Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2018

17-01-2018

Microstructure-Property Correlations in Fiber Laser Welded Nb-Ti Microalloyed C-Mn Steel

Authors: Qian Sun, Xiao-Kang Nie, Yang Li, Hong-Shuang Di

Published in: Journal of Materials Engineering and Performance | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mechanical Performance of traditional gas-shielded arc welded joints of 700 MPa grade microalloyed C-Mn steel cannot meet service requirements. Laser welding, with its characteristic high energy density, is known to improve the welding performance of experimental steels. In the present study, Nb-Ti microalloyed steel with a thickness of 4.5 mm was welded using a 4 kW fiber laser. The microstructure, precipitation, and mechanical properties of the welded joints were studied. The hardness and tensile strength of the welded joints were higher than those of the base metal (BM). The microstructure of the fusion zone (FZ) and coarse grain heat affected zone (CGHAZ) was lath martensite (LM), while the microstructure of the fine grain HAZ and mixed grain HAZ consisted of ferrite and martensite/austenite islands. Although LM was observed in both the FZ and CGHAZ, the hardness and calculated tensile strength of the FZ were lower than those of the CGHAZ, due to a reduction in solid solution strengthening by element loss and the dissolution of high-hardness precipitates in FZ. Most precipitates such as [(Nb,Ti)C and (Nb,Ti)(C,N)] that were present in the BM were dissolved, which led to an increase in C and N in solid solution in the FZ. Thus, the elastic modulus of the FZ was higher than that of the BM. Similarly, the elastic modulus of the CGHAZ was higher than that of the BM due to the segregation of C and N atoms during the welding process. The toughness of the FZ was superior to that of the BM, and the toughness of the HAZ approached 91% of that of the BM. The change in toughness primarily depended on the microstructural refinement, the increase in the fraction of grains with high misorientation, the residual austenite in the FZ and CGHAZ, and the dissolution of coarse precipitates.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W. Xu, D. Westerbaan, S.S. Nayak, D.L. Chen, F. Goodwin, E. Biro, and Y. Zhou, Microstructure and Fatigue Performance of Single and Multiple Linear Fiber Laser Welded DP980 Dual-Phase Steel, Mater. Sci. Eng., A, 2012, 553, p 51–58CrossRef W. Xu, D. Westerbaan, S.S. Nayak, D.L. Chen, F. Goodwin, E. Biro, and Y. Zhou, Microstructure and Fatigue Performance of Single and Multiple Linear Fiber Laser Welded DP980 Dual-Phase Steel, Mater. Sci. Eng., A, 2012, 553, p 51–58CrossRef
2.
go back to reference R. Miranda, A. Costa, L. Quintino, D. Yapp, and D. Iordachescu, Characterization of Fiber Laser Welds in X100 Pipeline Steel, Mater. Des., 2009, 30, p 2701–2707CrossRef R. Miranda, A. Costa, L. Quintino, D. Yapp, and D. Iordachescu, Characterization of Fiber Laser Welds in X100 Pipeline Steel, Mater. Des., 2009, 30, p 2701–2707CrossRef
3.
go back to reference M. Sokolov, A. Salminen, M. Kuznetsov, and I. Tsibulskiy, Laser Welding and Weld Hardness Analysis of Thick Section S355 Structural Steel, Mater. Des., 2011, 32, p 5127–5131CrossRef M. Sokolov, A. Salminen, M. Kuznetsov, and I. Tsibulskiy, Laser Welding and Weld Hardness Analysis of Thick Section S355 Structural Steel, Mater. Des., 2011, 32, p 5127–5131CrossRef
4.
go back to reference M.J. Kang and C.H. Kim, Weld Strength of Laser-Welded Hot-Press-Forming Steel, J. Laser Appli., 2012, 24(2), p 022004-1-6CrossRef M.J. Kang and C.H. Kim, Weld Strength of Laser-Welded Hot-Press-Forming Steel, J. Laser Appli., 2012, 24(2), p 022004-1-6CrossRef
5.
