Skip to main content
Top

2018 | OriginalPaper | Chapter

2. Microalgal Production Systems with Highlights of Bioenergy Production

Authors : Mariana Manzoni Maroneze, Maria Isabel Queiroz

Published in: Energy from Microalgae

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The purpose of this chapter is to provide an overview of the main systems of microalgae production with highlights of biofuel production. The large-scale production systems (raceway ponds, horizontal tubular photobioreactors, and heterotrophic bioreactors) and small-scale photobioreactors (vertical and flat-plate photobioreactors) will be presented and discussed with a special emphasis on the main factors affecting its efficiency, biomass productivities reported in the literature, scaling-up, costs of construction and operation, and commercial applications. Besides this, the recent developments in microalgae cultivation systems will be reviewed in their main aspects. Finally, the criteria for selecting an appropriate bioreactor for microalgae cultivation will be presented, as well as the pros and cons of each system will be discussed in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abomohra, A., Jin, W., Tu, R., Han, S., Eid, M., & Eladel, H. (2016). Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives. Renewable and Sustainable Energy Reviews, 64, 596–606.CrossRef Abomohra, A., Jin, W., Tu, R., Han, S., Eid, M., & Eladel, H. (2016). Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives. Renewable and Sustainable Energy Reviews, 64, 596–606.CrossRef
go back to reference Alias, C. B., Lopez, M. C. G. M., Fernández, F. G. A., Sevilla, J. M. G., Sanchez, J. L. G., & Grima, E. M. (2004). Influence of power supply in the feasibility of Phaeodactylum tricornutum cultures. Biotechnology and Bioengineering, 87, 723–733.CrossRef Alias, C. B., Lopez, M. C. G. M., Fernández, F. G. A., Sevilla, J. M. G., Sanchez, J. L. G., & Grima, E. M. (2004). Influence of power supply in the feasibility of Phaeodactylum tricornutum cultures. Biotechnology and Bioengineering, 87, 723–733.CrossRef
go back to reference Becker, E. W. (1994). Microalgae-biotechnology and microbiology (1st ed.). Cambridge: Cambridge University Press. Becker, E. W. (1994). Microalgae-biotechnology and microbiology (1st ed.). Cambridge: Cambridge University Press.
go back to reference Bennett, M. C., Turn, S. Q., & Chan, W. Y. (2014). A methodology to assess open pond, phototrophic, algae production potential: A Hawaii case study. Biomass and Bioenergy, 66, 168–75.CrossRef Bennett, M. C., Turn, S. Q., & Chan, W. Y. (2014). A methodology to assess open pond, phototrophic, algae production potential: A Hawaii case study. Biomass and Bioenergy, 66, 168–75.CrossRef
go back to reference Bergmann, P., & Trösch, W. (2016). Repeated fed-batch cultivation of Thermosynechococcus elongatus BP-1 in flat-panel airlift photobioreactors with static mixers for improved light utilization: Influence of nitrate, carbon supply and photobioreactor design. Algal Research, 17, 79–86.CrossRef Bergmann, P., & Trösch, W. (2016). Repeated fed-batch cultivation of Thermosynechococcus elongatus BP-1 in flat-panel airlift photobioreactors with static mixers for improved light utilization: Influence of nitrate, carbon supply and photobioreactor design. Algal Research, 17, 79–86.CrossRef
go back to reference Billad, M. R., Arafat, H. A., & Vankelecom, I. F. J. (2015). Membrane technology in microalgae cultivation and harvesting: A review. Biotechnology Advances, 32, 1283–1300.CrossRef Billad, M. R., Arafat, H. A., & Vankelecom, I. F. J. (2015). Membrane technology in microalgae cultivation and harvesting: A review. Biotechnology Advances, 32, 1283–1300.CrossRef
go back to reference Borowitzka, M. A. (2005). Culturing microalgae in outdoor ponds. In R. A. Andersen (Ed.), Algal culturing techniques (pp. 205–218). Amsterdam: Elsevier Academic Press. Borowitzka, M. A. (2005). Culturing microalgae in outdoor ponds. In R. A. Andersen (Ed.), Algal culturing techniques (pp. 205–218). Amsterdam: Elsevier Academic Press.
go back to reference Brennan, L., & Owende, P. (2010). Biofuels from microalgae: A review of technologies for production, processing, and extractions of biofuels and co products. Renewable and Sustainable Energy Reviews, 14, 557–577.CrossRef Brennan, L., & Owende, P. (2010). Biofuels from microalgae: A review of technologies for production, processing, and extractions of biofuels and co products. Renewable and Sustainable Energy Reviews, 14, 557–577.CrossRef
go back to reference Burlew, J. S. (1953). Algal culture: From laboratory to pilot plant (1st ed.). Washington: Carnegie Institution of Washington. Burlew, J. S. (1953). Algal culture: From laboratory to pilot plant (1st ed.). Washington: Carnegie Institution of Washington.
