Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Memristor Device Overview

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Memristors are one of the emerging technologies that can potentially replace state-of-the-art integrated electronic devices for advanced computing and digital and analog circuit applications including neuromorphic networks. Over the past few years, research and development mostly focused on revolutionizing the metal-oxide materials, which are used as core components of the popular metal-insulator-metal (MIM) memristors owing to their highly recognized resistive switching behavior. This chapter outlines the recent advancements and characteristics of such memristive devices, with a special focus on (i) their established resistive switching mechanisms and (ii) the key challenges associated with their fabrication processes including the impeding criteria of material adaptation for the electrode, capping, and insulator component layers. Potential applications and an outlook into the future development of metal-oxide memristive devices are also outlined.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)CrossRef J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)CrossRef
2.
go back to reference S.D. Ha, Adaptive oxide electronics: A review. J. Appl. Phys. 110, 071101 (2011)CrossRef S.D. Ha, Adaptive oxide electronics: A review. J. Appl. Phys. 110, 071101 (2011)CrossRef
3.
4.
go back to reference S. Shinde, T. Dongle, Modelling of nanostructured TiO2-based memristors. J. Semiconductors 36, 034001 (2015)CrossRef S. Shinde, T. Dongle, Modelling of nanostructured TiO2-based memristors. J. Semiconductors 36, 034001 (2015)CrossRef
5.
go back to reference P. Mazumder, S.M. Kang, R. Waser, Memristors: Devices, models, and applications. Proc. IEEE 100, 1911–1919 (2012)CrossRef P. Mazumder, S.M. Kang, R. Waser, Memristors: Devices, models, and applications. Proc. IEEE 100, 1911–1919 (2012)CrossRef
6.
go back to reference M.G.A. Mohamed, H. Kim, T.W. Cho, New modeling technique for memristor devices to cover deviation from memristive theory, 2014 International Conference on Electronics, Information and Communications (Iceic), 2014 M.G.A. Mohamed, H. Kim, T.W. Cho, New modeling technique for memristor devices to cover deviation from memristive theory, 2014 International Conference on Electronics, Information and Communications (Iceic), 2014
7.
go back to reference L. Chua, Memristors: A new nanoscale CNN cell, in Cellular Nanoscale Sensory Wave Computing, Springer, 2010, pp. 87–115 L. Chua, Memristors: A new nanoscale CNN cell, in Cellular Nanoscale Sensory Wave Computing, Springer, 2010, pp. 87–115
8.
go back to reference Y.V. Pershin, M. Di Ventra, Experimental demonstration of associative memory with memristive neural networks. Neural Netw 23, 881–886 (2010)CrossRef Y.V. Pershin, M. Di Ventra, Experimental demonstration of associative memory with memristive neural networks. Neural Netw 23, 881–886 (2010)CrossRef
9.
go back to reference S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010)CrossRef S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010)CrossRef
10.
go back to reference L.O. Chua, “Memristor—Missing Circuit Element. IEEE Trans. Circ. Theor. CT18, 507–519 (1971) L.O. Chua, “Memristor—Missing Circuit Element. IEEE Trans. Circ. Theor. CT18, 507–519 (1971)
12.
go back to reference D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)CrossRef D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)CrossRef
13.
go back to reference T. Prodromakis, C. Toumazou, L. Chua, Two centuries of memristors. Nat. Mater. 11, 478–481 (2012)CrossRef T. Prodromakis, C. Toumazou, L. Chua, Two centuries of memristors. Nat. Mater. 11, 478–481 (2012)CrossRef
14.
go back to reference R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007)CrossRef R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007)CrossRef
15.
go back to reference A. Asamitsu, Y. Tomioka, H. Kuwahara, Y. Tokura, Current switching of resistive states in magnetoresistive manganites. Nature, 388, 50–52 (1997) A. Asamitsu, Y. Tomioka, H. Kuwahara, Y. Tokura, Current switching of resistive states in magnetoresistive manganites. Nature, 388, 50–52 (1997)
16.
go back to reference M. Kozicki, M. Yun, L. Hilt, A. Singh, Applications of programmable resistance changes in metal-doped chalcogenides. Pennington NJ USA: Electrochem. Soc, 298–309 (1999) M. Kozicki, M. Yun, L. Hilt, A. Singh, Applications of programmable resistance changes in metal-doped chalcogenides. Pennington NJ USA: Electrochem. Soc, 298–309 (1999)
17.
go back to reference A. Beck, J. Bednorz, C. Gerber, C. Rossel, D. Widmer, Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77, 139–141 (2000)CrossRef A. Beck, J. Bednorz, C. Gerber, C. Rossel, D. Widmer, Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77, 139–141 (2000)CrossRef
18.
go back to reference R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009)CrossRef R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009)CrossRef
19.
go back to reference U. Russo, D. Ielmini, C. Cagli, A.L. Lacaita, Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56, 193–200 (2009)CrossRef U. Russo, D. Ielmini, C. Cagli, A.L. Lacaita, Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56, 193–200 (2009)CrossRef
20.
go back to reference D.B. Strukov, F. Alibart, R.S. Williams, Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal–oxide–metal memristors. Appl. Phys. A 107, 509–518 (2012)CrossRef D.B. Strukov, F. Alibart, R.S. Williams, Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal–oxide–metal memristors. Appl. Phys. A 107, 509–518 (2012)CrossRef
21.
go back to reference T. Hickmott, Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 2669–2682 (1962)CrossRef T. Hickmott, Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 2669–2682 (1962)CrossRef
22.
go back to reference G. Dearnaley, A. Stoneham, D. Morgan, Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33, 1129 (1970)CrossRef G. Dearnaley, A. Stoneham, D. Morgan, Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33, 1129 (1970)CrossRef
23.
go back to reference B. Choi, D. Jeong, S. Kim, C. Rohde, S. Choi, J. Oh et al., Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98, 033715 (2005)CrossRef B. Choi, D. Jeong, S. Kim, C. Rohde, S. Choi, J. Oh et al., Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98, 033715 (2005)CrossRef
24.
go back to reference B.J. Choi, J.J. Yang, M.-X. Zhang, K.J. Norris, D.A. Ohlberg, N.P. Kobayashi et al., Nitride memristors. Appl. Phys. A 109, 1–4 (2012)CrossRef B.J. Choi, J.J. Yang, M.-X. Zhang, K.J. Norris, D.A. Ohlberg, N.P. Kobayashi et al., Nitride memristors. Appl. Phys. A 109, 1–4 (2012)CrossRef
25.
go back to reference T. Menke, R. Dittmann, P. Meuffels, K. Szot, R. Waser, Impact of the electroforming process on the device stability of epitaxial Fe-doped SrTiO3 resistive switching cells. J. Appl. Phys. 106, 114507 (2009)CrossRef T. Menke, R. Dittmann, P. Meuffels, K. Szot, R. Waser, Impact of the electroforming process on the device stability of epitaxial Fe-doped SrTiO3 resistive switching cells. J. Appl. Phys. 106, 114507 (2009)CrossRef
26.
go back to reference W. Wang, S. Fujita, S. Simon Wong, Elimination of forming process for TiOx nonvolatile memory devices. IEEE Electron Device Lett. 30, 763–765 (2009) W. Wang, S. Fujita, S. Simon Wong, Elimination of forming process for TiOx nonvolatile memory devices. IEEE Electron Device Lett. 30, 763–765 (2009)
27.
go back to reference F. Gomez-Marlasca, N. Ghenzi, M. Rozenberg, P. Levy, Understanding electroforming in bipolar resistive switching oxides. Appl. Phys. Lett. 98, 042901 (2011)CrossRef F. Gomez-Marlasca, N. Ghenzi, M. Rozenberg, P. Levy, Understanding electroforming in bipolar resistive switching oxides. Appl. Phys. Lett. 98, 042901 (2011)CrossRef
28.
go back to reference J.J. Yang, F. Miao, M.D. Pickett, D.A. Ohlberg, D.R. Stewart, C.N. Lau et al., The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20, 215201 (2009)CrossRef J.J. Yang, F. Miao, M.D. Pickett, D.A. Ohlberg, D.R. Stewart, C.N. Lau et al., The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20, 215201 (2009)CrossRef
29.
go back to reference D.S. Jeong, H. Schroeder, U. Breuer, R. Waser, Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere. J. Appl. Phys. 104, 123716–123716-8 (2008) D.S. Jeong, H. Schroeder, U. Breuer, R. Waser, Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere. J. Appl. Phys. 104, 123716–123716-8 (2008)
30.
go back to reference I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22, 254003 (2011)CrossRef I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22, 254003 (2011)CrossRef
31.
go back to reference D. Liu, H. Cheng, X. Zhu, G. Wang, N. Wang, Analog memristors based on thickening/thinning of Ag nanofilaments in amorphous manganite thin films. ACS Appl. Mater. Interfaces. 5, 11258–11264 (2013)CrossRef D. Liu, H. Cheng, X. Zhu, G. Wang, N. Wang, Analog memristors based on thickening/thinning of Ag nanofilaments in amorphous manganite thin films. ACS Appl. Mater. Interfaces. 5, 11258–11264 (2013)CrossRef
32.
go back to reference D. Liu, N. Wang, G. Wang, Z. Shao, X. Zhu, C. Zhang et al., Programmable metallization cells based on amorphous La 0.79 Sr 0.21 MnO3 thin films for memory applications. J. Alloy. Compd. 580, 354–357 (2013)CrossRef D. Liu, N. Wang, G. Wang, Z. Shao, X. Zhu, C. Zhang et al., Programmable metallization cells based on amorphous La 0.79 Sr 0.21 MnO3 thin films for memory applications. J. Alloy. Compd. 580, 354–357 (2013)CrossRef
33.