go back to reference M.J. Zhang, G.Y. Chen, Y. Zhou, and S.H. Liao, Optimization of Deep Penetration Laser Welding of Thick Stainless Steel with a 10 kW Fiber Laser, Mater. Des., 2014, 53, p 568–576CrossRef M.J. Zhang, G.Y. Chen, Y. Zhou, and S.H. Liao, Optimization of Deep Penetration Laser Welding of Thick Stainless Steel with a 10 kW Fiber Laser, Mater. Des., 2014, 53, p 568–576CrossRef
6.
go back to reference L. Zhang, J.Z. Lu, K.Y. Luo, A.X. Feng, F.Z. Dai, J.S. Zhong, M. Luo, and Y.K. Zhang, Residual Stress, Micro-Hardness and Tensile Properties of ANSI, 304 Stainless Steel Thick Sheet by Fiber Laser Welding, Mater. Sci. Eng., A, 2013, 561, p 136–144CrossRef L. Zhang, J.Z. Lu, K.Y. Luo, A.X. Feng, F.Z. Dai, J.S. Zhong, M. Luo, and Y.K. Zhang, Residual Stress, Micro-Hardness and Tensile Properties of ANSI, 304 Stainless Steel Thick Sheet by Fiber Laser Welding, Mater. Sci. Eng., A, 2013, 561, p 136–144CrossRef
7.
go back to reference W. Guo, D. Crowther, J.A. Francis, and L. Li, Microstructure and Mechanical Properties of Laser Welded S960 High Strength Steel, Mater. Des., 2015, 85, p 534–548CrossRef W. Guo, D. Crowther, J.A. Francis, and L. Li, Microstructure and Mechanical Properties of Laser Welded S960 High Strength Steel, Mater. Des., 2015, 85, p 534–548CrossRef
8.
go back to reference K.Y. Lin, H.Q. Hang, Z.X. Meng, and C.M. Hui, Influence of Nanoparticle Reinforcements on the Strengthening Mechanisms of an Ultrafine-Grained Dual Phase Steel Containing Titanium, Mater. Des., 2013, 44, p 331–339CrossRef K.Y. Lin, H.Q. Hang, Z.X. Meng, and C.M. Hui, Influence of Nanoparticle Reinforcements on the Strengthening Mechanisms of an Ultrafine-Grained Dual Phase Steel Containing Titanium, Mater. Des., 2013, 44, p 331–339CrossRef
9.
go back to reference P.W. Hsu, F.H. Kao, S.H. Wang, J.R. Yang, H.Y. Chang, Y.M. Wang, and Q.X. Lin, Twinned Formation in Weld Metal of Titanium Bearing Nano Precipitated High Strength Steel, Mater. Chem. Phys., 2012, 136, p 1103–1108CrossRef P.W. Hsu, F.H. Kao, S.H. Wang, J.R. Yang, H.Y. Chang, Y.M. Wang, and Q.X. Lin, Twinned Formation in Weld Metal of Titanium Bearing Nano Precipitated High Strength Steel, Mater. Chem. Phys., 2012, 136, p 1103–1108CrossRef
10.
go back to reference C.Y. Chen, C.C. Chen, and J.R. Yang, Microstructure Characterization of Nanometer Carbides Heterogeneous Precipitation in Ti-Nb and Ti-Nb-Mo Steel, Mater. Charact., 2014, 88, p 69–79CrossRef C.Y. Chen, C.C. Chen, and J.R. Yang, Microstructure Characterization of Nanometer Carbides Heterogeneous Precipitation in Ti-Nb and Ti-Nb-Mo Steel, Mater. Charact., 2014, 88, p 69–79CrossRef
11.