go back to reference Camacho, R. F., Fernández, F. G. A., Pérez, J. A. S., Camacho, F. G., & Grima, E. M. (1999). Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnology and Bioengineering, 62, 71–86.CrossRef Camacho, R. F., Fernández, F. G. A., Pérez, J. A. S., Camacho, F. G., & Grima, E. M. (1999). Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnology and Bioengineering, 62, 71–86.CrossRef
go back to reference Carvalho, J. C. M., Matsudo, M. C., Bezerra, R. P., Ferreira-Camargo, L. S., & Sato, S. (2014). Microalgae bioreactors. In R. Bajpai, A. Prokop, & M. Zappi (Eds.), Algal biorefineries (Vol. 1, pp. 83–126). Switzerland: Springer International Publishing.CrossRef Carvalho, J. C. M., Matsudo, M. C., Bezerra, R. P., Ferreira-Camargo, L. S., & Sato, S. (2014). Microalgae bioreactors. In R. Bajpai, A. Prokop, & M. Zappi (Eds.), Algal biorefineries (Vol. 1, pp. 83–126). Switzerland: Springer International Publishing.CrossRef
go back to reference Chang, J. S., Show, P. L., Ling, T. C., Chen, C. Y., Ho, S. H., Tan, C. H., et al. (2017). Photobioreactors. In C. Larroche, M. Sanroman, G. Du, & A. Pandey (Eds.), Current developments in biotechnology and bioengineering: Bioprocesses, bioreactors and controls (pp. 313–352). Atlanta: Elsevier.CrossRef Chang, J. S., Show, P. L., Ling, T. C., Chen, C. Y., Ho, S. H., Tan, C. H., et al. (2017). Photobioreactors. In C. Larroche, M. Sanroman, G. Du, & A. Pandey (Eds.), Current developments in biotechnology and bioengineering: Bioprocesses, bioreactors and controls (pp. 313–352). Atlanta: Elsevier.CrossRef
go back to reference Cheng-Wu, Z., Zmora, O., Kopel, R., & Richmond, A. (2001). An industrialsize flat glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae). Aquaculture, 195, 35–49.CrossRef Cheng-Wu, Z., Zmora, O., Kopel, R., & Richmond, A. (2001). An industrialsize flat glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae). Aquaculture, 195, 35–49.CrossRef
go back to reference Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., et al. (2017). Microalgae biorefinery: High value products perspectives. Bioresource Technology, 229, 53–62.CrossRef Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., et al. (2017). Microalgae biorefinery: High value products perspectives. Bioresource Technology, 229, 53–62.CrossRef
go back to reference Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.CrossRef Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.CrossRef
go back to reference Chisti, Y. (2013). Raceways-based production of algal crude oil In C. Posten & C. Walter (Eds.), Microalgal biotechnology: Potential and production (pp. 197–216). Berlin: de Gruyter. Chisti, Y. (2013). Raceways-based production of algal crude oil In C. Posten & C. Walter (Eds.), Microalgal biotechnology: Potential and production (pp. 197–216). Berlin: de Gruyter.
go back to reference Chisti, Y. (2016). Large-scale production of algal biomass: Raceway ponds. In F. Bux & Y. Chisti (Eds.), Algae biotechnology: Products and processes (pp. 21–40). New York: Springer.CrossRef Chisti, Y. (2016). Large-scale production of algal biomass: Raceway ponds. In F. Bux & Y. Chisti (Eds.), Algae biotechnology: Products and processes (pp. 21–40). New York: Springer.CrossRef
go back to reference Chiu, S. Y., Tsai, M. T., Kao, C. Y., Ong, S. C., & Lin, C. S. (2009). The air-lift photobioreactors with flow patterning for high-density cultures of microalgae and carbon dioxide removal. Engineering in Life Sciences, 9, 254–260.CrossRef Chiu, S. Y., Tsai, M. T., Kao, C. Y., Ong, S. C., & Lin, C. S. (2009). The air-lift photobioreactors with flow patterning for high-density cultures of microalgae and carbon dioxide removal. Engineering in Life Sciences, 9, 254–260.CrossRef
go back to reference Collotta, M., Champagne, P., Busi, L., & Alberti, M. (2017). Comparative LCA of flocculation for the harvesting of microalgae for biofuels production. Procedia CIRP, 61, 756760.CrossRef Collotta, M., Champagne, P., Busi, L., & Alberti, M. (2017). Comparative LCA of flocculation for the harvesting of microalgae for biofuels production. Procedia CIRP, 61, 756760.CrossRef
go back to reference Cook, P. M. (1950). Some problems in the large-scale culture of Chlorella (pp. 53–75). Yellow Springs, OH: The Culture Foundation. Cook, P. M. (1950). Some problems in the large-scale culture of Chlorella (pp. 53–75). Yellow Springs, OH: The Culture Foundation.
go back to reference Crowe, B., Attalah, S., Agrawal, S., Waller, P., Ryan, R., Van Wagenen, J., et al. (2012). A comparison of Nannochloropsis salina growth performance in two outdoor pond designs: Conventional raceways versus the arid pond with superior temperature management. International Journal of Chemical Engineering and Applications, 2012, 9–21. Crowe, B., Attalah, S., Agrawal, S., Waller, P., Ryan, R., Van Wagenen, J., et al. (2012). A comparison of Nannochloropsis salina growth performance in two outdoor pond designs: Conventional raceways versus the arid pond with superior temperature management. International Journal of Chemical Engineering and Applications, 2012, 9–21.
go back to reference Cuaresma, M., Janssen, M., Vílchez, C., & Wijffels, R. H. (2009). Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance. Biotechnology and Bioengineering, 104, 352–359.CrossRef Cuaresma, M., Janssen, M., Vílchez, C., & Wijffels, R. H. (2009). Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance. Biotechnology and Bioengineering, 104, 352–359.CrossRef
go back to reference de Godos, I., Mendoza, J. L., Acién, F. G., Molina, E., Banks, C. J., Heaven, S., et al. (2014). Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresource Technology, 153, 307–314.CrossRef de Godos, I., Mendoza, J. L., Acién, F. G., Molina, E., Banks, C. J., Heaven, S., et al. (2014). Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresource Technology, 153, 307–314.CrossRef