go back to reference D. Liu, N. Wang, G. Wang, Z. Shao, X. Zhu, C. Zhang et al., Nonvolatile bipolar resistive switching in amorphous Sr-doped LaMnO3 thin films deposited by radio frequency magnetron sputtering. Appl. Phys. Lett. 102, 134105 (2013)CrossRef D. Liu, N. Wang, G. Wang, Z. Shao, X. Zhu, C. Zhang et al., Nonvolatile bipolar resistive switching in amorphous Sr-doped LaMnO3 thin films deposited by radio frequency magnetron sputtering. Appl. Phys. Lett. 102, 134105 (2013)CrossRef
34.
go back to reference R. Waser, Nanoelectronics and Information Technology. (Wiley, New Jersey, 2012) R. Waser, Nanoelectronics and Information Technology. (Wiley, New Jersey, 2012)
35.
go back to reference W. Lu, D.S. Jeong, M. Kozicki, R. Waser, Electrochemical metallization cells—blending nanoionics into nanoelectronics? MRS Bull. 37, 124–130 (2012)CrossRef W. Lu, D.S. Jeong, M. Kozicki, R. Waser, Electrochemical metallization cells—blending nanoionics into nanoelectronics? MRS Bull. 37, 124–130 (2012)CrossRef
36.
go back to reference S. Maikap, S. Rahaman, Bipolar resistive switching memory characteristics using Al/Cu/GeOx/W memristor. ECS Trans. 45, 257–261 (2012)CrossRef S. Maikap, S. Rahaman, Bipolar resistive switching memory characteristics using Al/Cu/GeOx/W memristor. ECS Trans. 45, 257–261 (2012)CrossRef
37.
go back to reference B. Medasani, M. Haranczyk, A. Canning, M. Asta, Vacancy formation energies in metals: A comparison of MetaGGA with LDA and GGA exchange–correlation functionals. Comput. Mater. Sci. 101, 96–107 (2015)CrossRef B. Medasani, M. Haranczyk, A. Canning, M. Asta, Vacancy formation energies in metals: A comparison of MetaGGA with LDA and GGA exchange–correlation functionals. Comput. Mater. Sci. 101, 96–107 (2015)CrossRef
38.
go back to reference D. Strukov, F. Alibart, R. Stanley Williams, Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal–oxide–metal memristors. Appl. Phys. A 107, 509–518 (2012) D. Strukov, F. Alibart, R. Stanley Williams, Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal–oxide–metal memristors. Appl. Phys. A 107, 509–518 (2012)
39.
go back to reference C. Cagli, F. Nardi, D. Ielmini, Modeling of set/reset operations in NiO-based resistive-switching memory DEVICES. Electron Devices, IEEE Trans. 56, 1712–1720 (2009)CrossRef C. Cagli, F. Nardi, D. Ielmini, Modeling of set/reset operations in NiO-based resistive-switching memory DEVICES. Electron Devices, IEEE Trans. 56, 1712–1720 (2009)CrossRef
40.
go back to reference Daniele Ielmini, Federico Nardi, Carlo Cagli, Universal reset characteristics of unipolar and bipolar metal-oxide RRAM. IEEE Trans. Electron Devices 58, 3246–3253 (2011)CrossRef Daniele Ielmini, Federico Nardi, Carlo Cagli, Universal reset characteristics of unipolar and bipolar metal-oxide RRAM. IEEE Trans. Electron Devices 58, 3246–3253 (2011)CrossRef
41.
go back to reference T. Tohru, T. Kazuya, H. Tsuyoshi, A. Masakazu, Temperature effects on the switching kinetics of a Cu–Ta2O5 -based atomic switch. Nanotechnology 22, 254013 (2011)CrossRef T. Tohru, T. Kazuya, H. Tsuyoshi, A. Masakazu, Temperature effects on the switching kinetics of a Cu–Ta2O5 -based atomic switch. Nanotechnology 22, 254013 (2011)CrossRef
42.
go back to reference W. Guan, M. Liu, S. Long, Q. Liu, W. Wang, On the resistive switching mechanisms of Cu/ZrO2: Cu/Pt. Appl. Phys. Lett. 93, 223506 (2008)CrossRef W. Guan, M. Liu, S. Long, Q. Liu, W. Wang, On the resistive switching mechanisms of Cu/ZrO2: Cu/Pt. Appl. Phys. Lett. 93, 223506 (2008)CrossRef
43.
go back to reference Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012)CrossRef Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012)CrossRef
44.
go back to reference T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, M. Aono, Electronic transport in Ta2O5 resistive switch. Appl. Phys. Lett. 91, 092110 (2007)CrossRef T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, M. Aono, Electronic transport in Ta2O5 resistive switch. Appl. Phys. Lett. 91, 092110 (2007)CrossRef
45.
go back to reference M. Kund, G. Beitel, C.U. Pinnow, T. Rohr, J. Schumann, R. Symanczyk et al., Conductive bridging RAM (CBRAM): An emerging non-volatile memory technology scalable to sub 20 nm, in Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, 2005, pp. 754–757 M. Kund, G. Beitel, C.U. Pinnow, T. Rohr, J. Schumann, R. Symanczyk et al., Conductive bridging RAM (CBRAM): An emerging non-volatile memory technology scalable to sub 20 nm, in Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, 2005, pp. 754–757
46.
go back to reference A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Colossal electro-resistance memory effect at metal/La2CuO4 interfaces. Jpn. J. Appl. Phys. 44, L1241 (2005)CrossRef A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Colossal electro-resistance memory effect at metal/La2CuO4 interfaces. Jpn. J. Appl. Phys. 44, L1241 (2005)CrossRef
47.
go back to reference Z. Liao, Z. Wang, Y. Meng, Z. Liu, P. Gao, J. Gang et al., Categorization of resistive switching of metal-Pr0. 7Ca0. 3MnO3-metal devices. Appl. Phys. Lett. 94, 253503 (2009)CrossRef Z. Liao, Z. Wang, Y. Meng, Z. Liu, P. Gao, J. Gang et al., Categorization of resistive switching of metal-Pr0. 7Ca0. 3MnO3-metal devices. Appl. Phys. Lett. 94, 253503 (2009)CrossRef
48.
go back to reference B. Gao, S. Yu, N. Xu, L. Liu, B. Sun, X. Liu et al., Oxide-based RRAM switching mechanism: A new ion-transport-recombination model, in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1–4 B. Gao, S. Yu, N. Xu, L. Liu, B. Sun, X. Liu et al., Oxide-based RRAM switching mechanism: A new ion-transport-recombination model, in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1–4
49.
go back to reference S.G. Hu, S.Y. Wu, W.W. Jia, Q. Yu, L.J. Deng, Y.Q. Fu et al., Review of nanostructured resistive switching memristor and its applications. Nanosci. Nanotech. Lett. 6, 729–757 (2014)CrossRef S.G. Hu, S.Y. Wu, W.W. Jia, Q. Yu, L.J. Deng, Y.Q. Fu et al., Review of nanostructured resistive switching memristor and its applications. Nanosci. Nanotech. Lett. 6, 729–757 (2014)CrossRef
50.
go back to reference F. Miao, J.P. Strachan, J.J. Yang, M.-X. Zhang, I. Goldfarb, A.C. Torrezan et al., Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Adv. Mater. 23, 5633–5640 (2011)CrossRef F. Miao, J.P. Strachan, J.J. Yang, M.-X. Zhang, I. Goldfarb, A.C. Torrezan et al., Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Adv. Mater. 23, 5633–5640 (2011)CrossRef
51.
go back to reference M.D. Pickett, D.B. Strukov, J.L. Borghetti, J.J. Yang, G.S. Snider, D.R. Stewart et al., Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106 (2009) M.D. Pickett, D.B. Strukov, J.L. Borghetti, J.J. Yang, G.S. Snider, D.R. Stewart et al., Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106 (2009)
52.
go back to reference S. Menzel, M. Waters, A. Marchewka, U. Böttger, R. Dittmann, R. Waser, Origin of the ultra-nonlinear switching kinetics in oxide-based resistive switches. Adv. Func. Mater. 21, 4487–4492 (2011)CrossRef S. Menzel, M. Waters, A. Marchewka, U. Böttger, R. Dittmann, R. Waser, Origin of the ultra-nonlinear switching kinetics in oxide-based resistive switches. Adv. Func. Mater. 21, 4487–4492 (2011)CrossRef
53.
go back to reference D. Strukov, R.S. Williams, Exponential ionic drift: Fast switching and low volatility of thin-film memristors. Appl. Phys. A 94, 515–519 (2009) D. Strukov, R.S. Williams, Exponential ionic drift: Fast switching and low volatility of thin-film memristors. Appl. Phys. A 94, 515–519 (2009)
54.
go back to reference D.S. Jeong, H. Schroeder, R. Waser, Coexistence of bipolar and unipolar resistive switching behaviors in a Pt∕TiO2∕Pt stack. Electrochem. Solid-State Lett. 10, G51–G53 (2007)CrossRef D.S. Jeong, H. Schroeder, R. Waser, Coexistence of bipolar and unipolar resistive switching behaviors in a Pt∕TiO2∕Pt stack. Electrochem. Solid-State Lett. 10, G51–G53 (2007)CrossRef
55.
