Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2018

17.01.2018

Microstructure-Property Correlations in Fiber Laser Welded Nb-Ti Microalloyed C-Mn Steel

verfasst von: Qian Sun, Xiao-Kang Nie, Yang Li, Hong-Shuang Di

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mechanical Performance of traditional gas-shielded arc welded joints of 700 MPa grade microalloyed C-Mn steel cannot meet service requirements. Laser welding, with its characteristic high energy density, is known to improve the welding performance of experimental steels. In the present study, Nb-Ti microalloyed steel with a thickness of 4.5 mm was welded using a 4 kW fiber laser. The microstructure, precipitation, and mechanical properties of the welded joints were studied. The hardness and tensile strength of the welded joints were higher than those of the base metal (BM). The microstructure of the fusion zone (FZ) and coarse grain heat affected zone (CGHAZ) was lath martensite (LM), while the microstructure of the fine grain HAZ and mixed grain HAZ consisted of ferrite and martensite/austenite islands. Although LM was observed in both the FZ and CGHAZ, the hardness and calculated tensile strength of the FZ were lower than those of the CGHAZ, due to a reduction in solid solution strengthening by element loss and the dissolution of high-hardness precipitates in FZ. Most precipitates such as [(Nb,Ti)C and (Nb,Ti)(C,N)] that were present in the BM were dissolved, which led to an increase in C and N in solid solution in the FZ. Thus, the elastic modulus of the FZ was higher than that of the BM. Similarly, the elastic modulus of the CGHAZ was higher than that of the BM due to the segregation of C and N atoms during the welding process. The toughness of the FZ was superior to that of the BM, and the toughness of the HAZ approached 91% of that of the BM. The change in toughness primarily depended on the microstructural refinement, the increase in the fraction of grains with high misorientation, the residual austenite in the FZ and CGHAZ, and the dissolution of coarse precipitates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W. Xu, D. Westerbaan, S.S. Nayak, D.L. Chen, F. Goodwin, E. Biro, and Y. Zhou, Microstructure and Fatigue Performance of Single and Multiple Linear Fiber Laser Welded DP980 Dual-Phase Steel, Mater. Sci. Eng., A, 2012, 553, p 51–58CrossRef W. Xu, D. Westerbaan, S.S. Nayak, D.L. Chen, F. Goodwin, E. Biro, and Y. Zhou, Microstructure and Fatigue Performance of Single and Multiple Linear Fiber Laser Welded DP980 Dual-Phase Steel, Mater. Sci. Eng., A, 2012, 553, p 51–58CrossRef
2.
Zurück zum Zitat R. Miranda, A. Costa, L. Quintino, D. Yapp, and D. Iordachescu, Characterization of Fiber Laser Welds in X100 Pipeline Steel, Mater. Des., 2009, 30, p 2701–2707CrossRef R. Miranda, A. Costa, L. Quintino, D. Yapp, and D. Iordachescu, Characterization of Fiber Laser Welds in X100 Pipeline Steel, Mater. Des., 2009, 30, p 2701–2707CrossRef
3.
Zurück zum Zitat M. Sokolov, A. Salminen, M. Kuznetsov, and I. Tsibulskiy, Laser Welding and Weld Hardness Analysis of Thick Section S355 Structural Steel, Mater. Des., 2011, 32, p 5127–5131CrossRef M. Sokolov, A. Salminen, M. Kuznetsov, and I. Tsibulskiy, Laser Welding and Weld Hardness Analysis of Thick Section S355 Structural Steel, Mater. Des., 2011, 32, p 5127–5131CrossRef
4.
Zurück zum Zitat M.J. Kang and C.H. Kim, Weld Strength of Laser-Welded Hot-Press-Forming Steel, J. Laser Appli., 2012, 24(2), p 022004-1-6CrossRef M.J. Kang and C.H. Kim, Weld Strength of Laser-Welded Hot-Press-Forming Steel, J. Laser Appli., 2012, 24(2), p 022004-1-6CrossRef
5.