go back to reference Eustance, E., Badvipour, S., Wray, J. T., & Sommerfeld, M. R. (2015). Biomass productivity of two Scenedesmus strains cultivated semi-continuously in outdoor raceway ponds and flat-panel photobioreactors. Journal of Applied Phycology, 28, 1471–1483.CrossRef Eustance, E., Badvipour, S., Wray, J. T., & Sommerfeld, M. R. (2015). Biomass productivity of two Scenedesmus strains cultivated semi-continuously in outdoor raceway ponds and flat-panel photobioreactors. Journal of Applied Phycology, 28, 1471–1483.CrossRef
go back to reference Faried, M., Samer, M., Abdelsalam, E., Yousef, R. S., Attia, Y. A., & Ali, A. S. (2017). Biodiesel production from microalgae: Processes, technologies and recent advancements. Renewable and Sustainable Energy Reviews, 79, 893–913.CrossRef Faried, M., Samer, M., Abdelsalam, E., Yousef, R. S., Attia, Y. A., & Ali, A. S. (2017). Biodiesel production from microalgae: Processes, technologies and recent advancements. Renewable and Sustainable Energy Reviews, 79, 893–913.CrossRef
go back to reference Fernandes, B. D., Mota, A., Ferreira, A., Dragone, D., Teixeira, J. A., & Vicente, A. A. (2014). Characterization of split cylinder airlift photobioreactors for efficient microalgae cultivation. Chemical Engineering Science, 117, 445–454.CrossRef Fernandes, B. D., Mota, A., Ferreira, A., Dragone, D., Teixeira, J. A., & Vicente, A. A. (2014). Characterization of split cylinder airlift photobioreactors for efficient microalgae cultivation. Chemical Engineering Science, 117, 445–454.CrossRef
go back to reference Fernandez, F. G. A., Camacho, A. C., Pérez, J. A. S., Sevilla, J. M. F., & Grima, E. M. (1997). A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture. Biotechnology and Bioengineering, 55, 701–714.CrossRef Fernandez, F. G. A., Camacho, A. C., Pérez, J. A. S., Sevilla, J. M. F., & Grima, E. M. (1997). A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture. Biotechnology and Bioengineering, 55, 701–714.CrossRef
go back to reference Fernandez, F. G. A., Sevilla, J. M. F., & Grima, E. M. (2013). Photobioreactors for the production of microalgae. Reviews in Environmental Science and Bio/Technology, 12, 131–151.CrossRef Fernandez, F. G. A., Sevilla, J. M. F., & Grima, E. M. (2013). Photobioreactors for the production of microalgae. Reviews in Environmental Science and Bio/Technology, 12, 131–151.CrossRef
go back to reference Fernández, F. G. A., Sevilla, J. M. F., Pérez, J. A. S., Grima, E. M., & Chisti, Y. (2001). Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: Assessment of design and performance. Chemical Engineering Science, 56, 2721–2732.CrossRef Fernández, F. G. A., Sevilla, J. M. F., Pérez, J. A. S., Grima, E. M., & Chisti, Y. (2001). Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: Assessment of design and performance. Chemical Engineering Science, 56, 2721–2732.CrossRef
go back to reference Francisco, E. C., Franco, T. T., Wagner, R., & Jacob-Lopes, E. (2014). Assessment of different carbohydrates as exogenous carbon source in cultivation of cyanobacteria. Bioprocess and Biosystems Engineering, 37, 1497–505.CrossRef Francisco, E. C., Franco, T. T., Wagner, R., & Jacob-Lopes, E. (2014). Assessment of different carbohydrates as exogenous carbon source in cultivation of cyanobacteria. Bioprocess and Biosystems Engineering, 37, 1497–505.CrossRef
go back to reference Francisco, E. C., Franco, T. T., Zepka, L. Q., & Jacob-Lopes, E. (2015). From waste-to-energy: The process integration and intensification for bulk oil and biodiesel production by microalgae. Journal of Environmental Chemical Engineering, 3, 482–487.CrossRef Francisco, E. C., Franco, T. T., Zepka, L. Q., & Jacob-Lopes, E. (2015). From waste-to-energy: The process integration and intensification for bulk oil and biodiesel production by microalgae. Journal of Environmental Chemical Engineering, 3, 482–487.CrossRef
go back to reference Gao, F., Yang, Z. H., Li, C., Wang, Y. J., Jin, W. H., & Deng, Y. B. (2014). Concentrated microalgae cultivation in treated sewage by membrane photobioreactor operated in batch flow mode. Bioresource Technology, 167, 441–446. CrossRef Gao, F., Yang, Z. H., Li, C., Wang, Y. J., Jin, W. H., & Deng, Y. B. (2014). Concentrated microalgae cultivation in treated sewage by membrane photobioreactor operated in batch flow mode. Bioresource Technology, 167, 441–446. CrossRef
go back to reference Griffiths, D. J., Thresher, C. L., & Street, H. E. (1960). The heterotrophic nutrition of Chlorella vulgaris (brannon no. 1 strain). Annals of Botany, 24, 1–11.CrossRef Griffiths, D. J., Thresher, C. L., & Street, H. E. (1960). The heterotrophic nutrition of Chlorella vulgaris (brannon no. 1 strain). Annals of Botany, 24, 1–11.CrossRef
go back to reference Grima, E. M. (2009). Algae biomass in Spain: A case study. In First European Algae Biomass Association Conference & General Assembly, Florence. Grima, E. M. (2009). Algae biomass in Spain: A case study. In First European Algae Biomass Association Conference & General Assembly, Florence.
go back to reference Grima, E. M., Fernández, J., Acién, F. G., & Chisti, Y. (2001). Tubular photobioreactor design for algal cultures. Journal of Biotechnology, 92, 113–131.CrossRef Grima, E. M., Fernández, J., Acién, F. G., & Chisti, Y. (2001). Tubular photobioreactor design for algal cultures. Journal of Biotechnology, 92, 113–131.CrossRef
go back to reference Gross, M., Jarboe, D., & Wen, Z. (2015). Biofilm-based algal cultivation systems. Applied Microbiology and Biotechnology, 99, 5781–5789.CrossRef Gross, M., Jarboe, D., & Wen, Z. (2015). Biofilm-based algal cultivation systems. Applied Microbiology and Biotechnology, 99, 5781–5789.CrossRef
go back to reference Harder, R., & von Witsch, H. (1942). Ueber Massenkultur von Diatomeen. Ber. Dtsch. Bot. Ges., 60, 14–153. Harder, R., & von Witsch, H. (1942). Ueber Massenkultur von Diatomeen. Ber. Dtsch. Bot. Ges., 60, 14–153.