go back to reference K.-L. Lin, T.-H. Hou, J. Shieh, J.-H. Lin, C.-T. Chou, Y.-J. Lee, Electrode dependence of filament formation in HfO2 resistive-switching memory. J. Appl. Phys. 109, 084104 (2011)CrossRef K.-L. Lin, T.-H. Hou, J. Shieh, J.-H. Lin, C.-T. Chou, Y.-J. Lee, Electrode dependence of filament formation in HfO2 resistive-switching memory. J. Appl. Phys. 109, 084104 (2011)CrossRef
56.
go back to reference X. Wu, K. Pey, G. Zhang, P. Bai, X. Li, W. Liu et al., Electrode material dependent breakdown and recovery in advanced high-κ gate stacks. Appl. Phys. Lett. 96, 202903–202903-3 (2010) X. Wu, K. Pey, G. Zhang, P. Bai, X. Li, W. Liu et al., Electrode material dependent breakdown and recovery in advanced high-κ gate stacks. Appl. Phys. Lett. 96, 202903–202903-3 (2010)
57.
go back to reference C. Walczyk, C. Wenger, D. Walczyk, M. Lukosius, I. Costina, M. Fraschke, et al., On the role of Ti adlayers for resistive switching in HfO2-based metal-insulator-metal structures: Top versus bottom electrode integration. J. Vac. Sci. Tech. B: Microelectron. Nanometer Struct. 29, 01AD02–01AD02-7 (2011) C. Walczyk, C. Wenger, D. Walczyk, M. Lukosius, I. Costina, M. Fraschke, et al., On the role of Ti adlayers for resistive switching in HfO2-based metal-insulator-metal structures: Top versus bottom electrode integration. J. Vac. Sci. Tech. B: Microelectron. Nanometer Struct. 29, 01AD02–01AD02-7 (2011)
58.
go back to reference D.B. Strukov, R.S. Williams, An ionic bottle for high-speed, long-retention memristive devices. Appl. Phys. A-Mater. Sci. Process. 102, 1033–1036 (2011)CrossRef D.B. Strukov, R.S. Williams, An ionic bottle for high-speed, long-retention memristive devices. Appl. Phys. A-Mater. Sci. Process. 102, 1033–1036 (2011)CrossRef
59.
go back to reference M. Noman, W.K. Jiang, P.A. Salvador, M. Skowronski, J.A. Bain, Computational investigations into the operating window for memristive devices based on homogeneous ionic motion. Appl. Phys. A-Mater. Sci. Process. 102, 877–883 (2011)CrossRef M. Noman, W.K. Jiang, P.A. Salvador, M. Skowronski, J.A. Bain, Computational investigations into the operating window for memristive devices based on homogeneous ionic motion. Appl. Phys. A-Mater. Sci. Process. 102, 877–883 (2011)CrossRef
60.
go back to reference L.F. Zagonel, M. Bäurer, A. Bailly, O. Renault, M. Hoffmann, S.J. Shih, N. Barrett, Orientation-dependent work function of in situ annealed strontium titanate. J. Phys.: Condens. Matter 21(31), 314013 (2009) L.F. Zagonel, M. Bäurer, A. Bailly, O. Renault, M. Hoffmann, S.J. Shih, N. Barrett, Orientation-dependent work function of in situ annealed strontium titanate. J. Phys.: Condens. Matter 21(31), 314013 (2009)
61.
go back to reference D. Tsiplakides, C.G. Vayenas, Electrode work function and absolute potential scale in solid-state electrochemistry. J Electrochem. Soc. 148, E189–E202 (2001) D. Tsiplakides, C.G. Vayenas, Electrode work function and absolute potential scale in solid-state electrochemistry. J Electrochem. Soc. 148, E189–E202 (2001)
62.
go back to reference J. Schaeffer, S. Samavedem, L. Fonseca, C. Capasso, O. Odetutu, D. Gilmer et al., Investigation of metal gate electrodes on Hfo2 gate dielectrics. Mat. Res. Soc. Symp. Proc. 811D, 1.1 (2004) J. Schaeffer, S. Samavedem, L. Fonseca, C. Capasso, O. Odetutu, D. Gilmer et al., Investigation of metal gate electrodes on Hfo2 gate dielectrics. Mat. Res. Soc. Symp. Proc. 811D, 1.1 (2004)
63.
go back to reference M.T. Greiner, Z.-H. Lu, Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces. NPG Asia Mater. 5, e55 (2013)CrossRef M.T. Greiner, Z.-H. Lu, Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces. NPG Asia Mater. 5, e55 (2013)CrossRef
64.
go back to reference W.M. Haynes, CRC handbook of chemistry and physics, 95th edn. (CRC press, Florida, 2013), p. 124 W.M. Haynes, CRC handbook of chemistry and physics, 95th edn. (CRC press, Florida, 2013), p. 124
65.
go back to reference R. Fujii, Y. Gotoh, M. Liao, H. Tsuji, J. Ishikawa, Work function measurement of transition metal nitride and carbide thin films. Vacuum 80, 832–835 (2006)CrossRef R. Fujii, Y. Gotoh, M. Liao, H. Tsuji, J. Ishikawa, Work function measurement of transition metal nitride and carbide thin films. Vacuum 80, 832–835 (2006)CrossRef
66.
go back to reference C. Cagli, J. Buckley, V. Jousseaume, T. Cabout, A. Salaun, H. Grampeix et al., Experimental and theoretical study of electrode effects in HfO2 based RRAM, in Electron Devices Meeting (IEDM), 2011 IEEE International (2011), pp. 28.7. 1–28.7. 4 C. Cagli, J. Buckley, V. Jousseaume, T. Cabout, A. Salaun, H. Grampeix et al., Experimental and theoretical study of electrode effects in HfO2 based RRAM, in Electron Devices Meeting (IEDM), 2011 IEEE International (2011), pp. 28.7. 1–28.7. 4
67.
go back to reference L. Goux, X.P. Wang, Y. Chen, L. Pantisano, N. Jossart, B. Govoreanu et al., Roles and effects of TiN and Pt electrodes in resistive-switching HfO2 systems. Electrochem. Solid-State Lett. 14, H244–H246 (2011)CrossRef L. Goux, X.P. Wang, Y. Chen, L. Pantisano, N. Jossart, B. Govoreanu et al., Roles and effects of TiN and Pt electrodes in resistive-switching HfO2 systems. Electrochem. Solid-State Lett. 14, H244–H246 (2011)CrossRef
68.
go back to reference N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang et al., Characteristics and mechanism of conduction/set process in TiN∕ZnO∕Pt resistance switching random-access memories. Appl. Phys. Lett. 92, 232112 (2008)CrossRef N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang et al., Characteristics and mechanism of conduction/set process in TiN∕ZnO∕Pt resistance switching random-access memories. Appl. Phys. Lett. 92, 232112 (2008)CrossRef
69.
go back to reference Z. Fang, H. Yu, W. Liu, Z. Wang, X. Tran, B. Gao et al., Temperature instability of resistive switching on-based RRAM devices. Electron Device Lett. IEEE 31, 476–478 (2010)CrossRef Z. Fang, H. Yu, W. Liu, Z. Wang, X. Tran, B. Gao et al., Temperature instability of resistive switching on-based RRAM devices. Electron Device Lett. IEEE 31, 476–478 (2010)CrossRef
70.
go back to reference S.-Y. Wang, D.-Y. Lee, T.-Y. Tseng, C.-Y. Lin, Effects of Ti top electrode thickness on the resistive switching behaviors of rf-sputtered ZrO2 memory films. Appl. Phys. Lett. 95, 112904 (2009)CrossRef S.-Y. Wang, D.-Y. Lee, T.-Y. Tseng, C.-Y. Lin, Effects of Ti top electrode thickness on the resistive switching behaviors of rf-sputtered ZrO2 memory films. Appl. Phys. Lett. 95, 112904 (2009)CrossRef
71.
go back to reference C.-Y. Lin, S.-Y. Wang, D.-Y. Lee, T.-Y. Tseng, Electrical properties and fatigue behaviors of ZrO2 resistive switching thin films. J. Electrochem. Soc. 155, H615–H619 (2008)CrossRef C.-Y. Lin, S.-Y. Wang, D.-Y. Lee, T.-Y. Tseng, Electrical properties and fatigue behaviors of ZrO2 resistive switching thin films. J. Electrochem. Soc. 155, H615–H619 (2008)CrossRef
72.
go back to reference L. Goux, Y.-Y. Chen, L. Pantisano, X.-P. Wang, G. Groeseneken, M. Jurczak et al., On the gradual unipolar and bipolar resistive switching of TiN HfO2 Pt memory systems. Electrochem. Solid-State Lett. 13, G54–G56 (2010)CrossRef L. Goux, Y.-Y. Chen, L. Pantisano, X.-P. Wang, G. Groeseneken, M. Jurczak et al., On the gradual unipolar and bipolar resistive switching of TiN HfO2 Pt memory systems. Electrochem. Solid-State Lett. 13, G54–G56 (2010)CrossRef
73.
go back to reference H.Y. Lee, P.S. Chen, T.Y. Wu, C.C. Wang, P.J. Tzeng, C.H. Lin et al., Electrical evidence of unstable anodic interface in Ru/HfOx/TiN unipolar resistive memory. Appl. Phys. Lett. 92, 142911–142911-3 (2008) H.Y. Lee, P.S. Chen, T.Y. Wu, C.C. Wang, P.J. Tzeng, C.H. Lin et al., Electrical evidence of unstable anodic interface in Ru/HfOx/TiN unipolar resistive memory. Appl. Phys. Lett. 92, 142911–142911-3 (2008)
74.
