, Informatics, Radiophysics and Condensed Matter Physics” May 15–17, 2019 (Minsk, 2019), pp. 273–275. V. G. Shepelevich, O. V. Gusakova, D. V. Aleksandrov, and I. O. Starodumov, “Influence of the melt cooling rate on the microstructure of the Al–Si–Mn alloy,” Proc. of the 5th ISPC “Applied Problems of Optics, Informatics, Radiophysics and Condensed Matter Physics” May 15–17, 2019 (Minsk, 2019), pp. 273–275.
21.
go back to reference A. S. Kalinichenko and Yu. K. Krivosheev, “Determination of the depth of melt supercooling and the nature of structure formation during quenching from a liquid state,” Lit’e i Metallurgiya, No. 3, 60–65 (2001). A. S. Kalinichenko and Yu. K. Krivosheev, “Determination of the depth of melt supercooling and the nature of structure formation during quenching from a liquid state,” Lit’e i Metallurgiya, No. 3, 60–65 (2001).
22.
go back to reference W. Wang and H. -H. Qiu, “Interfacial thermal conductance in rapid contact solidification process,” Int. J. Heat Mass Transfer. 45, 2043–2053 (2002). CrossRef W. Wang and H. -H. Qiu, “Interfacial thermal conductance in rapid contact solidification process,” Int. J. Heat Mass Transfer. 45, 2043–2053 (2002). CrossRef
23.
go back to reference M. A. Martorano and J. D. T. Capocchi, “Heat transfer coefficient at the metal-mould interface in the unidirectional solidification of Cu–8% Sn alloys,” Int. J. Heat Mass Transfer 43, 2541–2552 (2000). CrossRef M. A. Martorano and J. D. T. Capocchi, “Heat transfer coefficient at the metal-mould interface in the unidirectional solidification of Cu–8% Sn alloys,” Int. J. Heat Mass Transfer 43, 2541–2552 (2000). CrossRef
24.
go back to reference P. S. We and F. B. Yeh, “Heat transfer coefficient in rapid solidification of a liquid layer on a substrate,” J. Heat Transfer 122, 792–799 (2000). CrossRef P. S. We and F. B. Yeh, “Heat transfer coefficient in rapid solidification of a liquid layer on a substrate,” J. Heat Transfer 122, 792–799 (2000). CrossRef
25.
go back to reference P. K. Galenko and D. M. Kherlakh, “Diffusionless crystal growth in a eutectic system during rapid solidification,” J. Exp. Theor. Phys. 103, 150–158 (2006). CrossRef P. K. Galenko and D. M. Kherlakh, “Diffusionless crystal growth in a eutectic system during rapid solidification,” J. Exp. Theor. Phys. 103, 150–158 (2006). CrossRef
Metadata
Title
Melt Cooling Rate Effect on the Microstrucutre of Al–Si Alloy Doped with Mg, Mn, Fe, Ni, and Cu
Authors
O. V. Gusakova
S. V. Gusakova
V. G. Shepelevich
Publication date
01-05-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 5/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22050039