go back to reference Heidari, M., Kariminia, H. R., & Shayegan, J. (2016). Effect of culture age and initial inoculum size on lipid accumulation and productivity in a hybrid cultivation system of Chlorella vulgaris. Process Safety and Environmental Protection, 104, 111–122.CrossRef Heidari, M., Kariminia, H. R., & Shayegan, J. (2016). Effect of culture age and initial inoculum size on lipid accumulation and productivity in a hybrid cultivation system of Chlorella vulgaris. Process Safety and Environmental Protection, 104, 111–122.CrossRef
go back to reference Hoh, D., Watson, S., & Kan, E. (2015). Algal biofilm reactors for integrated wastewater treatment and biofuel production: A review. Chemical Engineering Journal, 287, 466–473.CrossRef Hoh, D., Watson, S., & Kan, E. (2015). Algal biofilm reactors for integrated wastewater treatment and biofuel production: A review. Chemical Engineering Journal, 287, 466–473.CrossRef
go back to reference Hu, Q., Fairman, D., & Richmond, A. (1998). Optimal tilt angles of enclosed reactors for growing photoautotrophic microorganisms outdoors. Journal of Fermentation and Bioengineering, 85, 230–236.CrossRef Hu, Q., Fairman, D., & Richmond, A. (1998). Optimal tilt angles of enclosed reactors for growing photoautotrophic microorganisms outdoors. Journal of Fermentation and Bioengineering, 85, 230–236.CrossRef
go back to reference Hu, Q., Guterman, H., & Richmond, A. (1996). A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnology and Bioengineering, 51, 51–60.CrossRef Hu, Q., Guterman, H., & Richmond, A. (1996). A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnology and Bioengineering, 51, 51–60.CrossRef
go back to reference Hu, Q., & Richmond, A. (1994). Optimizing the population density in Isochrysis galbana grown outdoors in a glass column photobioreactor. Journal of Applied Phycology, 6, 391–396.CrossRef Hu, Q., & Richmond, A. (1994). Optimizing the population density in Isochrysis galbana grown outdoors in a glass column photobioreactor. Journal of Applied Phycology, 6, 391–396.CrossRef
go back to reference Huang, Q., Jiang, F., Wang, L., & Yang, C. (2017). Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering, 3, 318–329.CrossRef Huang, Q., Jiang, F., Wang, L., & Yang, C. (2017). Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering, 3, 318–329.CrossRef
go back to reference Jacob-Lopes, E., Scoparo, C. H. G., Lacerda, L. M. C. F., & Franco, T. T. (2009). Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chemical Engineering and Processing: Process Intensification, 48, 306–310.CrossRef Jacob-Lopes, E., Scoparo, C. H. G., Lacerda, L. M. C. F., & Franco, T. T. (2009). Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chemical Engineering and Processing: Process Intensification, 48, 306–310.CrossRef
go back to reference Jacob-Lopes, E., Zepka, L. Q., Merida, L. G. R., Maroneze, M. M., & Neves, C. (2014). Bioprocesso de conversão de dióxido de carbono de emissões industriais, bioprodutos, seus usos e fotobiorreator híbrido. BR n. PI2014000333. Jacob-Lopes, E., Zepka, L. Q., Merida, L. G. R., Maroneze, M. M., & Neves, C. (2014). Bioprocesso de conversão de dióxido de carbono de emissões industriais, bioprodutos, seus usos e fotobiorreator híbrido. BR n. PI2014000333.
go back to reference Janssen, M., Tramper, J., Mur, L., & Wijffels, R. H. (2003). Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnology and Bioengineering, 81, 193–210.CrossRef Janssen, M., Tramper, J., Mur, L., & Wijffels, R. H. (2003). Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnology and Bioengineering, 81, 193–210.CrossRef
go back to reference Jiménez, C., Cossío. B. R., & Niell, F. X. (2003). Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: A predictive model of algal yield. Aquaculture, 221, 331–45.CrossRef Jiménez, C., Cossío. B. R., & Niell, F. X. (2003). Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: A predictive model of algal yield. Aquaculture, 221, 331–45.CrossRef
go back to reference Juneja, A., Ceballos, R. M., & Murthy, G. S. (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review. Enegies, 6, 4607–4638. Juneja, A., Ceballos, R. M., & Murthy, G. S. (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review. Enegies, 6, 4607–4638.
go back to reference Junying, Z., Junfeng, R., & Baoning, Z. (2013). Factors in mass cultivation of microalgae for biodiesel. Chinese Journal of Catalysis, 34, 80–100.CrossRef Junying, Z., Junfeng, R., & Baoning, Z. (2013). Factors in mass cultivation of microalgae for biodiesel. Chinese Journal of Catalysis, 34, 80–100.CrossRef
go back to reference Katiyar, R., Gurjar, B. R., Bharti, R. Q., Kumar, A., Biswas, S., & Pruthi, V. (2017). Heterotrophic cultivation of microalgae in photobioreactor using low cost crude glycerol for enhanced biodiesel production. Renewable Energy, 113, 1359–1365.CrossRef Katiyar, R., Gurjar, B. R., Bharti, R. Q., Kumar, A., Biswas, S., & Pruthi, V. (2017). Heterotrophic cultivation of microalgae in photobioreactor using low cost crude glycerol for enhanced biodiesel production. Renewable Energy, 113, 1359–1365.CrossRef
go back to reference Koller, M. (2015). Design of closed photobioreactors for algal cultivation. In A. Prokop, R. K. Bajpai, & M. E. Zappi (Eds.), Algal biorefineries volume 2: Products and refinery design (pp. 139–186). Switzerland: Springer International Publishing. Koller, M. (2015). Design of closed photobioreactors for algal cultivation. In A. Prokop, R. K. Bajpai, & M. E. Zappi (Eds.), Algal biorefineries volume 2: Products and refinery design (pp. 139–186). Switzerland: Springer International Publishing.
go back to reference Kunjapur, A. M., & Eldridge, R. B. (2010). Photobioreactor design for commercial biofuel production from microalgae. Industrial and Engineering Chemistry Research, 49, 3516–3526.CrossRef Kunjapur, A. M., & Eldridge, R. B. (2010). Photobioreactor design for commercial biofuel production from microalgae. Industrial and Engineering Chemistry Research, 49, 3516–3526.CrossRef