go back to reference Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan et al., Real-Time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 24, 1844–1849 (2012)CrossRef Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan et al., Real-Time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 24, 1844–1849 (2012)CrossRef
75.
go back to reference A. Kumar, M. Baghini, Experimental study for selection of electrode material for ZnO-based memristors. Electron. Lett. 50, 1547–1549 (2014)CrossRef A. Kumar, M. Baghini, Experimental study for selection of electrode material for ZnO-based memristors. Electron. Lett. 50, 1547–1549 (2014)CrossRef
76.
go back to reference H.Y. Peng, G.P. Li, J.Y. Ye, Z.P. Wei, Z. Zhang, D.D. Wang et al., Electrode dependence of resistive switching in Mn-doped ZnO: filamentary versus interfacial mechanisms. Appl. Phys. Lett. 96, 192113 (2010)CrossRef H.Y. Peng, G.P. Li, J.Y. Ye, Z.P. Wei, Z. Zhang, D.D. Wang et al., Electrode dependence of resistive switching in Mn-doped ZnO: filamentary versus interfacial mechanisms. Appl. Phys. Lett. 96, 192113 (2010)CrossRef
77.
go back to reference S. Seo, M.J. Lee, D.H. Seo, S.K. Choi, D.-S. Suh, Y.S. Joung et al., Conductivity switching characteristics and reset currents in NiO films. Appl. Phys. Lett. 86, 093509 (2005)CrossRef S. Seo, M.J. Lee, D.H. Seo, S.K. Choi, D.-S. Suh, Y.S. Joung et al., Conductivity switching characteristics and reset currents in NiO films. Appl. Phys. Lett. 86, 093509 (2005)CrossRef
78.
go back to reference L. Courtade, C. Turquat, C. Muller, J.G. Lisoni, L. Goux, D.J. Wouters, Improvement of resistance switching characteristics in NiO films obtained from controlled Ni oxidation, in Non-Volatile Memory Technology Symposium, 2007. NVMTS ‘07 ‘(2007), pp. 1–4 L. Courtade, C. Turquat, C. Muller, J.G. Lisoni, L. Goux, D.J. Wouters, Improvement of resistance switching characteristics in NiO films obtained from controlled Ni oxidation, in Non-Volatile Memory Technology Symposium, 2007. NVMTS ‘07 ‘(2007), pp. 1–4
79.
go back to reference K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312–320 (2006)CrossRef K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312–320 (2006)CrossRef
80.
go back to reference F. Pan, C. Chen, Z.-S. Wang, Y.-C. Yang, J. Yang, F. Zeng, Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. Prog. Nat. Sci. Mater. Int. 20, 1–15 (2010)CrossRef F. Pan, C. Chen, Z.-S. Wang, Y.-C. Yang, J. Yang, F. Zeng, Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. Prog. Nat. Sci. Mater. Int. 20, 1–15 (2010)CrossRef
81.
go back to reference K. Kentaro, T. Tetsuro, A. Masaki, S. Yoshihiro, T. Hitoshi, Lowering the switching current of resistance random access memory using a hetero junction structure consisting of transition metal oxides. Jpn. J. Appl. Phys. 45, L991 (2006)CrossRef K. Kentaro, T. Tetsuro, A. Masaki, S. Yoshihiro, T. Hitoshi, Lowering the switching current of resistance random access memory using a hetero junction structure consisting of transition metal oxides. Jpn. J. Appl. Phys. 45, L991 (2006)CrossRef
82.
go back to reference S.E. Ahn, M.J. Lee, Y. Park, B.S. Kang, C.B. Lee, K.H. Kim et al., Write current reduction in transition metal oxide based resistance change memory. Adv. Mater. 20, 924–928 (2008)CrossRef S.E. Ahn, M.J. Lee, Y. Park, B.S. Kang, C.B. Lee, K.H. Kim et al., Write current reduction in transition metal oxide based resistance change memory. Adv. Mater. 20, 924–928 (2008)CrossRef
83.
go back to reference E. Filatova, A. Baraban, A. Konashuk, M. Konyushenko, A. Selivanov, A. Sokolov et al., Transparent-conductive-oxide (TCO) buffer layer effect on the resistive switching process in metal/TiO2/TCO/metal assemblies. New J. Phys. 16, 113014 (2014)CrossRef E. Filatova, A. Baraban, A. Konashuk, M. Konyushenko, A. Selivanov, A. Sokolov et al., Transparent-conductive-oxide (TCO) buffer layer effect on the resistive switching process in metal/TiO2/TCO/metal assemblies. New J. Phys. 16, 113014 (2014)CrossRef
84.
go back to reference H. Lee, Y. Chen, P. Chen, T. Wu, F. Chen, C. Wang et al., Low-power and nanosecond switching in robust hafnium oxide resistive memory with a thin Ti cap. IEEE Electron Device Lett. 31, 44–46 (2010)CrossRef H. Lee, Y. Chen, P. Chen, T. Wu, F. Chen, C. Wang et al., Low-power and nanosecond switching in robust hafnium oxide resistive memory with a thin Ti cap. IEEE Electron Device Lett. 31, 44–46 (2010)CrossRef
85.
go back to reference H.Y. Lee, P.-S. Chen, T.-Y. Wu, Y.S. Chen, F. Chen, C.-C. Wang et al., Bipolar resistive memory with robust endurance using AlCu as buffer electrode. Electron Device Lett. IEEE 30, 703–705 (2009)CrossRef H.Y. Lee, P.-S. Chen, T.-Y. Wu, Y.S. Chen, F. Chen, C.-C. Wang et al., Bipolar resistive memory with robust endurance using AlCu as buffer electrode. Electron Device Lett. IEEE 30, 703–705 (2009)CrossRef
86.
go back to reference Y. Chen, G. Pourtois, X.P. Wang, C. Adelmann, L. Goux, B. Govoreanu et al., Switching by Ni filaments in a HfO2 matrix: a new pathway to improved unipolar switching RRAM, in 2011 3rd IEEE International Memory Workshop (IMW) (2011), pp. 1–4 Y. Chen, G. Pourtois, X.P. Wang, C. Adelmann, L. Goux, B. Govoreanu et al., Switching by Ni filaments in a HfO2 matrix: a new pathway to improved unipolar switching RRAM, in 2011 3rd IEEE International Memory Workshop (IMW) (2011), pp. 1–4
87.
go back to reference H. Lee, P. Chen, T. Wu, Y. Chen, C. Wang, P. Tzeng et al., Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM, in Electron Devices Meeting, 2008. IEDM 2008. IEEE International (2008), pp. 1–4 H. Lee, P. Chen, T. Wu, Y. Chen, C. Wang, P. Tzeng et al., Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM, in Electron Devices Meeting, 2008. IEDM 2008. IEEE International (2008), pp. 1–4
88.
go back to reference Y. Hou, B. Chen, B. Gao, Z. Lun, Z. Xin, R. Liu et al., Self-compliance multilevel resistive switching characteristics in TiN/HfOx/Al/Pt RRAM devices, in Electron Devices and Solid-State Circuits (EDSSC), 2013 IEEE International Conference of (2013), pp. 1–2 Y. Hou, B. Chen, B. Gao, Z. Lun, Z. Xin, R. Liu et al., Self-compliance multilevel resistive switching characteristics in TiN/HfOx/Al/Pt RRAM devices, in Electron Devices and Solid-State Circuits (EDSSC), 2013 IEEE International Conference of (2013), pp. 1–2
89.
go back to reference H. Shima, F. Takano, H. Muramatsu, H. Akinaga, Y. Tamai, I.H. Inque et al., Voltage polarity dependent low-power and high-speed resistance switching in CoO resistance random access memory with Ta electrode. Appl. Phys. Lett. 93, 113504 (2008)CrossRef H. Shima, F. Takano, H. Muramatsu, H. Akinaga, Y. Tamai, I.H. Inque et al., Voltage polarity dependent low-power and high-speed resistance switching in CoO resistance random access memory with Ta electrode. Appl. Phys. Lett. 93, 113504 (2008)CrossRef
90.
go back to reference H. Kim, P.C. McIntyre, C. On Chui, K.C. Saraswat, S. Stemmer, Engineering chemically abrupt high-k metal oxide/silicon interfaces using an oxygen-gettering metal overlayer. J. Appl. Phys. 96, 3467–3472 (2004)CrossRef H. Kim, P.C. McIntyre, C. On Chui, K.C. Saraswat, S. Stemmer, Engineering chemically abrupt high-k metal oxide/silicon interfaces using an oxygen-gettering metal overlayer. J. Appl. Phys. 96, 3467–3472 (2004)CrossRef
91.
go back to reference C.-C. Li, K.-S. Chang-Liao, Y.-C. Chen, C.-H. Fu, L.-J. Liu, T.-K. Wang, Effects of oxygen content and capping metal layer on bipolar switching properties of HfO2-based resistive random access memory devices, in Semiconductor Device Research Symposium (ISDRS), 2011 International (2011), pp. 1–2 C.-C. Li, K.-S. Chang-Liao, Y.-C. Chen, C.-H. Fu, L.-J. Liu, T.-K. Wang, Effects of oxygen content and capping metal layer on bipolar switching properties of HfO2-based resistive random access memory devices, in Semiconductor Device Research Symposium (ISDRS), 2011 International (2011), pp. 1–2
92.