Zurück zum Zitat M.J. Zhang, G.Y. Chen, Y. Zhou, and S.H. Liao, Optimization of Deep Penetration Laser Welding of Thick Stainless Steel with a 10 kW Fiber Laser, Mater. Des., 2014, 53, p 568–576CrossRef M.J. Zhang, G.Y. Chen, Y. Zhou, and S.H. Liao, Optimization of Deep Penetration Laser Welding of Thick Stainless Steel with a 10 kW Fiber Laser, Mater. Des., 2014, 53, p 568–576CrossRef
6.
Zurück zum Zitat L. Zhang, J.Z. Lu, K.Y. Luo, A.X. Feng, F.Z. Dai, J.S. Zhong, M. Luo, and Y.K. Zhang, Residual Stress, Micro-Hardness and Tensile Properties of ANSI, 304 Stainless Steel Thick Sheet by Fiber Laser Welding, Mater. Sci. Eng., A, 2013, 561, p 136–144CrossRef L. Zhang, J.Z. Lu, K.Y. Luo, A.X. Feng, F.Z. Dai, J.S. Zhong, M. Luo, and Y.K. Zhang, Residual Stress, Micro-Hardness and Tensile Properties of ANSI, 304 Stainless Steel Thick Sheet by Fiber Laser Welding, Mater. Sci. Eng., A, 2013, 561, p 136–144CrossRef
7.
Zurück zum Zitat W. Guo, D. Crowther, J.A. Francis, and L. Li, Microstructure and Mechanical Properties of Laser Welded S960 High Strength Steel, Mater. Des., 2015, 85, p 534–548CrossRef W. Guo, D. Crowther, J.A. Francis, and L. Li, Microstructure and Mechanical Properties of Laser Welded S960 High Strength Steel, Mater. Des., 2015, 85, p 534–548CrossRef
8.
Zurück zum Zitat K.Y. Lin, H.Q. Hang, Z.X. Meng, and C.M. Hui, Influence of Nanoparticle Reinforcements on the Strengthening Mechanisms of an Ultrafine-Grained Dual Phase Steel Containing Titanium, Mater. Des., 2013, 44, p 331–339CrossRef K.Y. Lin, H.Q. Hang, Z.X. Meng, and C.M. Hui, Influence of Nanoparticle Reinforcements on the Strengthening Mechanisms of an Ultrafine-Grained Dual Phase Steel Containing Titanium, Mater. Des., 2013, 44, p 331–339CrossRef
9.
Zurück zum Zitat P.W. Hsu, F.H. Kao, S.H. Wang, J.R. Yang, H.Y. Chang, Y.M. Wang, and Q.X. Lin, Twinned Formation in Weld Metal of Titanium Bearing Nano Precipitated High Strength Steel, Mater. Chem. Phys., 2012, 136, p 1103–1108CrossRef P.W. Hsu, F.H. Kao, S.H. Wang, J.R. Yang, H.Y. Chang, Y.M. Wang, and Q.X. Lin, Twinned Formation in Weld Metal of Titanium Bearing Nano Precipitated High Strength Steel, Mater. Chem. Phys., 2012, 136, p 1103–1108CrossRef
10.
Zurück zum Zitat C.Y. Chen, C.C. Chen, and J.R. Yang, Microstructure Characterization of Nanometer Carbides Heterogeneous Precipitation in Ti-Nb and Ti-Nb-Mo Steel, Mater. Charact., 2014, 88, p 69–79CrossRef C.Y. Chen, C.C. Chen, and J.R. Yang, Microstructure Characterization of Nanometer Carbides Heterogeneous Precipitation in Ti-Nb and Ti-Nb-Mo Steel, Mater. Charact., 2014, 88, p 69–79CrossRef
11.