go back to reference Lal, A., & Das, D. (2016). Biomass production and identification of suitable harvesting technique for Chlorella sp. MJ 11/11 and Synechocystis PCC 6803. 3 Biotech, 6, 41–51.CrossRef Lal, A., & Das, D. (2016). Biomass production and identification of suitable harvesting technique for Chlorella sp. MJ 11/11 and Synechocystis PCC 6803. 3 Biotech, 6, 41–51.CrossRef
go back to reference Li, J., Stamato, M., Velliou, E., Jeffryes, C., & Agathos, S. N. (2014). Design and characterization of a scalable airlift flat panel photobioreactor for microalgae cultivation. Journal of Applied Phycology, 27, 75–86.CrossRef Li, J., Stamato, M., Velliou, E., Jeffryes, C., & Agathos, S. N. (2014). Design and characterization of a scalable airlift flat panel photobioreactor for microalgae cultivation. Journal of Applied Phycology, 27, 75–86.CrossRef
go back to reference Li, X., Xu, H., & Wu, Q. (2007). Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnology and Bioengineering, 98, 764–771.CrossRef Li, X., Xu, H., & Wu, Q. (2007). Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnology and Bioengineering, 98, 764–771.CrossRef
go back to reference Lin, Q., & Lin, J. (2011). Effects of nitrogen source and concentration on biomass and oil production of a Scenedesmus rubescens like microalga. Bioresource Technology, 102, 1615–1621.CrossRef Lin, Q., & Lin, J. (2011). Effects of nitrogen source and concentration on biomass and oil production of a Scenedesmus rubescens like microalga. Bioresource Technology, 102, 1615–1621.CrossRef
go back to reference Lopez, M. C. G., Del Rio Sanchez, E., Lopez, J. L. C., Fernandez, F. G. A., Sevilla, J. M. F., Rivas, J., et al. (2006). Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. Journal of Biotechnology, 123, 329–42.CrossRef Lopez, M. C. G., Del Rio Sanchez, E., Lopez, J. L. C., Fernandez, F. G. A., Sevilla, J. M. F., Rivas, J., et al. (2006). Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. Journal of Biotechnology, 123, 329–42.CrossRef
go back to reference López, C. V. G., Fernández, F. G. A., Sevilla, J. M. F., Fernández, J. F. S., García, M. C. F., & Grima, E. M. (2009). Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 removal processes. Bioresource Technology, 100, 5904–5910.CrossRef López, C. V. G., Fernández, F. G. A., Sevilla, J. M. F., Fernández, J. F. S., García, M. C. F., & Grima, E. M. (2009). Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 removal processes. Bioresource Technology, 100, 5904–5910.CrossRef
go back to reference Lu, Y., Zhai, Y., Liu, M., & Wu, Q. (2010). Biodiesel production from algal oil using cassava (Manihot esculenta Crantz) as feedstock. Journal of Applied Phycology, 22, 573–578.CrossRef Lu, Y., Zhai, Y., Liu, M., & Wu, Q. (2010). Biodiesel production from algal oil using cassava (Manihot esculenta Crantz) as feedstock. Journal of Applied Phycology, 22, 573–578.CrossRef
go back to reference Lundquist, T. J., Woertz, I. C., Quinn, N. W. T., & Benemann, A. (2010). Realistic technology and engineering assessment of algae biofuel production. Berkeley: Energy Biosciences Institute, University of California. Lundquist, T. J., Woertz, I. C., Quinn, N. W. T., & Benemann, A. (2010). Realistic technology and engineering assessment of algae biofuel production. Berkeley: Energy Biosciences Institute, University of California.
go back to reference Luo, Y., Le-Clech, P., & Henderson, R. K. (2016). Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: A review. Algal Research, 24, 425–437.CrossRef Luo, Y., Le-Clech, P., & Henderson, R. K. (2016). Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: A review. Algal Research, 24, 425–437.CrossRef
go back to reference Marbella, L., Bilad, M. R., Passaris, I., Discart, V., Bañadme, D., Beuckels, A., et al. (2014). Membrane photobioreactors for integrated microalgae cultivation and nutrient remediation of membrane bioreactors effluent. Bioresource Technology, 163, 228–235.CrossRef Marbella, L., Bilad, M. R., Passaris, I., Discart, V., Bañadme, D., Beuckels, A., et al. (2014). Membrane photobioreactors for integrated microalgae cultivation and nutrient remediation of membrane bioreactors effluent. Bioresource Technology, 163, 228–235.CrossRef
go back to reference Maroneze, M. M., Barin, J. S., Menezes, C. R., Queiroz, M. I., Zepka, L. Q., & Jacob-Lopes, E. (2014). Treatment of cattle-slaughterhouse wastewater and the reuse of sludge for biodiesel production by microalgal heterotrophic bioreactors. Scientia Agricola, 71, 521–524.CrossRef Maroneze, M. M., Barin, J. S., Menezes, C. R., Queiroz, M. I., Zepka, L. Q., & Jacob-Lopes, E. (2014). Treatment of cattle-slaughterhouse wastewater and the reuse of sludge for biodiesel production by microalgal heterotrophic bioreactors. Scientia Agricola, 71, 521–524.CrossRef
go back to reference Maroneze, M. M., Siqueira, S. F., Vendruscolo, R. G., Wagner, R., Menezes, C. R., Zepka, L. Q., et al. (2016). The role of photoperiods on photobioreactors—a potential strategy to reduce costs. Bioresource Technology, 219, 493–499.CrossRef Maroneze, M. M., Siqueira, S. F., Vendruscolo, R. G., Wagner, R., Menezes, C. R., Zepka, L. Q., et al. (2016). The role of photoperiods on photobioreactors—a potential strategy to reduce costs. Bioresource Technology, 219, 493–499.CrossRef
go back to reference Mirón, A. S., Gómez, A. C., Camacho, F. G., Grima, E. M., & Chisti, Y. (1999). Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. Journal of Biotechnology, 70, 249–270.CrossRef Mirón, A. S., Gómez, A. C., Camacho, F. G., Grima, E. M., & Chisti, Y. (1999). Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. Journal of Biotechnology, 70, 249–270.CrossRef