go back to reference X.P. Wang, Y.Y. Chen, L. Pantisano, L. Goux, M. Jurczak, G. Groeseneken et al., Effect of anodic interface layers on the unipolar switching of HfO2-based resistive RAM, in VLSI Technology Systems and Applications (VLSI-TSA), 2010 International Symposium on (2010), pp. 140–141 X.P. Wang, Y.Y. Chen, L. Pantisano, L. Goux, M. Jurczak, G. Groeseneken et al., Effect of anodic interface layers on the unipolar switching of HfO2-based resistive RAM, in VLSI Technology Systems and Applications (VLSI-TSA), 2010 International Symposium on (2010), pp. 140–141
93.
go back to reference J.J. Yang, M. Zhang, J.P. Strachan, F. Miao, M.D. Pickett, R.D. Kelley et al., High switching endurance in TaOx memristive devices. Appl. Phys. Lett. 97, 232102 (2010)CrossRef J.J. Yang, M. Zhang, J.P. Strachan, F. Miao, M.D. Pickett, R.D. Kelley et al., High switching endurance in TaOx memristive devices. Appl. Phys. Lett. 97, 232102 (2010)CrossRef
94.
go back to reference S. Brivio, G. Tallarida, D. Perego, S. Franz, D. Deleruyelle, C. Muller et al., Low-power resistive switching in Au/NiO/Au nanowire arrays. Appl. Phys. Lett. 101, 223510 (2012)CrossRef S. Brivio, G. Tallarida, D. Perego, S. Franz, D. Deleruyelle, C. Muller et al., Low-power resistive switching in Au/NiO/Au nanowire arrays. Appl. Phys. Lett. 101, 223510 (2012)CrossRef
95.
go back to reference R. Zhang, S.U. Yuldashev, J. Lee, V.S. Yalishev, T. Kang, D. Fu, Memristive behavior of ZnO/NiO stacked heterostructure. Microelectron. Eng. 112, 31–34 (2013)CrossRef R. Zhang, S.U. Yuldashev, J. Lee, V.S. Yalishev, T. Kang, D. Fu, Memristive behavior of ZnO/NiO stacked heterostructure. Microelectron. Eng. 112, 31–34 (2013)CrossRef
96.
go back to reference Y.H. Do, J.S. Kwak, Y.C. Bae, J.H. Lee, Y. Kim, H. Im et al., TiN electrode-induced bipolar resistive switching of TiO2 thin films. Curr. Appl. Phys. 10, e71–e74 (2010)CrossRef Y.H. Do, J.S. Kwak, Y.C. Bae, J.H. Lee, Y. Kim, H. Im et al., TiN electrode-induced bipolar resistive switching of TiO2 thin films. Curr. Appl. Phys. 10, e71–e74 (2010)CrossRef
97.
go back to reference Y. Zhang, H. Wu, Y. Bai, A. Chen, Z. Yu, J. Zhang et al., Study of conduction and switching mechanisms in Al/AlOx/WOx/W resistive switching memory for multilevel applications. Appl. Phys. Lett. 102, 233502 (2013)CrossRef Y. Zhang, H. Wu, Y. Bai, A. Chen, Z. Yu, J. Zhang et al., Study of conduction and switching mechanisms in Al/AlOx/WOx/W resistive switching memory for multilevel applications. Appl. Phys. Lett. 102, 233502 (2013)CrossRef
98.
go back to reference M. Liu, W. Guan, S. Long, Q. Liu, W. Wang, Excellent resistive switching characteristics of Cu doped ZrO2 and its 64 bit cross-point integration, in Solid-State and Integrated-Circuit Technology, 2008. ICSICT 2008. 9th International Conference on, 2008, pp. 905–908 M. Liu, W. Guan, S. Long, Q. Liu, W. Wang, Excellent resistive switching characteristics of Cu doped ZrO2 and its 64 bit cross-point integration, in Solid-State and Integrated-Circuit Technology, 2008. ICSICT 2008. 9th International Conference on, 2008, pp. 905–908
99.
go back to reference S.M. Hong, H.-D. Kim, M.J. Yun, J.H. Park, D.S. Jeon, T.G. Kim, Improved resistive switching properties by nitrogen doping in tungsten oxide thin films. Thin Solid Films (2015) S.M. Hong, H.-D. Kim, M.J. Yun, J.H. Park, D.S. Jeon, T.G. Kim, Improved resistive switching properties by nitrogen doping in tungsten oxide thin films. Thin Solid Films (2015)
100.
go back to reference L. Chen, Y.-W. Dai, Q.-Q. Sun, J.-J. Guo, P. Zhou, D.W. Zhang, Al2O3/HfO2 functional stack films based resistive switching memories with controlled SET and RESET voltages. Solid State Ionics 273, 66–69 (2015)CrossRef L. Chen, Y.-W. Dai, Q.-Q. Sun, J.-J. Guo, P. Zhou, D.W. Zhang, Al2O3/HfO2 functional stack films based resistive switching memories with controlled SET and RESET voltages. Solid State Ionics 273, 66–69 (2015)CrossRef
101.
go back to reference T. Yan Zhe, F. Zheng, W. Xin Peng, W. Bao Bin, C. Zhi Xian, L. Guo Qiang, A novel RRAM stack with double-switching-layer configuration showing low operation current through complimentary switching of back-to-back connected subcells. Electron Device Lett. IEEE 35, 627–629 (2014) T. Yan Zhe, F. Zheng, W. Xin Peng, W. Bao Bin, C. Zhi Xian, L. Guo Qiang, A novel RRAM stack with double-switching-layer configuration showing low operation current through complimentary switching of back-to-back connected subcells. Electron Device Lett. IEEE 35, 627–629 (2014)
102.
go back to reference B. Govoreanu, G. Kar, Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini et al., 10 × 10 nm2 Hf/HfO x crossbar resistive RAM with excellent performance, reliability and low-energy operation, in Electron Devices Meeting (IEDM), 2011 IEEE International, 2011, pp. 31.6. 1–31.6. 4 B. Govoreanu, G. Kar, Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini et al., 10 × 10 nm2 Hf/HfO x crossbar resistive RAM with excellent performance, reliability and low-energy operation, in Electron Devices Meeting (IEDM), 2011 IEEE International, 2011, pp. 31.6. 1–31.6. 4
103.
go back to reference J.Y. Son, Y.-H. Shin, H. Kim, H.M. Jang, NiO resistive random access memory nanocapacitor array on graphene. ACS Nano 4, 2655–2658 (2010)CrossRef J.Y. Son, Y.-H. Shin, H. Kim, H.M. Jang, NiO resistive random access memory nanocapacitor array on graphene. ACS Nano 4, 2655–2658 (2010)CrossRef
104.
go back to reference Y. Yang, X. Zhang, M. Gao, F. Zeng, W. Zhou, S. Xie et al., Nonvolatile resistive switching in single crystalline ZnO nanowires. Nanoscale 3, 1917–1921 (2011)CrossRef Y. Yang, X. Zhang, M. Gao, F. Zeng, W. Zhou, S. Xie et al., Nonvolatile resistive switching in single crystalline ZnO nanowires. Nanoscale 3, 1917–1921 (2011)CrossRef
105.
go back to reference C. Chen, Y. Yang, F. Zeng, F. Pan, Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device. Appl. Phys. Lett. 97, 083502 (2010)CrossRef C. Chen, Y. Yang, F. Zeng, F. Pan, Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device. Appl. Phys. Lett. 97, 083502 (2010)CrossRef
106.
go back to reference Z. Yang, C. Ko, S. Ramanathan, Oxide electronics utilizing ultrafast metal-insulator transitions. Annu. Rev. Mater. Res. 41, 337–367 (2011)CrossRef Z. Yang, C. Ko, S. Ramanathan, Oxide electronics utilizing ultrafast metal-insulator transitions. Annu. Rev. Mater. Res. 41, 337–367 (2011)CrossRef
107.
go back to reference S. Hu, S. Wu, W. Jia, Q. Yu, L. Deng, Y. Fu et al., Review of nanostructured resistive switching memristor and its applications. Nanosci. Nanotechnol. Lett. 6, 729–757 (2014)CrossRef S. Hu, S. Wu, W. Jia, Q. Yu, L. Deng, Y. Fu et al., Review of nanostructured resistive switching memristor and its applications. Nanosci. Nanotechnol. Lett. 6, 729–757 (2014)CrossRef
108.
go back to reference F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Recent progress in resistive random access memories: materials, switching mechanisms, and performance. Mater. Sci. Eng. R: Rep. 83, 1–59 (2014)CrossRef F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Recent progress in resistive random access memories: materials, switching mechanisms, and performance. Mater. Sci. Eng. R: Rep. 83, 1–59 (2014)CrossRef
109.
go back to reference D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru et al., Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75, 076502 (2012)CrossRef D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru et al., Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75, 076502 (2012)CrossRef
110.
go back to reference S. Seo, M. Lee, D. Seo, E. Jeoung, D.-S. Suh, Y. Joung et al., Reproducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85, 5655–5657 (2004)CrossRef S. Seo, M. Lee, D. Seo, E. Jeoung, D.-S. Suh, Y. Joung et al., Reproducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85, 5655–5657 (2004)CrossRef
111.
go back to reference E. Gale, D. Pearson, S. Kitson, A. Adamatzky, B. de Lacy Costello, Aluminium electrodes effect the operation of titanium oxide sol-gel memristors, N/A (2011) E. Gale, D. Pearson, S. Kitson, A. Adamatzky, B. de Lacy Costello, Aluminium electrodes effect the operation of titanium oxide sol-gel memristors, N/A (2011)
113.