Zurück zum Zitat M.P. Phaniraj, Y.M. Shin, J. Lee, N.H. Goo, D.I. Kim, J.Y. Suh, W.S. Jung, J.H. Shim, and I.S. Choi, Development of High Strength Hot Rolled Low Carbon Copper-Bearing Steel Containing Nanometer Sized Carbides, Mater. Sci. Eng., A, 2015, 633, p 1–8CrossRef M.P. Phaniraj, Y.M. Shin, J. Lee, N.H. Goo, D.I. Kim, J.Y. Suh, W.S. Jung, J.H. Shim, and I.S. Choi, Development of High Strength Hot Rolled Low Carbon Copper-Bearing Steel Containing Nanometer Sized Carbides, Mater. Sci. Eng., A, 2015, 633, p 1–8CrossRef
12.
Zurück zum Zitat R.D.K. Misra, H. Nathani, J.E. Harmann, and F. Siciliano, Microstructural Evolution in a New 770 MPa Hot Rolled Nb-Ti Microallyed Steel, Mater. Sci. Eng., A, 2005, 394, p 339–352CrossRef R.D.K. Misra, H. Nathani, J.E. Harmann, and F. Siciliano, Microstructural Evolution in a New 770 MPa Hot Rolled Nb-Ti Microallyed Steel, Mater. Sci. Eng., A, 2005, 394, p 339–352CrossRef
13.
Zurück zum Zitat V.S.A. Challa, W.H. Zhou, R.D.K. Misra, R. OMalley, and S.G. Jansto, The Effect of Coiling Temperature on the Microstructure and Mechanical Properties of a Niobium-Titanium Microalloyed Steel Processed via Thin Slab Casting, Mater. Sci. Eng., A, 2014, 394, p 143–153CrossRef V.S.A. Challa, W.H. Zhou, R.D.K. Misra, R. OMalley, and S.G. Jansto, The Effect of Coiling Temperature on the Microstructure and Mechanical Properties of a Niobium-Titanium Microalloyed Steel Processed via Thin Slab Casting, Mater. Sci. Eng., A, 2014, 394, p 143–153CrossRef
14.
Zurück zum Zitat J.H. Lee, S.H. Park, H.S. Kwon, G.S. Kim, and C.S. Lee, Laser, Tungsten Inert Gas, and Metal Active Gas Welding of DP780 Steel: Comparison of Hardness, Tensile Properties and Fatigue Resistance, Mater. Des., 2014, 64, p 559–565CrossRef J.H. Lee, S.H. Park, H.S. Kwon, G.S. Kim, and C.S. Lee, Laser, Tungsten Inert Gas, and Metal Active Gas Welding of DP780 Steel: Comparison of Hardness, Tensile Properties and Fatigue Resistance, Mater. Des., 2014, 64, p 559–565CrossRef
15.
Zurück zum Zitat X.N. Wang, H.S. Di, C. Zhang, and L.X. Du, X.X Dong, Study of the Weldability of 780 MPa Super-High Strength Heavy-Duty Truck Crossbeam Steel, J. Iron. Steel Res. Int., 2012, 19(6), p 64–69CrossRef X.N. Wang, H.S. Di, C. Zhang, and L.X. Du, X.X Dong, Study of the Weldability of 780 MPa Super-High Strength Heavy-Duty Truck Crossbeam Steel, J. Iron. Steel Res. Int., 2012, 19(6), p 64–69CrossRef
16.
Zurück zum Zitat X.N. Wang, Q. Sun, L.X. Du, and H.S. Di, 700 MPa Grade Steel for Heavy-Duty Truck Development and Carriage Lightweight Design, Rev. Adv. Mater. Sci., 2013, 33, p 187–194 X.N. Wang, Q. Sun, L.X. Du, and H.S. Di, 700 MPa Grade Steel for Heavy-Duty Truck Development and Carriage Lightweight Design, Rev. Adv. Mater. Sci., 2013, 33, p 187–194
17.
Zurück zum Zitat S. Talas, The Assessment of Carbon Equivalent Formulas in Predicting the Properties of Steel Weld Metals, Mater. Des., 2010, 31, p 2649–2653CrossRef S. Talas, The Assessment of Carbon Equivalent Formulas in Predicting the Properties of Steel Weld Metals, Mater. Des., 2010, 31, p 2649–2653CrossRef
18.