go back to reference Münkel, R., Schmid-Staiger, U., Werner, A., & Hirth, T. (2013). Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris. Biotechnology and Bioengineering, 110, 2882–2893.CrossRef Münkel, R., Schmid-Staiger, U., Werner, A., & Hirth, T. (2013). Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris. Biotechnology and Bioengineering, 110, 2882–2893.CrossRef
go back to reference Norsker, N. H., Barbosa, M. J., Vermuë, M. H., & Wijffels, R. H. (2011). Microalgal production-a close look at the economics. Biotechnology Advances, 29, 24–27.CrossRef Norsker, N. H., Barbosa, M. J., Vermuë, M. H., & Wijffels, R. H. (2011). Microalgal production-a close look at the economics. Biotechnology Advances, 29, 24–27.CrossRef
go back to reference Olaizola, M. (2000). Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. Journal of Applied Phycology, 12, 499–506.CrossRef Olaizola, M. (2000). Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. Journal of Applied Phycology, 12, 499–506.CrossRef
go back to reference Olguín, E., Galicia, S., Mercado, G., & Pérez, T. (2003). Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. Journal of Applied Phycology, 15, 249–257.CrossRef Olguín, E., Galicia, S., Mercado, G., & Pérez, T. (2003). Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. Journal of Applied Phycology, 15, 249–257.CrossRef
go back to reference Perez-Garcia, O., & Bashan, Y. (2015). Microalgal heterotrophic and mixotrophic culturing for bio-refining: From metabolic routes to techno-economics. In A. Prokop, R. K. Bajpai, & M. E. Zappi (Eds.), Algal biorefineries volume 2: Products and refinery design (pp. 61–132). Switzerland: Springer International Publishing.CrossRef Perez-Garcia, O., & Bashan, Y. (2015). Microalgal heterotrophic and mixotrophic culturing for bio-refining: From metabolic routes to techno-economics. In A. Prokop, R. K. Bajpai, & M. E. Zappi (Eds.), Algal biorefineries volume 2: Products and refinery design (pp. 61–132). Switzerland: Springer International Publishing.CrossRef
go back to reference Perez-Garcia, O., Escalante, F. M. E., de-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 45, 11–36.CrossRef Perez-Garcia, O., Escalante, F. M. E., de-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 45, 11–36.CrossRef
go back to reference Pleissner, D., Lam, W. C., Sun, Z., & Lin, C. S. K. (2013). Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresource Technology, 137, 139–146.CrossRef Pleissner, D., Lam, W. C., Sun, Z., & Lin, C. S. K. (2013). Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresource Technology, 137, 139–146.CrossRef
go back to reference Pruvost, J., Le Borgne, F., Artu, A., & Legrand, J. (2017). Development of a thin-film solar photobioreactor with high biomass volumetric productivity (AlgoFilm©) based on process intensification principles. Algal Research, 21, 120–137.CrossRef Pruvost, J., Le Borgne, F., Artu, A., & Legrand, J. (2017). Development of a thin-film solar photobioreactor with high biomass volumetric productivity (AlgoFilm©) based on process intensification principles. Algal Research, 21, 120–137.CrossRef
go back to reference Pulz, O., & Scheibenbogen, K. (1998). Photobioreactors: Design and performance with respect to light energy input. Advances in Biochemical Engineering/Biotechnology, 59, 123–152.CrossRef Pulz, O., & Scheibenbogen, K. (1998). Photobioreactors: Design and performance with respect to light energy input. Advances in Biochemical Engineering/Biotechnology, 59, 123–152.CrossRef
go back to reference Queiroz, M. I., Hornes, M. O., Silva-Manetti, A. G., & Jacob-Lopes, E. (2011). Single-cell oil production by cyanobacterium Aphanothece microscopica Nägeli cultivated heterotrophically in fish processing wastewater. Applied Energy, 88, 3438–3443.CrossRef Queiroz, M. I., Hornes, M. O., Silva-Manetti, A. G., & Jacob-Lopes, E. (2011). Single-cell oil production by cyanobacterium Aphanothece microscopica Nägeli cultivated heterotrophically in fish processing wastewater. Applied Energy, 88, 3438–3443.CrossRef
go back to reference Ramírez-Mérida, L. G. R., Zepka, L. Q., & Jacob-Lopes, E. (2017). Current production of microalgae at industrial scale. In J. C. M. Pires (Ed.), Recent advances in renewable energy (pp. 242–260). Sharjah: Bentham Science Publishers. Ramírez-Mérida, L. G. R., Zepka, L. Q., & Jacob-Lopes, E. (2017). Current production of microalgae at industrial scale. In J. C. M. Pires (Ed.), Recent advances in renewable energy (pp. 242–260). Sharjah: Bentham Science Publishers.
go back to reference Raslavičius, L., Striūgas, N., & Felneris, M. (2018). New insights into algae factories of the future. Renewable and Sustainable Energy Reviews, 81, 643–654.CrossRef Raslavičius, L., Striūgas, N., & Felneris, M. (2018). New insights into algae factories of the future. Renewable and Sustainable Energy Reviews, 81, 643–654.CrossRef
go back to reference Raso, S., van Genugten, B., Vermuë, M., & Wijffels, R. H. (2012). Effect of oxygen concentration on the growth of Nannochloropsis sp. at low light intensity. Journal of Applied Phycology, 24, 863–871.CrossRef Raso, S., van Genugten, B., Vermuë, M., & Wijffels, R. H. (2012). Effect of oxygen concentration on the growth of Nannochloropsis sp. at low light intensity. Journal of Applied Phycology, 24, 863–871.CrossRef
go back to reference Rawat, I., Kumar, R. R., Mutanda, T., & Bux, F. (2013). Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Applied Energy, 103, 444–467.CrossRef Rawat, I., Kumar, R. R., Mutanda, T., & Bux, F. (2013). Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Applied Energy, 103, 444–467.CrossRef
go back to reference Richmond, A. (1990). Large scale microalgal culture and applications. In F. E. Round & D. J. Chapman (Eds.), Progress in phycological research (pp. 269–330). Britol: Biopress Ltd. Richmond, A. (1990). Large scale microalgal culture and applications. In F. E. Round & D. J. Chapman (Eds.), Progress in phycological research (pp. 269–330). Britol: Biopress Ltd.