go back to reference T.A. Wey, W.D. Jemison, Variable gain amplifier circuit using titanium dioxide memristors. IET Circ. Devices Syst. 5, 59–65 (2011)CrossRef T.A. Wey, W.D. Jemison, Variable gain amplifier circuit using titanium dioxide memristors. IET Circ. Devices Syst. 5, 59–65 (2011)CrossRef
114.
go back to reference D. Varghese, G. Gandhi, Memristor based high linear range differential pair, in Communications, Circuits and Systems, 2009. ICCCAS 2009. International Conference on (2009), pp. 935–938 D. Varghese, G. Gandhi, Memristor based high linear range differential pair, in Communications, Circuits and Systems, 2009. ICCCAS 2009. International Conference on (2009), pp. 935–938
115.
go back to reference Y. Halawani, B. Mohammad, M. Al-Qutayri, H. Saleh, Memory impact on the lifetime of a wireless sensor node using a semi-markov model, in Circuits and Systems (ISCAS), 2015 IEEE International Symposium on (2015), pp. 1470–1473 Y. Halawani, B. Mohammad, M. Al-Qutayri, H. Saleh, Memory impact on the lifetime of a wireless sensor node using a semi-markov model, in Circuits and Systems (ISCAS), 2015 IEEE International Symposium on (2015), pp. 1470–1473
116.
go back to reference K. Eshraghian, O. Kavehei, K.R. Cho, J.M. Chappell, A. Iqbal, S.F. Al-Sarawi et al., Memristive device fundamentals and modeling: applications to circuits and systems simulation. Proc. IEEE 100, 1991–2007 (2012)CrossRef K. Eshraghian, O. Kavehei, K.R. Cho, J.M. Chappell, A. Iqbal, S.F. Al-Sarawi et al., Memristive device fundamentals and modeling: applications to circuits and systems simulation. Proc. IEEE 100, 1991–2007 (2012)CrossRef
117.
go back to reference O. Kavehei, K.R. Cho, S.J. Lee, S. Al-Sarawi, K. Eshraghian, D. Abbott, Integrated memristor-MOS (M2) sensor for basic pattern matching applications. J. Nanosci. Nanotechnol. 13, 3638–3640 (2013)CrossRef O. Kavehei, K.R. Cho, S.J. Lee, S. Al-Sarawi, K. Eshraghian, D. Abbott, Integrated memristor-MOS (M2) sensor for basic pattern matching applications. J. Nanosci. Nanotechnol. 13, 3638–3640 (2013)CrossRef
118.
go back to reference R. Berdan, T. Prodromakis, I. Salaoru, A. Khiat, C. Toumazou, Memristive devices as parameter setting elements in programmable gain amplifiers. Appl. Phys. Lett. 101 (2012) R. Berdan, T. Prodromakis, I. Salaoru, A. Khiat, C. Toumazou, Memristive devices as parameter setting elements in programmable gain amplifiers. Appl. Phys. Lett. 101 (2012)
119.
go back to reference S. Hamdioui, L. Xie, H.A.D. Nguyen, M. Taouil, K. Bertels, H. Corporaal et al., Memristor based computation-in-memory architecture for data-intensive applications. Presented at the Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition, Grenoble, France, 2015 S. Hamdioui, L. Xie, H.A.D. Nguyen, M. Taouil, K. Bertels, H. Corporaal et al., Memristor based computation-in-memory architecture for data-intensive applications. Presented at the Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition, Grenoble, France, 2015
120.
go back to reference H.A.D. Nguyen, L. Xie, M. Taouil, R. Nane, S. Hamdioui, K. Bertels, Computation-in-memory based parallel adder, in Nanoscale Architectures (NANOARCH), 2015 IEEE/ACM International Symposium on (2015), pp. 57–62 H.A.D. Nguyen, L. Xie, M. Taouil, R. Nane, S. Hamdioui, K. Bertels, Computation-in-memory based parallel adder, in Nanoscale Architectures (NANOARCH), 2015 IEEE/ACM International Symposium on (2015), pp. 57–62
121.
go back to reference W. Wang, T.T. Jing, B. Butcher, FPGA based on integration of memristors and CMOS devices, in Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on (2010), pp. 1963–1966 W. Wang, T.T. Jing, B. Butcher, FPGA based on integration of memristors and CMOS devices, in Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on (2010), pp. 1963–1966
122.
go back to reference J. Cong, B. Xiao, mrFPGA: A novel FPGA architecture with memristor-based reconfiguration, in IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), 2011, pp. 1–8 (2011) J. Cong, B. Xiao, mrFPGA: A novel FPGA architecture with memristor-based reconfiguration, in IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), 2011, pp. 1–8 (2011)
123.
go back to reference D. Kuzum, S. Yu, H.P. Wong, Synaptic electronics: materials, devices and applications. Nanotechnology 24, 382001 (2013)CrossRef D. Kuzum, S. Yu, H.P. Wong, Synaptic electronics: materials, devices and applications. Nanotechnology 24, 382001 (2013)CrossRef
124.
go back to reference M.D. Pickett, G. Medeiros-Ribeiro, R.S. Williams, A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2013)CrossRef M.D. Pickett, G. Medeiros-Ribeiro, R.S. Williams, A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2013)CrossRef
125.
go back to reference S. Gaba, P. Sheridan, J. Zhou, S. Choi, W. Lu, Stochastic memristive devices for computing and neuromorphic applications. Nanoscale 5, 5872–5878 (2013)CrossRef S. Gaba, P. Sheridan, J. Zhou, S. Choi, W. Lu, Stochastic memristive devices for computing and neuromorphic applications. Nanoscale 5, 5872–5878 (2013)CrossRef
126.
go back to reference B. Mohammad, M.A. Jaoude, V. Kumar, D.M. Al Homouz, H.A. Nahla, M. Al-Qutayri, N. Christoforou, State of the art of metal oxide memristor devices. Nanotechnol. Rev. 5(3), 311–329 (2016)CrossRef B. Mohammad, M.A. Jaoude, V. Kumar, D.M. Al Homouz, H.A. Nahla, M. Al-Qutayri, N. Christoforou, State of the art of metal oxide memristor devices. Nanotechnol. Rev. 5(3), 311–329 (2016)CrossRef
127.
go back to reference H. WM, “CRC Handbook of Chemistry and Physics,” 95th edn. (CRC press, Boca Raton, 2013), p. 124 H. WM, “CRC Handbook of Chemistry and Physics,” 95th edn. (CRC press, Boca Raton, 2013), p. 124
128.
go back to reference N.M. Muhammad, N. Duraisamy, K. Rahman, H.W. Dang, J. Jo, K.H. Choi, Fabrication of printed memory device having zinc-oxide active nano-layer and investigation of resistive switching. Curr. Appl. Phys. 13, 90–96 (2013)CrossRef N.M. Muhammad, N. Duraisamy, K. Rahman, H.W. Dang, J. Jo, K.H. Choi, Fabrication of printed memory device having zinc-oxide active nano-layer and investigation of resistive switching. Curr. Appl. Phys. 13, 90–96 (2013)CrossRef
129.
go back to reference F.-C. Chiu, Resistance switching characteristics in ZnO-based nonvolatile memory devices. Adv. Mater. Sci. Eng. 2013 (2013) F.-C. Chiu, Resistance switching characteristics in ZnO-based nonvolatile memory devices. Adv. Mater. Sci. Eng. 2013 (2013)
130.
go back to reference J.J. Yang, N.P. Kobayashi, J.P. Strachan, M.X. Zhang, D.A.A. Ohlberg, M.D. Pickett et al., Dopant control by atomic layer deposition in oxide films for memristive switches. Chem. Mater. 23, 123–125 (2011) J.J. Yang, N.P. Kobayashi, J.P. Strachan, M.X. Zhang, D.A.A. Ohlberg, M.D. Pickett et al., Dopant control by atomic layer deposition in oxide films for memristive switches. Chem. Mater. 23, 123–125 (2011)
131.
go back to reference J.H. Nickel, J.P. Strachan, M.D. Pickett, C.T. Schamp, J.J. Yang, J.A. Graham et al., Memristor structures for high scalability: Non-linear and symmetric devices utilizing fabrication friendly materials and processes. Microelectron. Eng. 103, 66–69 (2013)CrossRef J.H. Nickel, J.P. Strachan, M.D. Pickett, C.T. Schamp, J.J. Yang, J.A. Graham et al., Memristor structures for high scalability: Non-linear and symmetric devices utilizing fabrication friendly materials and processes. Microelectron. Eng. 103, 66–69 (2013)CrossRef
132.
go back to reference S. Kim, H.Y. Jeong, S.K. Kim, S.Y. Choi, K.J. Lee, Flexible memristive memory array on plastic substrates. Nano Lett. 11, 5438–5442 (2011)CrossRef S. Kim, H.Y. Jeong, S.K. Kim, S.Y. Choi, K.J. Lee, Flexible memristive memory array on plastic substrates. Nano Lett. 11, 5438–5442 (2011)CrossRef
133.
go back to reference S. Wu, L. Ren, J. Qing, F. Yu, K. Yang, M. Yang et al., Bipolar resistance switching in transparent ITO/LaAlO3/SrTiO3 memristors. ACS Appl. Mater. Interfaces. 6, 8575–8579 (2014)CrossRef S. Wu, L. Ren, J. Qing, F. Yu, K. Yang, M. Yang et al., Bipolar resistance switching in transparent ITO/LaAlO3/SrTiO3 memristors. ACS Appl. Mater. Interfaces. 6, 8575–8579 (2014)CrossRef
134.
