Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 12/2016

29-07-2016

Metamorphosis of the ZnO buffer layer thicknesses on the performance of inverted organic solar cells

Authors: M. Z. Sahdan, M. F. Malek, M. S. Alias, S. A. Kamaruddin, C. A. Norhidayah, N. Sarip, N. Nafarizal, M. Rusop

Published in: Journal of Materials Science: Materials in Electronics | Issue 12/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study investigates the zinc oxide (ZnO) buffer layer thickness in the photovoltaic performance of inverted organic solar cells (OSCs) based on an active layer blend of poly(3-hexylthiophene), (P3HT) and [6, 6]-phenyl-C61 butyric acid methyl ester, (PCBM). The ZnO buffer layer acts as a protective layer to prevent the photoactive layer interface by UV light from oxidation. Besides, it reduces the energy barrier to easily transfer electrons between the collecting electrode and the organic acceptor lowest unoccupied molecular orbital level. The buffer layer block holes in P3HT from recombining with electrons in the collecting electrode. The X-ray diffraction analysis show that the constant orientation of the grains according to the c-axis perpendicular to the substrate surface. The optical measurements indicated that all samples have a transmission higher than 60 % in the visible range. A slight shift of the absorption edge toward the small wavelengths was observed as the thickness increased to over 250 nm. The electrical measurements depended on thickness. The resistivity decreased from 5.45 to 4.98 × 10−3 Ω.cm, and the mobility increased from 1.66 to 1.71 × 10−1 cm2/Vs when the thickness increased from 65.6 nm to 107.0 nm. This behavior was explained by the crystallinity pattern. The optimization of the ZnO buffer layer caused the short circuit current density to vary from 0.287 to 1.599 mA/cm2 and the fill factor to range between 19.08 and 24.55 %. This result increased the power conversion efficiency from 0.007 to 0.043 %. The photovoltaic performance of inverted structure OSCs is strongly dependent on the ZnO buffer layer thickness.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Gholamkhass, N.M. Kiasari, P. Servati, An efficient inverted organic solar cell with improved ZnO and gold contact layers. Org. Electron. 13, 945–953 (2012)CrossRef B. Gholamkhass, N.M. Kiasari, P. Servati, An efficient inverted organic solar cell with improved ZnO and gold contact layers. Org. Electron. 13, 945–953 (2012)CrossRef
2.
go back to reference S. Schumann, R. Da Campo, B. Illy, A.C. Cruickshank, M.A. McLachlan, M.P. Ryan, D.J. Riley, D.W. McComb, T.S. Jones, Inverted organic photovoltaic devices with high efficiency and stability based on metal oxide charge extraction layers. J. Mater. Chem. 21, 2381–2386 (2011)CrossRef S. Schumann, R. Da Campo, B. Illy, A.C. Cruickshank, M.A. McLachlan, M.P. Ryan, D.J. Riley, D.W. McComb, T.S. Jones, Inverted organic photovoltaic devices with high efficiency and stability based on metal oxide charge extraction layers. J. Mater. Chem. 21, 2381–2386 (2011)CrossRef
3.
go back to reference J. Weickert, R.B. Dunbar, H.C. Hesse, W. Wiedemann, L. Schmidt-Mende, Nanostructured organic and hybrid solar cells. Adv. Mater. 23, 1810–1828 (2011)CrossRef J. Weickert, R.B. Dunbar, H.C. Hesse, W. Wiedemann, L. Schmidt-Mende, Nanostructured organic and hybrid solar cells. Adv. Mater. 23, 1810–1828 (2011)CrossRef
4.
go back to reference N. Espinosa, H.F. Dam, D.M. Tanenbaum, J.W. Andreasen, M. Jørgensen, F.C. Krebs, Roll-to-roll processing of inverted polymer solar cells using hydrated vanadium (V) oxide as a PEDOT:PSS replacement. Materials 4, 169–182 (2011)CrossRef N. Espinosa, H.F. Dam, D.M. Tanenbaum, J.W. Andreasen, M. Jørgensen, F.C. Krebs, Roll-to-roll processing of inverted polymer solar cells using hydrated vanadium (V) oxide as a PEDOT:PSS replacement. Materials 4, 169–182 (2011)CrossRef
5.
go back to reference M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells 92, 686–714 (2008)CrossRef M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells 92, 686–714 (2008)CrossRef
6.
go back to reference M. Jørgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen, F.C. Krebs, Stability of polymer solar cells. Adv. Mater. 24, 580 (2012)CrossRef M. Jørgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen, F.C. Krebs, Stability of polymer solar cells. Adv. Mater. 24, 580 (2012)CrossRef
7.