go back to reference M.P. Phaniraj, Y.M. Shin, J. Lee, N.H. Goo, D.I. Kim, J.Y. Suh, W.S. Jung, J.H. Shim, and I.S. Choi, Development of High Strength Hot Rolled Low Carbon Copper-Bearing Steel Containing Nanometer Sized Carbides, Mater. Sci. Eng., A, 2015, 633, p 1–8CrossRef M.P. Phaniraj, Y.M. Shin, J. Lee, N.H. Goo, D.I. Kim, J.Y. Suh, W.S. Jung, J.H. Shim, and I.S. Choi, Development of High Strength Hot Rolled Low Carbon Copper-Bearing Steel Containing Nanometer Sized Carbides, Mater. Sci. Eng., A, 2015, 633, p 1–8CrossRef
12.
go back to reference R.D.K. Misra, H. Nathani, J.E. Harmann, and F. Siciliano, Microstructural Evolution in a New 770 MPa Hot Rolled Nb-Ti Microallyed Steel, Mater. Sci. Eng., A, 2005, 394, p 339–352CrossRef R.D.K. Misra, H. Nathani, J.E. Harmann, and F. Siciliano, Microstructural Evolution in a New 770 MPa Hot Rolled Nb-Ti Microallyed Steel, Mater. Sci. Eng., A, 2005, 394, p 339–352CrossRef
13.
go back to reference V.S.A. Challa, W.H. Zhou, R.D.K. Misra, R. OMalley, and S.G. Jansto, The Effect of Coiling Temperature on the Microstructure and Mechanical Properties of a Niobium-Titanium Microalloyed Steel Processed via Thin Slab Casting, Mater. Sci. Eng., A, 2014, 394, p 143–153CrossRef V.S.A. Challa, W.H. Zhou, R.D.K. Misra, R. OMalley, and S.G. Jansto, The Effect of Coiling Temperature on the Microstructure and Mechanical Properties of a Niobium-Titanium Microalloyed Steel Processed via Thin Slab Casting, Mater. Sci. Eng., A, 2014, 394, p 143–153CrossRef
14.
go back to reference J.H. Lee, S.H. Park, H.S. Kwon, G.S. Kim, and C.S. Lee, Laser, Tungsten Inert Gas, and Metal Active Gas Welding of DP780 Steel: Comparison of Hardness, Tensile Properties and Fatigue Resistance, Mater. Des., 2014, 64, p 559–565CrossRef J.H. Lee, S.H. Park, H.S. Kwon, G.S. Kim, and C.S. Lee, Laser, Tungsten Inert Gas, and Metal Active Gas Welding of DP780 Steel: Comparison of Hardness, Tensile Properties and Fatigue Resistance, Mater. Des., 2014, 64, p 559–565CrossRef
15.
go back to reference X.N. Wang, H.S. Di, C. Zhang, and L.X. Du, X.X Dong, Study of the Weldability of 780 MPa Super-High Strength Heavy-Duty Truck Crossbeam Steel, J. Iron. Steel Res. Int., 2012, 19(6), p 64–69CrossRef X.N. Wang, H.S. Di, C. Zhang, and L.X. Du, X.X Dong, Study of the Weldability of 780 MPa Super-High Strength Heavy-Duty Truck Crossbeam Steel, J. Iron. Steel Res. Int., 2012, 19(6), p 64–69CrossRef
16.
go back to reference X.N. Wang, Q. Sun, L.X. Du, and H.S. Di, 700 MPa Grade Steel for Heavy-Duty Truck Development and Carriage Lightweight Design, Rev. Adv. Mater. Sci., 2013, 33, p 187–194 X.N. Wang, Q. Sun, L.X. Du, and H.S. Di, 700 MPa Grade Steel for Heavy-Duty Truck Development and Carriage Lightweight Design, Rev. Adv. Mater. Sci., 2013, 33, p 187–194
17.
go back to reference S. Talas, The Assessment of Carbon Equivalent Formulas in Predicting the Properties of Steel Weld Metals, Mater. Des., 2010, 31, p 2649–2653CrossRef S. Talas, The Assessment of Carbon Equivalent Formulas in Predicting the Properties of Steel Weld Metals, Mater. Des., 2010, 31, p 2649–2653CrossRef
18.
