Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 5/2022

01-05-2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Effect of Thermal Aging for up to 22 Thousand Hours on the Structural and Phase State of Ferritic–Martensitic Steels EK181 and ChS139

Authors: N. S. Nikolaeva, M. V. Leont’eva-Smirnova, E. M. Mozhanov

Published in: Physics of Metals and Metallography | Issue 5/2022

Login to get access
share
SHARE

Abstract

The results of structural studies of ferritic–martensitic steels EK181 (Fe–12Cr–W–V–Ta–B–C) and ChS139 (Fe–12Cr–Ni–Mo–W–Nb–V–B–N–C) after aging at temperatures of 450, 550, 650, and 700°C for a period of 1000–22 000 h are presented. Optical and electron microscopy are used in the study. The following common trends are revealed for both steels: aging for up to 19 000 h at 450 and 550°C is characterized by a low rate of decomposition of the supersaturated solid solution and by the preservation of the structural parameters of the studied steels at the initial level; aging at 650 and 700°C initiates, starting from an exposure time of 1000 h, the softening processes accompanied by the formation of a subgrain structure and coagulation of carbides. The precipitation of the Fe2(Mo, W) Laves phase after aging at a temperature of 650°C is a distinctive feature of the structure of steel ChS139 compared to steel EK181.
Literature
1.
go back to reference R. Odette and S. Zinkle, Structural Alloys for Nuclear Energy Applications (Elsevier, Amsterdam, 2019). R. Odette and S. Zinkle, Structural Alloys for Nuclear Energy Applications (Elsevier, Amsterdam, 2019).
2.
go back to reference R. L. Klueh and A. T. Nelson, “Ferritic/martensitic steels for next-generation reactors,” J. Nuclear Mater. 371, 37–52 (2007). CrossRef R. L. Klueh and A. T. Nelson, “Ferritic/martensitic steels for next-generation reactors,” J. Nuclear Mater. 371, 37–52 (2007). CrossRef
3.
go back to reference M. V. Leont’eva-Smirnova, A. N. Agafonov, G. N. Ermolaev, A. G. Ioltukhovskii, E. M. Mozhanov, L. I. Reviznikov, V. V. Tsvelev, V. M. Chernov, T. M. Bulanova, V. N. Golovanov, Z. O. Ostrovskii, V. K. Shamardin, A. I. Blokhin, M. B. Ivanov, E. V. Kozlov, Yu. R. Kolobov, and B. K. Kardashev, “Microstructure and mechanical properties of low-activated ferritic-martensitic steel EK-181 (RUSFER-EK-181),” Perspektivnye Materialy, No. 6, 40–52 (2006). M. V. Leont’eva-Smirnova, A. N. Agafonov, G. N. Ermolaev, A. G. Ioltukhovskii, E. M. Mozhanov, L. I. Reviznikov, V. V. Tsvelev, V. M. Chernov, T. M. Bulanova, V. N. Golovanov, Z. O. Ostrovskii, V. K. Shamardin, A. I. Blokhin, M. B. Ivanov, E. V. Kozlov, Yu. R. Kolobov, and B. K. Kardashev, “Microstructure and mechanical properties of low-activated ferritic-martensitic steel EK-181 (RUSFER-EK-181),” Perspektivnye Materialy, No. 6, 40–52 (2006).
4.
go back to reference N. S. Nikolaeva, M. V. Leont’eva-Smirnova, E. M. Mozhanov, T. A. Churyumova, P. V. Kotov, E. V. Tsvetkova, A. V. Mitroshenkov, and K. V. Prokhorenkov, “Optimization of technology for heat treatment of pipes made of ferritic-martensitic steels EK181, ChS139,” VANT. Ser.: Materialovedenie i Novye Materialy, No. 2, 45–58 (2013). N. S. Nikolaeva, M. V. Leont’eva-Smirnova, E. M. Mozhanov, T. A. Churyumova, P. V. Kotov, E. V. Tsvetkova, A. V. Mitroshenkov, and K. V. Prokhorenkov, “Optimization of technology for heat treatment of pipes made of ferritic-martensitic steels EK181, ChS139,” VANT. Ser.: Materialovedenie i Novye Materialy, No. 2, 45–58 (2013).
5.
go back to reference V. V. Sagaradze, T. N. Kochetkova, N. V. Kataeva, K. A. Kozlov, V. A. Zavalishin, N. F. Vil’danova, V. S. Ageev, M. V. Leont’eva-Smirnova, and A. A. Nikitina, “Structure and creep of russian reactor steels with a bcc structure,” Phys. Met. Metallogr. 118, No. 5, 494–506 (2017). CrossRef V. V. Sagaradze, T. N. Kochetkova, N. V. Kataeva, K. A. Kozlov, V. A. Zavalishin, N. F. Vil’danova, V. S. Ageev, M. V. Leont’eva-Smirnova, and A. A. Nikitina, “Structure and creep of russian reactor steels with a bcc structure,” Phys. Met. Metallogr. 118, No. 5, 494–506 (2017). CrossRef