go back to reference T. Kuwabara, Y. Kawahara, T. Yamaguci, K. Takahaski, Characterization of inverted type organic solar cells with a ZnO layer as the electron collection electrode by ac impedance spectroscopy. Acs Appl. Mater. 1, 2107–2110 (2009)CrossRef T. Kuwabara, Y. Kawahara, T. Yamaguci, K. Takahaski, Characterization of inverted type organic solar cells with a ZnO layer as the electron collection electrode by ac impedance spectroscopy. Acs Appl. Mater. 1, 2107–2110 (2009)CrossRef
8.
go back to reference J.L. Delgado, P.A. Bouit, S. Filippone, M.A. Herranz, N. Martin, Organic photovoltaics: a chemical approach. Chem. Commun. 46, 4853–4865 (2010)CrossRef J.L. Delgado, P.A. Bouit, S. Filippone, M.A. Herranz, N. Martin, Organic photovoltaics: a chemical approach. Chem. Commun. 46, 4853–4865 (2010)CrossRef
9.
go back to reference M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley, Inverted bulk- heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl. Phys. Lett. 89, 1435171–1435173 (2006) M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley, Inverted bulk- heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl. Phys. Lett. 89, 1435171–1435173 (2006)
10.
go back to reference M.F. Malek, M.H. Mamat, M.Z. Sahdan, M.Z. Musa, Z. Khusaimi, M. Rusop, Influence of various sol concentrations on stress/strain and properties of ZnO thin films synthesised by sol-gel technique. Thin Solid Films 527, 102–109 (2013)CrossRef M.F. Malek, M.H. Mamat, M.Z. Sahdan, M.Z. Musa, Z. Khusaimi, M. Rusop, Influence of various sol concentrations on stress/strain and properties of ZnO thin films synthesised by sol-gel technique. Thin Solid Films 527, 102–109 (2013)CrossRef
11.
go back to reference M.F. Malek, M.Z. Sahdan, M.H. Mamat, M.Z. Musa, Z. Khusaimi, S.S. Husairi, N.D. Md Sin, M. Rusop, A novel fabrication of MEH-PPV/Al:ZnO nanorod arrays based ordered bulk heterojunction hybrid solar cells. Appl. Surf. Sci. 275, 75–83 (2013)CrossRef M.F. Malek, M.Z. Sahdan, M.H. Mamat, M.Z. Musa, Z. Khusaimi, S.S. Husairi, N.D. Md Sin, M. Rusop, A novel fabrication of MEH-PPV/Al:ZnO nanorod arrays based ordered bulk heterojunction hybrid solar cells. Appl. Surf. Sci. 275, 75–83 (2013)CrossRef
12.
go back to reference A.K.K. Kyaw, X.W. Sun, C.Y. Jiang, G.Q. Lo, D.W. Zhao, D.L. Kwong, An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer. Appl. Phys. Lett. 93, 221107–221101–221107-221103 (2008)CrossRef A.K.K. Kyaw, X.W. Sun, C.Y. Jiang, G.Q. Lo, D.W. Zhao, D.L. Kwong, An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer. Appl. Phys. Lett. 93, 221107–221101–221107-221103 (2008)CrossRef
13.
go back to reference Y.-J. Noh, S.-I. Na, S.-S. Kim, Inverted polymer solar cells including ZnO electron transport layer fabricated by facile spray pyrolysis. Sol. Energy Mater. Sol. Cells 117, 139–144 (2013)CrossRef Y.-J. Noh, S.-I. Na, S.-S. Kim, Inverted polymer solar cells including ZnO electron transport layer fabricated by facile spray pyrolysis. Sol. Energy Mater. Sol. Cells 117, 139–144 (2013)CrossRef
14.
go back to reference R. Lampande, G.W. Kim, D.C. Choe, J.H. Kong, J.H. Kwon, Solution processed n-type mixed metal oxide layer for electron extraction in inverted polymer solar cells. Sol. Energy Mater. Sol. Cells 125, 276–282 (2014)CrossRef R. Lampande, G.W. Kim, D.C. Choe, J.H. Kong, J.H. Kwon, Solution processed n-type mixed metal oxide layer for electron extraction in inverted polymer solar cells. Sol. Energy Mater. Sol. Cells 125, 276–282 (2014)CrossRef
15.