go back to reference M. Zhang, X.N. Wang, G.J. Zhu, C.J. Chen, J.X. Hou, S.H. Zhang, and H.M. Jing, Effect of Laser Welding Process Parameters on Microstructure and Mechanical Properties on Butt Joint of New Hot-Rolled Nano-Scale Precipitate Strengthen Steel, Acta Metall. Sini. (Engl. Lett.), 2014, 27(3), p 521–529CrossRef M. Zhang, X.N. Wang, G.J. Zhu, C.J. Chen, J.X. Hou, S.H. Zhang, and H.M. Jing, Effect of Laser Welding Process Parameters on Microstructure and Mechanical Properties on Butt Joint of New Hot-Rolled Nano-Scale Precipitate Strengthen Steel, Acta Metall. Sini. (Engl. Lett.), 2014, 27(3), p 521–529CrossRef
19.
go back to reference X.N. Wang, C.J. Chen, H.S. Wang, S.H. Zhang, M. Zhang, and X. Luo, Microstructure Formation and Precipitation in Laser Welding of Microalloyed C-Mn Steel, J. Mater. Process. Technol., 2015, 226, p 106–114CrossRef X.N. Wang, C.J. Chen, H.S. Wang, S.H. Zhang, M. Zhang, and X. Luo, Microstructure Formation and Precipitation in Laser Welding of Microalloyed C-Mn Steel, J. Mater. Process. Technol., 2015, 226, p 106–114CrossRef
20.
go back to reference L. Zhang and T. Kannengiesser, Austenite Grain Growth and Microsturcture Control in Simulated Heat Affected Zones of Microalloyed HSLA Steel, Mater. Sci. Eng., A, 2014, 613, p 326–335CrossRef L. Zhang and T. Kannengiesser, Austenite Grain Growth and Microsturcture Control in Simulated Heat Affected Zones of Microalloyed HSLA Steel, Mater. Sci. Eng., A, 2014, 613, p 326–335CrossRef
21.
go back to reference Y.M. Li, B.X. Yang, X.H. Cui, C.G. Han, and H.J. Shang, Hardness Control for Base Material and Welded Jointss of 9%–12% Martensite Steel, Therm. Power Gener., 2010, 39, p 57–60 Y.M. Li, B.X. Yang, X.H. Cui, C.G. Han, and H.J. Shang, Hardness Control for Base Material and Welded Jointss of 9%–12% Martensite Steel, Therm. Power Gener., 2010, 39, p 57–60
22.
go back to reference A.G. Grigoryants, I.N. Shiganov, A.l. Misyurov. In: Grigoryants AG, editor. Technological Processes of Laser Welding. Moscow: Bauman Moscow State Technical University; 2006. [Russian] A.G. Grigoryants, I.N. Shiganov, A.l. Misyurov. In: Grigoryants AG, editor. Technological Processes of Laser Welding. Moscow: Bauman Moscow State Technical University; 2006. [Russian]
23.
go back to reference X.N. Wang, L.X. Du, H.S. Di, H. Xie, and D.H. Gu, Effect of Deformation on Continuous Cooling Phase Transformation Behaviors of 780 MPa Nb-Ti Ultra-High Strength Steel, Steel Res. Int., 2011, 82(12), p 1417–1424CrossRef X.N. Wang, L.X. Du, H.S. Di, H. Xie, and D.H. Gu, Effect of Deformation on Continuous Cooling Phase Transformation Behaviors of 780 MPa Nb-Ti Ultra-High Strength Steel, Steel Res. Int., 2011, 82(12), p 1417–1424CrossRef
25.
go back to reference S. Liu and D.L. Olson, The Role of Inclusions in Controlling HSLA Steel Weld Microstructure, Weld. Res. Suppl., 1986, 65(6), p 139–150 S. Liu and D.L. Olson, The Role of Inclusions in Controlling HSLA Steel Weld Microstructure, Weld. Res. Suppl., 1986, 65(6), p 139–150
26.