go back to reference Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka et al., Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism, in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1–4 Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka et al., Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism, in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1–4
135.
go back to reference C. Chen, C. Song, J. Yang, F. Zeng, F. Pan, Oxygen migration induced resistive switching effect and its thermal stability in W/TaOx/Pt structure. Appl. Phys. Lett. 100, 253509 (2012)CrossRef C. Chen, C. Song, J. Yang, F. Zeng, F. Pan, Oxygen migration induced resistive switching effect and its thermal stability in W/TaOx/Pt structure. Appl. Phys. Lett. 100, 253509 (2012)CrossRef
136.
go back to reference K. Oka, T. Yanagida, K. Nagashima, M. Kanai, T. Kawai, J.-S. Kim et al., Spatial nonuniformity in resistive-switching memory effects of NiO. J. Am. Chem. Soc. 133, 12482–12485 (2011)CrossRef K. Oka, T. Yanagida, K. Nagashima, M. Kanai, T. Kawai, J.-S. Kim et al., Spatial nonuniformity in resistive-switching memory effects of NiO. J. Am. Chem. Soc. 133, 12482–12485 (2011)CrossRef
137.
go back to reference M.N. Awais, N.M. Muhammad, D. Navaneethan, H.C. Kim, J. Jo, K.H. Choi, Fabrication of ZrO2 layer through electrohydrodynamic atomization for the printed resistive switch (memristor). Microelectron. Eng. 103, 167–172 (2013)CrossRef M.N. Awais, N.M. Muhammad, D. Navaneethan, H.C. Kim, J. Jo, K.H. Choi, Fabrication of ZrO2 layer through electrohydrodynamic atomization for the printed resistive switch (memristor). Microelectron. Eng. 103, 167–172 (2013)CrossRef
138.
go back to reference M.N. Awais, H.C. Kim, Y.H. Doh, K.H. Choi, ZrO2 flexible printed resistive (memristive) switch through electrohydrodynamic printing process. Thin Solid Films 536, 308–312 (2013)CrossRef M.N. Awais, H.C. Kim, Y.H. Doh, K.H. Choi, ZrO2 flexible printed resistive (memristive) switch through electrohydrodynamic printing process. Thin Solid Films 536, 308–312 (2013)CrossRef
139.
go back to reference B. Sun, Y. Liu, L. Liu, N. Xu, Y. Wang, X. Liu et al. Highly uniform resistive switching characteristics of TiN/ZrO2/Pt memory devices. J. Appl. Phys. 105, 061630–061630-4 (2009) B. Sun, Y. Liu, L. Liu, N. Xu, Y. Wang, X. Liu et al. Highly uniform resistive switching characteristics of TiN/ZrO2/Pt memory devices. J. Appl. Phys. 105, 061630–061630-4 (2009)
140.
go back to reference A. Younis, D. Chu, C.M. Li, T. Das, S. Sehar, M. Manefield et al., Interface thermodynamic state-induced high-performance memristors. Langmuir 30, 1183–1189 (2014)CrossRef A. Younis, D. Chu, C.M. Li, T. Das, S. Sehar, M. Manefield et al., Interface thermodynamic state-induced high-performance memristors. Langmuir 30, 1183–1189 (2014)CrossRef
141.
go back to reference Y. Wu, Y. Chai, H.-Y. Chen, S. Yu, H.-S. Wong, Resistive switching AlOx-based memory with CNT electrode for ultra-low switching current and high density memory application, in VLSI Technology (VLSIT), 2011 Symposium on, 2011, pp. 26–27 Y. Wu, Y. Chai, H.-Y. Chen, S. Yu, H.-S. Wong, Resistive switching AlOx-based memory with CNT electrode for ultra-low switching current and high density memory application, in VLSI Technology (VLSIT), 2011 Symposium on, 2011, pp. 26–27
142.
go back to reference A. Sleiman, P. Sayers, M. Mabrook, Mechanism of resistive switching in Cu/AlOx/W nonvolatile memory structures. J. Appl. Phys. 113, 164506 (2013)CrossRef A. Sleiman, P. Sayers, M. Mabrook, Mechanism of resistive switching in Cu/AlOx/W nonvolatile memory structures. J. Appl. Phys. 113, 164506 (2013)CrossRef
143.
go back to reference C.-Y. Lin, C.-Y. Wu, C.-Y. Wu, C. Hu, T.-Y. Tseng, Bistable resistive switching in Al2O3 memory thin films. J. Electrochem. Soc. 154, G189–G192 (2007)CrossRef C.-Y. Lin, C.-Y. Wu, C.-Y. Wu, C. Hu, T.-Y. Tseng, Bistable resistive switching in Al2O3 memory thin films. J. Electrochem. Soc. 154, G189–G192 (2007)CrossRef
144.
go back to reference P. Hu, X. Li, J. Lu, M. Yang, Q. Lv, S. Li, Oxygen deficiency effect on resistive switching characteristics of copper oxide thin films. Phys. Lett. A 375, 1898–1902 (2011)CrossRef P. Hu, X. Li, J. Lu, M. Yang, Q. Lv, S. Li, Oxygen deficiency effect on resistive switching characteristics of copper oxide thin films. Phys. Lett. A 375, 1898–1902 (2011)CrossRef
145.
go back to reference D. Jana, M. Dutta, S. Samanta, S. Maikap, RRAM characteristics using a new Cr/GdOx/TiN structure. Nanoscale Res. Lett. 9, 680 (2014)CrossRef D. Jana, M. Dutta, S. Samanta, S. Maikap, RRAM characteristics using a new Cr/GdOx/TiN structure. Nanoscale Res. Lett. 9, 680 (2014)CrossRef
146.
go back to reference M.K. Yang, J.-W. Park, T.K. Ko, and J.-K. Lee, Bipolar resistive switching behavior in Ti/MnO 2/Pt structure for nonvolatile memory devices. Appl. Phys. Lett. 95, 042105–042105-3 (2009) M.K. Yang, J.-W. Park, T.K. Ko, and J.-K. Lee, Bipolar resistive switching behavior in Ti/MnO 2/Pt structure for nonvolatile memory devices. Appl. Phys. Lett. 95, 042105–042105-3 (2009)
147.
go back to reference C. Schindler, S.P. Thermadam, R. Waser, M.N. Kozicki, Bipolar and unipolar resistive switching in Cu− doped SiO2. IEEE Trans. Electron Devices 54, 2762–2768 (2007)CrossRef C. Schindler, S.P. Thermadam, R. Waser, M.N. Kozicki, Bipolar and unipolar resistive switching in Cu doped SiO2. IEEE Trans. Electron Devices 54, 2762–2768 (2007)CrossRef
148.
go back to reference C.-H. Huang, J.-S. Huang, S.-M. Lin, W.-Y. Chang, J.-H. He, Y.-L. Chueh, ZnO1–x nanorod arrays/ZnO thin film bilayer structure: From homojunction diode and high-performance memristor to complementary 1D1R application. ACS Nano 6, 8407–8414 (2012)CrossRef C.-H. Huang, J.-S. Huang, S.-M. Lin, W.-Y. Chang, J.-H. He, Y.-L. Chueh, ZnO1–x nanorod arrays/ZnO thin film bilayer structure: From homojunction diode and high-performance memristor to complementary 1D1R application. ACS Nano 6, 8407–8414 (2012)CrossRef
149.
go back to reference S.-M. Lin, J.-S. Huang, W.-C. Chang, T.-C. Hou, H.-W. Huang, C.-H. Huang et al., Single-step formation of ZnO/ZnWO x bilayer structure via interfacial engineering for high performance and low energy consumption resistive memory with controllable high resistance states. ACS Appl. Mater. Interfaces. 5, 7831–7837 (2013)CrossRef S.-M. Lin, J.-S. Huang, W.-C. Chang, T.-C. Hou, H.-W. Huang, C.-H. Huang et al., Single-step formation of ZnO/ZnWO x bilayer structure via interfacial engineering for high performance and low energy consumption resistive memory with controllable high resistance states. ACS Appl. Mater. Interfaces. 5, 7831–7837 (2013)CrossRef
150.
go back to reference S. Murali, J.S. Rajachidambaram, S.-Y. Han, C.-H. Chang, G.S. Herman, J.F. Conley, Resistive switching in zinc–tin-oxide. Solid-State Electron. 79, 248–252 (2013)CrossRef S. Murali, J.S. Rajachidambaram, S.-Y. Han, C.-H. Chang, G.S. Herman, J.F. Conley, Resistive switching in zinc–tin-oxide. Solid-State Electron. 79, 248–252 (2013)CrossRef
151.
go back to reference A. Chen, S. Haddad, Y.-C. Wu, T.-N. Fang, Z. Lan, S. Avanzino et al., Non-volatile resistive switching for advanced memory applications, in Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, 2005, pp. 746–749 A. Chen, S. Haddad, Y.-C. Wu, T.-N. Fang, Z. Lan, S. Avanzino et al., Non-volatile resistive switching for advanced memory applications, in Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, 2005, pp. 746–749
152.
go back to reference L. Chen, Y. Xu, Q.-Q. Sun, P. Zhou, P.-F. Wang, S.-J. Ding et al., Atomic-layer-deposited HfLaO-based resistive switching memories with superior performance. Electron Device Lett. IEEE 31, 1296–1298 (2010) L. Chen, Y. Xu, Q.-Q. Sun, P. Zhou, P.-F. Wang, S.-J. Ding et al., Atomic-layer-deposited HfLaO-based resistive switching memories with superior performance. Electron Device Lett. IEEE 31, 1296–1298 (2010)
153.