Zurück zum Zitat M. Zhang, X.N. Wang, G.J. Zhu, C.J. Chen, J.X. Hou, S.H. Zhang, and H.M. Jing, Effect of Laser Welding Process Parameters on Microstructure and Mechanical Properties on Butt Joint of New Hot-Rolled Nano-Scale Precipitate Strengthen Steel, Acta Metall. Sini. (Engl. Lett.), 2014, 27(3), p 521–529CrossRef M. Zhang, X.N. Wang, G.J. Zhu, C.J. Chen, J.X. Hou, S.H. Zhang, and H.M. Jing, Effect of Laser Welding Process Parameters on Microstructure and Mechanical Properties on Butt Joint of New Hot-Rolled Nano-Scale Precipitate Strengthen Steel, Acta Metall. Sini. (Engl. Lett.), 2014, 27(3), p 521–529CrossRef
19.
Zurück zum Zitat X.N. Wang, C.J. Chen, H.S. Wang, S.H. Zhang, M. Zhang, and X. Luo, Microstructure Formation and Precipitation in Laser Welding of Microalloyed C-Mn Steel, J. Mater. Process. Technol., 2015, 226, p 106–114CrossRef X.N. Wang, C.J. Chen, H.S. Wang, S.H. Zhang, M. Zhang, and X. Luo, Microstructure Formation and Precipitation in Laser Welding of Microalloyed C-Mn Steel, J. Mater. Process. Technol., 2015, 226, p 106–114CrossRef
20.
Zurück zum Zitat L. Zhang and T. Kannengiesser, Austenite Grain Growth and Microsturcture Control in Simulated Heat Affected Zones of Microalloyed HSLA Steel, Mater. Sci. Eng., A, 2014, 613, p 326–335CrossRef L. Zhang and T. Kannengiesser, Austenite Grain Growth and Microsturcture Control in Simulated Heat Affected Zones of Microalloyed HSLA Steel, Mater. Sci. Eng., A, 2014, 613, p 326–335CrossRef
21.
Zurück zum Zitat Y.M. Li, B.X. Yang, X.H. Cui, C.G. Han, and H.J. Shang, Hardness Control for Base Material and Welded Jointss of 9%–12% Martensite Steel, Therm. Power Gener., 2010, 39, p 57–60 Y.M. Li, B.X. Yang, X.H. Cui, C.G. Han, and H.J. Shang, Hardness Control for Base Material and Welded Jointss of 9%–12% Martensite Steel, Therm. Power Gener., 2010, 39, p 57–60
22.
Zurück zum Zitat A.G. Grigoryants, I.N. Shiganov, A.l. Misyurov. In: Grigoryants AG, editor. Technological Processes of Laser Welding. Moscow: Bauman Moscow State Technical University; 2006. [Russian] A.G. Grigoryants, I.N. Shiganov, A.l. Misyurov. In: Grigoryants AG, editor. Technological Processes of Laser Welding. Moscow: Bauman Moscow State Technical University; 2006. [Russian]
23.
Zurück zum Zitat X.N. Wang, L.X. Du, H.S. Di, H. Xie, and D.H. Gu, Effect of Deformation on Continuous Cooling Phase Transformation Behaviors of 780 MPa Nb-Ti Ultra-High Strength Steel, Steel Res. Int., 2011, 82(12), p 1417–1424CrossRef X.N. Wang, L.X. Du, H.S. Di, H. Xie, and D.H. Gu, Effect of Deformation on Continuous Cooling Phase Transformation Behaviors of 780 MPa Nb-Ti Ultra-High Strength Steel, Steel Res. Int., 2011, 82(12), p 1417–1424CrossRef
25.
Zurück zum Zitat S. Liu and D.L. Olson, The Role of Inclusions in Controlling HSLA Steel Weld Microstructure, Weld. Res. Suppl., 1986, 65(6), p 139–150 S. Liu and D.L. Olson, The Role of Inclusions in Controlling HSLA Steel Weld Microstructure, Weld. Res. Suppl., 1986, 65(6), p 139–150
26.