6.
go back to reference V. M. Chernov, M. V. Leont’eva-Smirnova, E. M. Mozhanov, N. S. Nikolaeva, A. N. Tyumentsev, N. A. Polekhina, I. Yu. Litovchenko, and E. G. Astafurova, “Thermal stability of the microstructure of 12% chromium ferritic–martensitic steels after long-term aging at high temperatures,” Tech. Phys. 61, 209–214 (2016). CrossRef V. M. Chernov, M. V. Leont’eva-Smirnova, E. M. Mozhanov, N. S. Nikolaeva, A. N. Tyumentsev, N. A. Polekhina, I. Yu. Litovchenko, and E. G. Astafurova, “Thermal stability of the microstructure of 12% chromium ferritic–martensitic steels after long-term aging at high temperatures,” Tech. Phys. 61, 209–214 (2016). CrossRef
7.
go back to reference X. Xiao, G. Liu, B. Hu, J. Wang, and W. Ma, “Microstructure stability of V and Ta microalloyed 12% Cr reduced activation ferrite/martensite steel during long-term aging at 650°C,” J. Mater. Sci. Technol. 31, No. 3, 311–319 (2015). CrossRef X. Xiao, G. Liu, B. Hu, J. Wang, and W. Ma, “Microstructure stability of V and Ta microalloyed 12% Cr reduced activation ferrite/martensite steel during long-term aging at 650°C,” J. Mater. Sci. Technol. 31, No. 3, 311–319 (2015). CrossRef
8.
go back to reference X. Hu, L. Huang, W. Yan, W. Wang, W. Sha, Y. Shan, and K. Yan, “Evolution of microstructure and changes of mechanical properties of CLAM steel after long-term aging,” Mater. Sci. Eng., A 586, 253–258 (2013). X. Hu, L. Huang, W. Yan, W. Wang, W. Sha, Y. Shan, and K. Yan, “Evolution of microstructure and changes of mechanical properties of CLAM steel after long-term aging,” Mater. Sci. Eng., A 586, 253–258 (2013).
9.
go back to reference H. Ghassemi-Armaki, R. P. Chen, K. Maruyama, M. Yoshizawa, and M. Igarashi, “Static recovery of tempered lath martensite microstructures during long-term aging in 9–12% Cr heat resistant steels,” Mater. Lett. 63, 2423–2425 (2009). CrossRef H. Ghassemi-Armaki, R. P. Chen, K. Maruyama, M. Yoshizawa, and M. Igarashi, “Static recovery of tempered lath martensite microstructures during long-term aging in 9–12% Cr heat resistant steels,” Mater. Lett. 63, 2423–2425 (2009). CrossRef
10.
go back to reference K. Shiba, H. Tanigawa, T. Hirose, H. Sakasegawa, and S. Jitsukawa, “Long-term properties of reduced activation ferritic/martensitic steels for fusion reactor blanket system,” Fusion Eng. Des. 86, 2895–2899 (2011). CrossRef K. Shiba, H. Tanigawa, T. Hirose, H. Sakasegawa, and S. Jitsukawa, “Long-term properties of reduced activation ferritic/martensitic steels for fusion reactor blanket system,” Fusion Eng. Des. 86, 2895–2899 (2011). CrossRef
11.
go back to reference P. Hu, W. Yan, W. Sha, W. Wang, Y. Shan, and K. Yan, “Microstructure evolution of a 10Cr heat-resistant steel during high temperature creep,” J. Mater. Sci. Technol. 27, No. 4, 344–351 (2011). CrossRef P. Hu, W. Yan, W. Sha, W. Wang, Y. Shan, and K. Yan, “Microstructure evolution of a 10Cr heat-resistant steel during high temperature creep,” J. Mater. Sci. Technol. 27, No. 4, 344–351 (2011). CrossRef
12.
go back to reference Y. Xu, Y. Nie, M. Wang, W. Li, and X. Jin, “The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging,” Acta Mater. 131, 110–122 (2017). CrossRef Y. Xu, Y. Nie, M. Wang, W. Li, and X. Jin, “The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging,” Acta Mater. 131, 110–122 (2017). CrossRef
13.
go back to reference K. A. Lanskaya, High-Chromium Heat Resistant Steels (Metallurgiya, Moscow, 1976) [in Russian]. K. A. Lanskaya, High-Chromium Heat Resistant Steels (Metallurgiya, Moscow, 1976) [in Russian].
Metadata
Title
Effect of Thermal Aging for up to 22 Thousand Hours on the Structural and Phase State of Ferritic–Martensitic Steels EK181 and ChS139
Authors
N. S. Nikolaeva
M. V. Leont’eva-Smirnova
E. M. Mozhanov
Publication date
01-05-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 5/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22050118