go back to reference D. Parkes, W. Xu, D. Westerbaan, S.S. Nayak, Y. Zhou, F. Goodwin, S. Bhole, and D.L. Chen, Microstructure and Fatigue Properties of Fiber Laser Welded Dissimilar Joints Between High Strength Low Alloy and Dual-Phase Steels, Mater. Des., 2013, 51, p 665–675CrossRef D. Parkes, W. Xu, D. Westerbaan, S.S. Nayak, Y. Zhou, F. Goodwin, S. Bhole, and D.L. Chen, Microstructure and Fatigue Properties of Fiber Laser Welded Dissimilar Joints Between High Strength Low Alloy and Dual-Phase Steels, Mater. Des., 2013, 51, p 665–675CrossRef
27.
go back to reference S.S. Nayaka, V.H. BaltazarHernandeza, Y. Okitaa, and Y. Zhou, Microstructure–Hardness Relationship in the Fusion Zone of TRIP Steel Welds, Mater. Sci. Eng., A, 2012, 551, p 73–81CrossRef S.S. Nayaka, V.H. BaltazarHernandeza, Y. Okitaa, and Y. Zhou, Microstructure–Hardness Relationship in the Fusion Zone of TRIP Steel Welds, Mater. Sci. Eng., A, 2012, 551, p 73–81CrossRef
28.
go back to reference S.H. Kim, D.H. Kang, and T.W. Kim, Fatigue Crack Growth Behavior of the Simulated HAZ of 800 MPa Grade High-Performance Steel, Mater. Sci. Eng., A, 2011, 528, p 2331–2338CrossRef S.H. Kim, D.H. Kang, and T.W. Kim, Fatigue Crack Growth Behavior of the Simulated HAZ of 800 MPa Grade High-Performance Steel, Mater. Sci. Eng., A, 2011, 528, p 2331–2338CrossRef
29.
go back to reference N. Yurioka and K. Kojima, A Predictive Formula of Weld Metal Tensile Strength, Q. J. Jp Weldi.Soc., 2004, 22, p 53–60CrossRef N. Yurioka and K. Kojima, A Predictive Formula of Weld Metal Tensile Strength, Q. J. Jp Weldi.Soc., 2004, 22, p 53–60CrossRef
30.
go back to reference A.M. Paniagua-Mercado, V.M. Lopez-Hirata, and M.L.S. Munoz, Influence of the Chemical Composition of Flux on the Microstructure and Tensile Properties of Submerged-Arc Welds, J. Mater. Process. Technol., 2005, 169, p 346–351CrossRef A.M. Paniagua-Mercado, V.M. Lopez-Hirata, and M.L.S. Munoz, Influence of the Chemical Composition of Flux on the Microstructure and Tensile Properties of Submerged-Arc Welds, J. Mater. Process. Technol., 2005, 169, p 346–351CrossRef
31.
go back to reference L.Y. Lan, C.L. Qiu, and D.W. Zhao, Structure and Micromechanical Properties of a Weld Joint Using Steel with Low Sensitivity to Weld Cracking, J. Northeastern Univ. Nat. Sci., 2011, 32(4), p 505–508 L.Y. Lan, C.L. Qiu, and D.W. Zhao, Structure and Micromechanical Properties of a Weld Joint Using Steel with Low Sensitivity to Weld Cracking, J. Northeastern Univ. Nat. Sci., 2011, 32(4), p 505–508
32.
go back to reference Y.J. Chao, J.D. Ward, Jr., and R.G. Sands, Charpy Impact Energy, Fracture Toughness and Ductile–Brittle Transition Temperature of Dual-Phase 590 Steel, Mater. Des., 2007, 28, p 551–557CrossRef Y.J. Chao, J.D. Ward, Jr., and R.G. Sands, Charpy Impact Energy, Fracture Toughness and Ductile–Brittle Transition Temperature of Dual-Phase 590 Steel, Mater. Des., 2007, 28, p 551–557CrossRef
33.
go back to reference L. Wang, Mech. Prope. Mater., Northeastern University Press, Shenyang, 2005, p 132–152 L. Wang, Mech. Prope. Mater., Northeastern University Press, Shenyang, 2005, p 132–152
34.