go back to reference Richmond, A., & Cheng-Wu, Z. (2001). Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors. Journal of Biotechnology, 85, 259–269.CrossRef Richmond, A., & Cheng-Wu, Z. (2001). Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors. Journal of Biotechnology, 85, 259–269.CrossRef
go back to reference Roso, G. R., Santos, A. M., Zepka, L. Q., & Jacob-Lopes, E. (2015). The econometrics of production of bulk oil and lipid extracted algae in an agroindustrial biorefinery. Current Biotechnology, 4, 547–553.CrossRef Roso, G. R., Santos, A. M., Zepka, L. Q., & Jacob-Lopes, E. (2015). The econometrics of production of bulk oil and lipid extracted algae in an agroindustrial biorefinery. Current Biotechnology, 4, 547–553.CrossRef
go back to reference San Pedro, A., González-López, C. V., Acién, F. G., & Grima, E. M. (2014). Outdoor pilot-scale production of Nannochloropsis gaditana: Influence of culture parameters and lipid production rates in tubular photobioreactors. Bioresource Technology, 169, 667–676.CrossRef San Pedro, A., González-López, C. V., Acién, F. G., & Grima, E. M. (2014). Outdoor pilot-scale production of Nannochloropsis gaditana: Influence of culture parameters and lipid production rates in tubular photobioreactors. Bioresource Technology, 169, 667–676.CrossRef
go back to reference Santos, A. M., Deprá, M. C., Santos, A. M., Zepka, L. Q., & Jacob-Lopes, E. (2015). Aeration energy requirements in microalgal heterotrophic bioreactors applied to agroindustrial wastewater treatment. Current Biotechnology, 4, 249–254.CrossRef Santos, A. M., Deprá, M. C., Santos, A. M., Zepka, L. Q., & Jacob-Lopes, E. (2015). Aeration energy requirements in microalgal heterotrophic bioreactors applied to agroindustrial wastewater treatment. Current Biotechnology, 4, 249–254.CrossRef
go back to reference Scott, S. A., Davey, M. P., Dennis, J. S., Horst, O., Howe, C. J., Lea-Smith, D. J., et al. (2010). Biodiesel from algae: Challenges and prospects. Current Opinion in Biotechnology, 21, 277–286.CrossRef Scott, S. A., Davey, M. P., Dennis, J. S., Horst, O., Howe, C. J., Lea-Smith, D. J., et al. (2010). Biodiesel from algae: Challenges and prospects. Current Opinion in Biotechnology, 21, 277–286.CrossRef
go back to reference Sierra, E., Acién, F. G., Fernández, J. M., García, J. L., González, C., & Molina, E. (2008). Characterization of a flat plate photobioreactor for the production of microalgae. Chemical Engineering Journal, 138, 136–147.CrossRef Sierra, E., Acién, F. G., Fernández, J. M., García, J. L., González, C., & Molina, E. (2008). Characterization of a flat plate photobioreactor for the production of microalgae. Chemical Engineering Journal, 138, 136–147.CrossRef
go back to reference Singh, R. N., & Sharma, S. (2012). Development of suitable photobioreactor for algae production—a review. Renewable and Sustainable Energy Reviews, 16, 2347–2353.CrossRef Singh, R. N., & Sharma, S. (2012). Development of suitable photobioreactor for algae production—a review. Renewable and Sustainable Energy Reviews, 16, 2347–2353.CrossRef
go back to reference Su, H., Zhou, X., Xia, X., Sun, Z., & Zhang. Y. (2017a). Progress of microalgae biofuel’s commercialization. Renewable and Sustainable Energy Reviews, 74, 402–411.CrossRef Su, H., Zhou, X., Xia, X., Sun, Z., & Zhang. Y. (2017a). Progress of microalgae biofuel’s commercialization. Renewable and Sustainable Energy Reviews, 74, 402–411.CrossRef
go back to reference Su, Y., Song, K., Zhang, P., Su, Y., Cheng, J., & Chen, X. (2017b). Progress of microalgae biofuel’s commercialization. Renewable and Sustainable Energy Reviews, 74, 402–411.CrossRef Su, Y., Song, K., Zhang, P., Su, Y., Cheng, J., & Chen, X. (2017b). Progress of microalgae biofuel’s commercialization. Renewable and Sustainable Energy Reviews, 74, 402–411.CrossRef
go back to reference Suh, I. S., & Lee, C. G. (2003). Photobioreactor engineering: Design and performance. Biotechnology and Bioprocess Engineering, 8, 313–321.CrossRef Suh, I. S., & Lee, C. G. (2003). Photobioreactor engineering: Design and performance. Biotechnology and Bioprocess Engineering, 8, 313–321.CrossRef
go back to reference Sun, A., Davis, R., Starbuck, M., Ben-Amotz, A., Pate, R., & Piencos, P. T. (2011). Comparative cost analysis of algal oil production for biofuels. Energy, 36, 5169–5179.CrossRef Sun, A., Davis, R., Starbuck, M., Ben-Amotz, A., Pate, R., & Piencos, P. T. (2011). Comparative cost analysis of algal oil production for biofuels. Energy, 36, 5169–5179.CrossRef
go back to reference Tabernero, A., Martín del Valle, E. M., & Galán, M. A. (2012). Evaluating the industrial potential of biodiesel from a microalgae heterotrophic culture: Scale-up and economics. Biochemical Engineering Journal, 63, 104–115.CrossRef Tabernero, A., Martín del Valle, E. M., & Galán, M. A. (2012). Evaluating the industrial potential of biodiesel from a microalgae heterotrophic culture: Scale-up and economics. Biochemical Engineering Journal, 63, 104–115.CrossRef
go back to reference Tao, Q., Gao, F., Qian, C. Y., Guo, X. Z., Zheng, Z., & Yang, Z. H. (2017). Enhanced biomass/biofuel production and nutrient removal in an algal biofilm airlift photobioreactor. Algal Research, 21, 9–15.CrossRef Tao, Q., Gao, F., Qian, C. Y., Guo, X. Z., Zheng, Z., & Yang, Z. H. (2017). Enhanced biomass/biofuel production and nutrient removal in an algal biofilm airlift photobioreactor. Algal Research, 21, 9–15.CrossRef
go back to reference Torzillo, G. (1997). Tubular bioreactors. In A. Vonshak (Ed.), Spirulina platensis (Arthrospira): Phisiology, cell-biology and biotechnology (1st ed., pp. 101–115). London: Taylor and Francis. Torzillo, G. (1997). Tubular bioreactors. In A. Vonshak (Ed.), Spirulina platensis (Arthrospira): Phisiology, cell-biology and biotechnology (1st ed., pp. 101–115). London: Taylor and Francis.