go back to reference X. Yu, X. Yu, J. Zhang, G. Zhao, J. Ni, H. Cai, Y. Zhao, Efficiency boosting of inverted polymer solar cells with a polyvinylpyrrolidone-modified Al-doped ZnO electron transport layer. Sol. Energy Mater. Sol. Cells 128, 307–312 (2014)CrossRef X. Yu, X. Yu, J. Zhang, G. Zhao, J. Ni, H. Cai, Y. Zhao, Efficiency boosting of inverted polymer solar cells with a polyvinylpyrrolidone-modified Al-doped ZnO electron transport layer. Sol. Energy Mater. Sol. Cells 128, 307–312 (2014)CrossRef
16.
go back to reference M. Thambidurai, J.Y. Kim, C.M. Kang, N. Muthukumarasamy, H.J. Song, J. Song, Y. Ko, D. Velauthapillai, C. Lee, Enhanced photovoltaic performance of inverted organic solar cells with In-doped ZnO as an electron extraction layer. Renew. Energy 66, 433–442 (2014)CrossRef M. Thambidurai, J.Y. Kim, C.M. Kang, N. Muthukumarasamy, H.J. Song, J. Song, Y. Ko, D. Velauthapillai, C. Lee, Enhanced photovoltaic performance of inverted organic solar cells with In-doped ZnO as an electron extraction layer. Renew. Energy 66, 433–442 (2014)CrossRef
17.
go back to reference A. Baumann, T.J. Savenije, D.H.K. Murthy, M. Heeney, V. Dyakonov, C. Deibel, Influence of phase segregation on recombination dynamics in organic bulk heterojunction solar cells. Adv. Funct. Mater. 21, 1687–1692 (2011)CrossRef A. Baumann, T.J. Savenije, D.H.K. Murthy, M. Heeney, V. Dyakonov, C. Deibel, Influence of phase segregation on recombination dynamics in organic bulk heterojunction solar cells. Adv. Funct. Mater. 21, 1687–1692 (2011)CrossRef
18.
go back to reference F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, Y. Wang, Recent development of the inverted configuration organic solar cells. Sol. Energy Mater. Sol. Cells 95, 1785–1799 (2011)CrossRef F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, Y. Wang, Recent development of the inverted configuration organic solar cells. Sol. Energy Mater. Sol. Cells 95, 1785–1799 (2011)CrossRef
19.
go back to reference M.Z. Sahdan, M.F. Malek, M.S. Alias, S.A. Kamaruddin, C.A. Norhidayah, N. Sarip, N. Nafarizal, M. Rusop, Fabrication of inverted bulk heterojunction organic solar cells based on conjugated P3HT:PCBM using various thicknesses of ZnO buffer layer. Optik 126, 645–648 (2015)CrossRef M.Z. Sahdan, M.F. Malek, M.S. Alias, S.A. Kamaruddin, C.A. Norhidayah, N. Sarip, N. Nafarizal, M. Rusop, Fabrication of inverted bulk heterojunction organic solar cells based on conjugated P3HT:PCBM using various thicknesses of ZnO buffer layer. Optik 126, 645–648 (2015)CrossRef
20.
go back to reference M.J. Alam, D.C. Cameron, Preparation and properties of transparent conductive aluminum-doped zinc oxide thin films by sol–gel process. J. Vac. Sci. Technol., A 19, 1642–1646 (2001)CrossRef M.J. Alam, D.C. Cameron, Preparation and properties of transparent conductive aluminum-doped zinc oxide thin films by sol–gel process. J. Vac. Sci. Technol., A 19, 1642–1646 (2001)CrossRef
21.
go back to reference B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction (Addison-Wesley, Reading, 1978) B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction (Addison-Wesley, Reading, 1978)
22.
go back to reference M.Z. Sahdan, M.H. Mamat, M. Salina, Z. Khusaimi, U.M. Noor, M. Rusop, Heat treatment effects on the surface morphology and optical properties of ZnO nanostructures. Phys. Status Solidi C 7, 2286–2289 (2010)CrossRef M.Z. Sahdan, M.H. Mamat, M. Salina, Z. Khusaimi, U.M. Noor, M. Rusop, Heat treatment effects on the surface morphology and optical properties of ZnO nanostructures. Phys. Status Solidi C 7, 2286–2289 (2010)CrossRef
23.
go back to reference E.F. Keskenler, M. Tomakin, S. Doğan, G. Turgut, S. Aydın, S. Duman, B. Gürbulak, Growth and characterization of Ag/n-ZnO/p-Si/Al heterojunction diode by sol–gel spin technique. J. Alloys Compd. 550, 129–132 (2013)CrossRef E.F. Keskenler, M. Tomakin, S. Doğan, G. Turgut, S. Aydın, S. Duman, B. Gürbulak, Growth and characterization of Ag/n-ZnO/p-Si/Al heterojunction diode by sol–gel spin technique. J. Alloys Compd. 550, 129–132 (2013)CrossRef
24.