go back to reference I. de Diego-Calderón, M.J. Santofimia, J.M. Molina-Aldareguia, M.A. Monclús, and I. Sabirov, Deformation Behavior of a High Strength Multiphase Steel at Macro- and Micro-Scales, Mater. Sci. Eng., A, 2014, 611, p 201–211CrossRef I. de Diego-Calderón, M.J. Santofimia, J.M. Molina-Aldareguia, M.A. Monclús, and I. Sabirov, Deformation Behavior of a High Strength Multiphase Steel at Macro- and Micro-Scales, Mater. Sci. Eng., A, 2014, 611, p 201–211CrossRef
35.
go back to reference J.G. Speer, F.C. Rizzo Assunção, D.K. Matlock, and D.V. Edmonds, The “Quenching and Partitioning” Process: Background and Recent Progress, Materi. Res., 2005, 8(4), p 417–423CrossRef J.G. Speer, F.C. Rizzo Assunção, D.K. Matlock, and D.V. Edmonds, The “Quenching and Partitioning” Process: Background and Recent Progress, Materi. Res., 2005, 8(4), p 417–423CrossRef
36.
go back to reference J.S. Byun, J.H. Shim, Y.W. Cho, and D.N. Lee, Non-metallic Inclusion and Intragranular Nucleation of Ferrite in Ti-killed C-Mn Steel, Acta Mater., 2003, 51(6), p 1593–1606CrossRef J.S. Byun, J.H. Shim, Y.W. Cho, and D.N. Lee, Non-metallic Inclusion and Intragranular Nucleation of Ferrite in Ti-killed C-Mn Steel, Acta Mater., 2003, 51(6), p 1593–1606CrossRef
37.
go back to reference E. Bonnevie, G. Ferriere, A. Ikhlef, D. Kaplan, and J.M. Orain, Morphological Aspects of Martensite–Austenite Constituents in Intercritical and Coarse Grain Heat Affected Zones of Structural Steels, Mater. Sci. Eng., A, 2004, 385, p 352–358CrossRef E. Bonnevie, G. Ferriere, A. Ikhlef, D. Kaplan, and J.M. Orain, Morphological Aspects of Martensite–Austenite Constituents in Intercritical and Coarse Grain Heat Affected Zones of Structural Steels, Mater. Sci. Eng., A, 2004, 385, p 352–358CrossRef
38.
go back to reference S.M. Hong, E.K. Park, J.J. Park, M.K. Lee, and J.G. Lee, Effect of Nano-sized TiC Particle Addition on Microstructure and Mechanical Properties of SA-106B Carbon Steel, Mater. Sci. Eng., A, 2015, 643, p 37–46CrossRef S.M. Hong, E.K. Park, J.J. Park, M.K. Lee, and J.G. Lee, Effect of Nano-sized TiC Particle Addition on Microstructure and Mechanical Properties of SA-106B Carbon Steel, Mater. Sci. Eng., A, 2015, 643, p 37–46CrossRef
39.
go back to reference M.R. Akbarpour, E. Salahi, F. Alikhani Hesari, H.S. Kim, and A. Simchi, Effect of Nanoparticle Content on the Microstructural and Mechanical Properties of Nano-SiC Dispersed Bulk Ultrafine-Grained Cu Matrix Composites, Mater. Des., 2013, 52, p 881–887CrossRef M.R. Akbarpour, E. Salahi, F. Alikhani Hesari, H.S. Kim, and A. Simchi, Effect of Nanoparticle Content on the Microstructural and Mechanical Properties of Nano-SiC Dispersed Bulk Ultrafine-Grained Cu Matrix Composites, Mater. Des., 2013, 52, p 881–887CrossRef
Metadata
Title
Microstructure-Property Correlations in Fiber Laser Welded Nb-Ti Microalloyed C-Mn Steel
Authors
Qian Sun
Xiao-Kang Nie
Yang Li
Hong-Shuang Di
Publication date
17-01-2018
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2018
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3138-8

Other articles of this Issue 2/2018

Journal of Materials Engineering and Performance 2/2018 Go to the issue

Premium Partners