go back to reference T. Yanagida, Memristive switching phenomena in a single oxide nanowire, in Nanotechnology Materials and Devices Conference (NMDC), 2011 IEEE, 2011, pp. 28–31 T. Yanagida, Memristive switching phenomena in a single oxide nanowire, in Nanotechnology Materials and Devices Conference (NMDC), 2011 IEEE, 2011, pp. 28–31
154.
go back to reference Y.-E. Syu, T.-C. Chang, T.-M. Tsai, G.-W. Chang, K.-C. Chang, Y.-H. Tai et al., Silicon introduced effect on resistive switching characteristics of WOX thin films. Appl. Phys. Lett. 100, 022904 (2012)CrossRef Y.-E. Syu, T.-C. Chang, T.-M. Tsai, G.-W. Chang, K.-C. Chang, Y.-H. Tai et al., Silicon introduced effect on resistive switching characteristics of WOX thin films. Appl. Phys. Lett. 100, 022904 (2012)CrossRef
155.
go back to reference Y.-E. Syu, R. Zhang, T.-C. Chang, T.-M. Tsai, K.-C. Chang, J.-C. Lou et al., Endurance improvement technology with nitrogen implanted in the interface of resistance switching device. Electron Device Lett. IEEE 34, 864–866 (2013)CrossRef Y.-E. Syu, R. Zhang, T.-C. Chang, T.-M. Tsai, K.-C. Chang, J.-C. Lou et al., Endurance improvement technology with nitrogen implanted in the interface of resistance switching device. Electron Device Lett. IEEE 34, 864–866 (2013)CrossRef
156.
go back to reference B.J. Choi, A.C. Torrezan, K.J. Norris, F. Miao, J.P. Strachan, M.-X. Zhang et al., Electrical performance and scalability of Pt dispersed SiO2 nanometallic resistance switch. Nano Lett. 13, 3213–3217 (2013)CrossRef B.J. Choi, A.C. Torrezan, K.J. Norris, F. Miao, J.P. Strachan, M.-X. Zhang et al., Electrical performance and scalability of Pt dispersed SiO2 nanometallic resistance switch. Nano Lett. 13, 3213–3217 (2013)CrossRef
157.
go back to reference T. Tan, T. Guo, X. Chen, X. Li, Z. Liu, Impacts of Au-doping on the performance of Cu/HfO 2/Pt RRAM devices. Appl. Surf. Sci. 317, 982–985 (2014)CrossRef T. Tan, T. Guo, X. Chen, X. Li, Z. Liu, Impacts of Au-doping on the performance of Cu/HfO 2/Pt RRAM devices. Appl. Surf. Sci. 317, 982–985 (2014)CrossRef
158.
go back to reference T. Guo, T. Tan, Z. Liu, Enhanced resistive switching behaviors of HfO2: Cu film with annealing process, Vacuum (2015) T. Guo, T. Tan, Z. Liu, Enhanced resistive switching behaviors of HfO2: Cu film with annealing process, Vacuum (2015)
159.
go back to reference S. Chakrabarti, D. Jana, M. Dutta, S. Maikap, Y.-Y. Chen, J.-R. Yang, Impact of AlO x interfacial layer and switching mechanism in W/AlO x/TaO x/TiN RRAMs, in Memory Workshop (IMW), 2014 IEEE 6th International, 2014, pp. 1–4 S. Chakrabarti, D. Jana, M. Dutta, S. Maikap, Y.-Y. Chen, J.-R. Yang, Impact of AlO x interfacial layer and switching mechanism in W/AlO x/TaO x/TiN RRAMs, in Memory Workshop (IMW), 2014 IEEE 6th International, 2014, pp. 1–4
160.
go back to reference J.S. Kwak, Y.H. Do, Y.C. Bae, H. Im, J.P. Hong, Reproducible unipolar resistive switching behaviors in the metal-deficient CoO x thin film. Thin Solid Films 518, 6437–6440 (2010)CrossRef J.S. Kwak, Y.H. Do, Y.C. Bae, H. Im, J.P. Hong, Reproducible unipolar resistive switching behaviors in the metal-deficient CoO x thin film. Thin Solid Films 518, 6437–6440 (2010)CrossRef
161.
go back to reference X. Gao, H. Guo, Y. Xia, J. Yin, Z. Liu, Unipolar resistive switching characteristics in Co3O4 films. Thin Solid Films 519, 450–452 (2010)CrossRef X. Gao, H. Guo, Y. Xia, J. Yin, Z. Liu, Unipolar resistive switching characteristics in Co3O4 films. Thin Solid Films 519, 450–452 (2010)CrossRef
162.
go back to reference H. Lv, M. Yin, Y. Song, X. Fu, L. Tang, P. Zhou et al., Forming process investigation of Cu x O memory films. Electron Device Lett. IEEE 29, 47–49 (2008)CrossRef H. Lv, M. Yin, Y. Song, X. Fu, L. Tang, P. Zhou et al., Forming process investigation of Cu x O memory films. Electron Device Lett. IEEE 29, 47–49 (2008)CrossRef
163.
go back to reference K.-C. Liu, W.-H. Tzeng, K.-M. Chang, Y.-C. Chan, C.-C. Kuo, C.-W. Cheng, The resistive switching characteristics of a Ti/Gd2O3/Pt RRAM device. Microelectron. Reliab. 50, 670–673 (2010)CrossRef K.-C. Liu, W.-H. Tzeng, K.-M. Chang, Y.-C. Chan, C.-C. Kuo, C.-W. Cheng, The resistive switching characteristics of a Ti/Gd2O3/Pt RRAM device. Microelectron. Reliab. 50, 670–673 (2010)CrossRef
164.
go back to reference I. Baek, M. Lee, S. Seo, M.-J. Lee, D. Seo, D.-S. Suh et al., Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses, in Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, 2004, pp. 587–590 I. Baek, M. Lee, S. Seo, M.-J. Lee, D. Seo, D.-S. Suh et al., Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses, in Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, 2004, pp. 587–590
165.
go back to reference K. Nagashima, T. Yanagida, K. Oka, T. Kawai, Unipolar resistive switching characteristics of room temperature grown SnO2 thin films. Appl. Phys. Lett. 94, 242902 (2009)CrossRef K. Nagashima, T. Yanagida, K. Oka, T. Kawai, Unipolar resistive switching characteristics of room temperature grown SnO2 thin films. Appl. Phys. Lett. 94, 242902 (2009)CrossRef
166.
go back to reference W. Chien, Y. Chen, E. Lai, Y. Yao, P. Lin, S. Horng et al., Unipolar switching behaviors of RTO RRAM. Electron Device Lett. IEEE 31, 126–128 (2010)CrossRef W. Chien, Y. Chen, E. Lai, Y. Yao, P. Lin, S. Horng et al., Unipolar switching behaviors of RTO RRAM. Electron Device Lett. IEEE 31, 126–128 (2010)CrossRef
167.
go back to reference C.Y. Huang, U. Chand, T.Y. Tseng, Improvement of unipolar resistive switching characteristics in Ti embedded ZrO2 thin film. Appl. Mech. Mater. 543, 3839–3842 (2014)CrossRef C.Y. Huang, U. Chand, T.Y. Tseng, Improvement of unipolar resistive switching characteristics in Ti embedded ZrO2 thin film. Appl. Mech. Mater. 543, 3839–3842 (2014)CrossRef
168.
go back to reference S. Liu, N. Wu, A. Ignatiev, Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76, 2749–2751 (2000)CrossRef S. Liu, N. Wu, A. Ignatiev, Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76, 2749–2751 (2000)CrossRef
169.
go back to reference M. Quintero, P. Levy, A. Leyva, M. Rozenberg, Mechanism of electric-pulse-induced resistance switching in manganites. Phys. Rev. Lett. 98, 116601 (2007)CrossRef M. Quintero, P. Levy, A. Leyva, M. Rozenberg, Mechanism of electric-pulse-induced resistance switching in manganites. Phys. Rev. Lett. 98, 116601 (2007)CrossRef
170.
go back to reference D. Ielmini, F. Nardi, S. Balatti, Evidence for voltage-driven set/reset processes in bipolar switching RRAM. Electron Devices, IEEE Trans. 59, 2049–2056 (2012)CrossRef D. Ielmini, F. Nardi, S. Balatti, Evidence for voltage-driven set/reset processes in bipolar switching RRAM. Electron Devices, IEEE Trans. 59, 2049–2056 (2012)CrossRef
171.
go back to reference V.Z. Victor, M. Roy, K.C. Ralph, S. Gurtej, Scaling limits of resistive memories. Nanotechnology 22, 254027 (2011)CrossRef V.Z. Victor, M. Roy, K.C. Ralph, S. Gurtej, Scaling limits of resistive memories. Nanotechnology 22, 254027 (2011)CrossRef
172.
go back to reference D. Lee, H. Choi, H. Sim, D. Choi, H. Hwang, M.-J. Lee et al., Resistance switching of the nonstoichiometric zirconium oxide for nonvolatile memory applications. Electron Device Lett. IEEE 26, 719–721 (2005)CrossRef D. Lee, H. Choi, H. Sim, D. Choi, H. Hwang, M.-J. Lee et al., Resistance switching of the nonstoichiometric zirconium oxide for nonvolatile memory applications. Electron Device Lett. IEEE 26, 719–721 (2005)CrossRef
Metadata
Title
Memristor Device Overview
Authors
Heba Abunahla
Baker Mohammad
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-65699-1_1