go back to reference B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction (Prentice Hall, New Jersey, 2001) B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction (Prentice Hall, New Jersey, 2001)
25.
go back to reference T.P. Rao, M.C. Santhoshkumar, Effect of thickness on structural, optical and electrical properties of nanostructured ZnO thin films by spray pyrolysis. Appl. Surf. Sci. 255, 4579–4584 (2009)CrossRef T.P. Rao, M.C. Santhoshkumar, Effect of thickness on structural, optical and electrical properties of nanostructured ZnO thin films by spray pyrolysis. Appl. Surf. Sci. 255, 4579–4584 (2009)CrossRef
26.
go back to reference O. Lupan, T. Pauporte´, L. Chow, B. Viana, F. Pelle´, L.K. Ono, B. Roldan Cuenya, H. Heinrich, Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl. Surf. Sci. 256, 1895–1907 (2010)CrossRef O. Lupan, T. Pauporte´, L. Chow, B. Viana, F. Pelle´, L.K. Ono, B. Roldan Cuenya, H. Heinrich, Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl. Surf. Sci. 256, 1895–1907 (2010)CrossRef
27.
go back to reference Selected Powder Diffraction Data for Metals and Alloys, vol.1 (JCPDS, USA, 1978), p. 108 Selected Powder Diffraction Data for Metals and Alloys, vol.1 (JCPDS, USA, 1978), p. 108
28.
go back to reference R. Ghosh, D. Basak, S. Fujihara, Effect of substrate-induced strain on the structural, electrical, and optical properties of polycrystalline ZnO thin films. J. Appl. Phys. 96, 2689–2692 (2004)CrossRef R. Ghosh, D. Basak, S. Fujihara, Effect of substrate-induced strain on the structural, electrical, and optical properties of polycrystalline ZnO thin films. J. Appl. Phys. 96, 2689–2692 (2004)CrossRef
29.
go back to reference V. Gupta, A. Mansingh, Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film. J. Appl. Phys. 80, 1063–1073 (1996)CrossRef V. Gupta, A. Mansingh, Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film. J. Appl. Phys. 80, 1063–1073 (1996)CrossRef
30.
go back to reference X.J. Ping, S.S. Bo, L. Lan, Z.X. Song, W.Y. Xin, C.X. Ming, Effects of annealing temperature on structural and optical properties of ZnO thin films. Chin. Phys. Lett. 27, 047803 (2010)CrossRef X.J. Ping, S.S. Bo, L. Lan, Z.X. Song, W.Y. Xin, C.X. Ming, Effects of annealing temperature on structural and optical properties of ZnO thin films. Chin. Phys. Lett. 27, 047803 (2010)CrossRef
31.
go back to reference Y.G. Wang, S.P. Lau, H.W. Lee, S.F. Yu, B.K. Tay, X.H. Zhang, K.Y. Tse, H.H. Hng, Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature. J. Appl. Phys. 94, 1597–1604 (2003)CrossRef Y.G. Wang, S.P. Lau, H.W. Lee, S.F. Yu, B.K. Tay, X.H. Zhang, K.Y. Tse, H.H. Hng, Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature. J. Appl. Phys. 94, 1597–1604 (2003)CrossRef
32.
go back to reference M.F. Malek, M.H. Mamat, M.Z. Musa, Z. Khusaimi, M.Z. Sahdan, A.B. Suriani, A. Ishak, I. Saurdi, S.A. Rahman, M. Rusop, Thermal annealing-induced formation of ZnO nanoparticles: minimum strain and stress ameliorate preferred c-axis orientation and crystal-growth properties. J. Alloys Compd. 610, 575–588 (2014)CrossRef M.F. Malek, M.H. Mamat, M.Z. Musa, Z. Khusaimi, M.Z. Sahdan, A.B. Suriani, A. Ishak, I. Saurdi, S.A. Rahman, M. Rusop, Thermal annealing-induced formation of ZnO nanoparticles: minimum strain and stress ameliorate preferred c-axis orientation and crystal-growth properties. J. Alloys Compd. 610, 575–588 (2014)CrossRef
33.