go back to reference Torzillo, G., Zittelli, G. C., & Chini Zittelli, G. (2015). Tubular photobioreactors. In A. Prokop, R. K. Bajpai, & M. E. Zappi (Eds.), Algal biorefineries volume 2: Products and refinery design (pp. 187–212). Switzerland: Springer International Publishing.CrossRef Torzillo, G., Zittelli, G. C., & Chini Zittelli, G. (2015). Tubular photobioreactors. In A. Prokop, R. K. Bajpai, & M. E. Zappi (Eds.), Algal biorefineries volume 2: Products and refinery design (pp. 187–212). Switzerland: Springer International Publishing.CrossRef
go back to reference Tredici, M. R., Carlozzi, P., Zittelli, G. C., & Materassi, R. (1991). A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Bioresource Technology, 38, 153–159.CrossRef Tredici, M. R., Carlozzi, P., Zittelli, G. C., & Materassi, R. (1991). A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Bioresource Technology, 38, 153–159.CrossRef
go back to reference Tredici, M. R., & Materassi, R. (1992). From open ponds to vertical alveolar panels: The Italian experience in the development of reactors for the mass cultivation of photoautotrophic microorganisms. Journal of Applied Phycology, 4, 221–231.CrossRef Tredici, M. R., & Materassi, R. (1992). From open ponds to vertical alveolar panels: The Italian experience in the development of reactors for the mass cultivation of photoautotrophic microorganisms. Journal of Applied Phycology, 4, 221–231.CrossRef
go back to reference Tredici, M. R., Rodolfi, L., Biondi, N., Bassi, N., & Sampietro, G. (2016). Techno-economic analysis of microalgal biomass production in a 1-há Green Wall Panel (GWP®) plant. Algal Research, 19, 253–263.CrossRef Tredici, M. R., Rodolfi, L., Biondi, N., Bassi, N., & Sampietro, G. (2016). Techno-economic analysis of microalgal biomass production in a 1-há Green Wall Panel (GWP®) plant. Algal Research, 19, 253–263.CrossRef
go back to reference Tuantet, K., Temmink, H., Zeeman, G., Janssen, M., Wijffels, R. H., & Buisman, C. J. N. (2014). Nutrient removal and microalgal biomass production on urine in a short light-path photobioreactor. Water Research, 55, 162–174.CrossRef Tuantet, K., Temmink, H., Zeeman, G., Janssen, M., Wijffels, R. H., & Buisman, C. J. N. (2014). Nutrient removal and microalgal biomass production on urine in a short light-path photobioreactor. Water Research, 55, 162–174.CrossRef
go back to reference Ugwu, C. U., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99, 4021–4028.CrossRef Ugwu, C. U., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99, 4021–4028.CrossRef
go back to reference Ugwu, C. U., Ogbonna, J. C., & Tanaka, H. (2002). Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers. Applied Microbiology and Biotechnology, 58, 600–607.CrossRef Ugwu, C. U., Ogbonna, J. C., & Tanaka, H. (2002). Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers. Applied Microbiology and Biotechnology, 58, 600–607.CrossRef
go back to reference Vieira, J. G., Manetti, A. G. S., Jacob-Lopes, E., & Queiroz, M. I. (2012). Uptake of phosphorus from dairy wastewater by heterotrophic cultures of cyanobacteria. Desalination and Water Treatment, 40, 224–230.CrossRef Vieira, J. G., Manetti, A. G. S., Jacob-Lopes, E., & Queiroz, M. I. (2012). Uptake of phosphorus from dairy wastewater by heterotrophic cultures of cyanobacteria. Desalination and Water Treatment, 40, 224–230.CrossRef
go back to reference Waltz, E. (2009). Biotech’s green gold? Nature Biotechnology, 27, 15–18.CrossRef Waltz, E. (2009). Biotech’s green gold? Nature Biotechnology, 27, 15–18.CrossRef
go back to reference Wang, B., Lan, C. Q., & Horsman, M. (2012). Closed photobioreactors for production of microalgal biomasses. Biotechnology Advances, 30, 904–912.CrossRef Wang, B., Lan, C. Q., & Horsman, M. (2012). Closed photobioreactors for production of microalgal biomasses. Biotechnology Advances, 30, 904–912.CrossRef
go back to reference Wang, S. K., Hu, Y. R., Wang, F., Stiles, M. R., & Liu, C. Z. (2014). Scale-up cultivation of Chlorella ellipsoidea from indoor to outdoor in bubble column bioreactors. Bioresource Technology, 156, 117–122.CrossRef Wang, S. K., Hu, Y. R., Wang, F., Stiles, M. R., & Liu, C. Z. (2014). Scale-up cultivation of Chlorella ellipsoidea from indoor to outdoor in bubble column bioreactors. Bioresource Technology, 156, 117–122.CrossRef
go back to reference Wang, C. H., Sun, Y. Y., Xing, R. L., & Sun, L. Q. (2005). Effect of liquid circulation velocity and cell density on the growth of Parietochloris incisa in flat plate photobioreactors. Biotechnology and Bioprocess Engineering, 10, 103–108.CrossRef Wang, C. H., Sun, Y. Y., Xing, R. L., & Sun, L. Q. (2005). Effect of liquid circulation velocity and cell density on the growth of Parietochloris incisa in flat plate photobioreactors. Biotechnology and Bioprocess Engineering, 10, 103–108.CrossRef
go back to reference Watanabe, Y., de la Noue, J., & Hall, D. O. (2011). Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium Spirulina platensis. Biotechnology and Bioengineering, 47, 261–269.CrossRef Watanabe, Y., de la Noue, J., & Hall, D. O. (2011). Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium Spirulina platensis. Biotechnology and Bioengineering, 47, 261–269.CrossRef
go back to reference Wen, X., Du, K., Wang, Z., Peng, X., Luo, L., Tao, H., et al. (2016). Effective cultivation of microalgae for biofuel production: A pilot-scale evaluation of a novel oleaginous microalga Graesiella sp. WBG-1. Biotechnology for Biofuels, 9, 123–135.CrossRef Wen, X., Du, K., Wang, Z., Peng, X., Luo, L., Tao, H., et al. (2016). Effective cultivation of microalgae for biofuel production: A pilot-scale evaluation of a novel oleaginous microalga Graesiella sp. WBG-1. Biotechnology for Biofuels, 9, 123–135.CrossRef
go back to reference Xiong, W., Li, X., Xiang, J., & Wu, Q. (2008). High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbial-diesel production. Applied Microbiology and Biotechnology, 78, 29–36.CrossRef Xiong, W., Li, X., Xiang, J., & Wu, Q. (2008). High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbial-diesel production. Applied Microbiology and Biotechnology, 78, 29–36.CrossRef
go back to reference Xu, Z., Baicheng, Z., Yiping, Z., Zhaoling, C., Wei, C., & Fan, O. (2002). A simple and low-cost airlift photobioreactor for microalgal mass culture. Biotechnology Letters, 24, 1767–1771.CrossRef Xu, Z., Baicheng, Z., Yiping, Z., Zhaoling, C., Wei, C., & Fan, O. (2002). A simple and low-cost airlift photobioreactor for microalgal mass culture. Biotechnology Letters, 24, 1767–1771.CrossRef
go back to reference Zitelli, G. C., Rodolfi, L., Bassi, N., Biondi, N., & Tredici, M. R. (2013). Photobioreactors for biofuel production. In M. A. Borowitzka & N. R. Moheimani (Eds.), Algae for biofuels and energy (pp. 115–131). Dordrecht: Springer.CrossRef Zitelli, G. C., Rodolfi, L., Bassi, N., Biondi, N., & Tredici, M. R. (2013). Photobioreactors for biofuel production. In M. A. Borowitzka & N. R. Moheimani (Eds.), Algae for biofuels and energy (pp. 115–131). Dordrecht: Springer.CrossRef
Metadata
Title
Microalgal Production Systems with Highlights of Bioenergy Production
Authors
Mariana Manzoni Maroneze
Maria Isabel Queiroz
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-69093-3_2