go back to reference J. Rodríguez-Báez, A. Maldonado, G. Torres-Delgado, R. Castanedo-Pérez, M. de la, L. Olvera, Influence of the molar concentration and substrate temperature on fluorine-doped zinc oxide thin films chemically sprayed. Mater. Lett. 60, 1594–1598 (2006)CrossRef J. Rodríguez-Báez, A. Maldonado, G. Torres-Delgado, R. Castanedo-Pérez, M. de la, L. Olvera, Influence of the molar concentration and substrate temperature on fluorine-doped zinc oxide thin films chemically sprayed. Mater. Lett. 60, 1594–1598 (2006)CrossRef
34.
go back to reference M.F. Malek, M.H. Mamat, Z. Khusaimi, M.Z. Sahdan, M.Z. Musa, A.R. Zainun, A.B. Suriani, N.D. Md Sin, S.B. Abd Hamid, M. Rusop, Sonicated sol-gel preparation of nanoparticulate ZnO thin films with various deposition speeds: the highly preferred c-axis (0 0 2) orientation enhances the final properties. J. Alloys Compd. 582, 12–21 (2014)CrossRef M.F. Malek, M.H. Mamat, Z. Khusaimi, M.Z. Sahdan, M.Z. Musa, A.R. Zainun, A.B. Suriani, N.D. Md Sin, S.B. Abd Hamid, M. Rusop, Sonicated sol-gel preparation of nanoparticulate ZnO thin films with various deposition speeds: the highly preferred c-axis (0 0 2) orientation enhances the final properties. J. Alloys Compd. 582, 12–21 (2014)CrossRef
35.
go back to reference H. Hoppe, N.S. Sariciftci, Organic solar cells: an overview. J. Mater. Res. 19, 1924–1945 (2004)CrossRef H. Hoppe, N.S. Sariciftci, Organic solar cells: an overview. J. Mater. Res. 19, 1924–1945 (2004)CrossRef
36.
go back to reference J. Rostalski, D. Meissner, Photocurrent spectroscopy for the investigation of charge carrier generation and transport mechanisms in organic p/n-junction solar cells. Sol. Energy Mater. Sol. Cells 63, 37–47 (2000)CrossRef J. Rostalski, D. Meissner, Photocurrent spectroscopy for the investigation of charge carrier generation and transport mechanisms in organic p/n-junction solar cells. Sol. Energy Mater. Sol. Cells 63, 37–47 (2000)CrossRef
37.
go back to reference H.P. Kim, A.R.M. Yusoff, H.M. Kim, H.J. Lee, G.J. Seo, J. Jang, Inverted organic photovoltaic device with a new electron transport layer. Nanoscale Res. Lett. 9, 150–150 (2014)CrossRef H.P. Kim, A.R.M. Yusoff, H.M. Kim, H.J. Lee, G.J. Seo, J. Jang, Inverted organic photovoltaic device with a new electron transport layer. Nanoscale Res. Lett. 9, 150–150 (2014)CrossRef
38.
go back to reference T.-H. Lai, S.-W. Tsang, J.R. Manders, S. Chen, F. So, Properties of interlayer for organic photovoltaics. Mater. Today 16, 424–432 (2013)CrossRef T.-H. Lai, S.-W. Tsang, J.R. Manders, S. Chen, F. So, Properties of interlayer for organic photovoltaics. Mater. Today 16, 424–432 (2013)CrossRef
39.
go back to reference H. Kim, K. Lee, Role of interpenetrating networks in the device performance of polymer-fullerene photovoltaic cells. J. Korean Phys. Soc. 42, 183–186 (2003) H. Kim, K. Lee, Role of interpenetrating networks in the device performance of polymer-fullerene photovoltaic cells. J. Korean Phys. Soc. 42, 183–186 (2003)
40.
go back to reference H. Sun, J. Weickert, H.C. Hesse, L. Schmidt-Mende, UV light protection through TiO2 blocking layers for inverted organic solar cells. Sol. Energy Mater. Sol. Cells 95, 3450–3454 (2011)CrossRef H. Sun, J. Weickert, H.C. Hesse, L. Schmidt-Mende, UV light protection through TiO2 blocking layers for inverted organic solar cells. Sol. Energy Mater. Sol. Cells 95, 3450–3454 (2011)CrossRef
Metadata
Title
Metamorphosis of the ZnO buffer layer thicknesses on the performance of inverted organic solar cells
Authors
M. Z. Sahdan
M. F. Malek
M. S. Alias
S. A. Kamaruddin
C. A. Norhidayah
N. Sarip
N. Nafarizal
M. Rusop
Publication date
29-07-2016
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 12/2016
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-5425-1

Other articles of this Issue 12/2016

Journal of Materials Science: Materials in Electronics 12/2016 Go to the issue