Zurück zum Zitat D. Parkes, W. Xu, D. Westerbaan, S.S. Nayak, Y. Zhou, F. Goodwin, S. Bhole, and D.L. Chen, Microstructure and Fatigue Properties of Fiber Laser Welded Dissimilar Joints Between High Strength Low Alloy and Dual-Phase Steels, Mater. Des., 2013, 51, p 665–675CrossRef D. Parkes, W. Xu, D. Westerbaan, S.S. Nayak, Y. Zhou, F. Goodwin, S. Bhole, and D.L. Chen, Microstructure and Fatigue Properties of Fiber Laser Welded Dissimilar Joints Between High Strength Low Alloy and Dual-Phase Steels, Mater. Des., 2013, 51, p 665–675CrossRef
27.
Zurück zum Zitat S.S. Nayaka, V.H. BaltazarHernandeza, Y. Okitaa, and Y. Zhou, Microstructure–Hardness Relationship in the Fusion Zone of TRIP Steel Welds, Mater. Sci. Eng., A, 2012, 551, p 73–81CrossRef S.S. Nayaka, V.H. BaltazarHernandeza, Y. Okitaa, and Y. Zhou, Microstructure–Hardness Relationship in the Fusion Zone of TRIP Steel Welds, Mater. Sci. Eng., A, 2012, 551, p 73–81CrossRef
28.
Zurück zum Zitat S.H. Kim, D.H. Kang, and T.W. Kim, Fatigue Crack Growth Behavior of the Simulated HAZ of 800 MPa Grade High-Performance Steel, Mater. Sci. Eng., A, 2011, 528, p 2331–2338CrossRef S.H. Kim, D.H. Kang, and T.W. Kim, Fatigue Crack Growth Behavior of the Simulated HAZ of 800 MPa Grade High-Performance Steel, Mater. Sci. Eng., A, 2011, 528, p 2331–2338CrossRef
29.
Zurück zum Zitat N. Yurioka and K. Kojima, A Predictive Formula of Weld Metal Tensile Strength, Q. J. Jp Weldi.Soc., 2004, 22, p 53–60CrossRef N. Yurioka and K. Kojima, A Predictive Formula of Weld Metal Tensile Strength, Q. J. Jp Weldi.Soc., 2004, 22, p 53–60CrossRef
30.
Zurück zum Zitat A.M. Paniagua-Mercado, V.M. Lopez-Hirata, and M.L.S. Munoz, Influence of the Chemical Composition of Flux on the Microstructure and Tensile Properties of Submerged-Arc Welds, J. Mater. Process. Technol., 2005, 169, p 346–351CrossRef A.M. Paniagua-Mercado, V.M. Lopez-Hirata, and M.L.S. Munoz, Influence of the Chemical Composition of Flux on the Microstructure and Tensile Properties of Submerged-Arc Welds, J. Mater. Process. Technol., 2005, 169, p 346–351CrossRef
31.
Zurück zum Zitat L.Y. Lan, C.L. Qiu, and D.W. Zhao, Structure and Micromechanical Properties of a Weld Joint Using Steel with Low Sensitivity to Weld Cracking, J. Northeastern Univ. Nat. Sci., 2011, 32(4), p 505–508 L.Y. Lan, C.L. Qiu, and D.W. Zhao, Structure and Micromechanical Properties of a Weld Joint Using Steel with Low Sensitivity to Weld Cracking, J. Northeastern Univ. Nat. Sci., 2011, 32(4), p 505–508
32.
Zurück zum Zitat Y.J. Chao, J.D. Ward, Jr., and R.G. Sands, Charpy Impact Energy, Fracture Toughness and Ductile–Brittle Transition Temperature of Dual-Phase 590 Steel, Mater. Des., 2007, 28, p 551–557CrossRef Y.J. Chao, J.D. Ward, Jr., and R.G. Sands, Charpy Impact Energy, Fracture Toughness and Ductile–Brittle Transition Temperature of Dual-Phase 590 Steel, Mater. Des., 2007, 28, p 551–557CrossRef
33.
Zurück zum Zitat L. Wang, Mech. Prope. Mater., Northeastern University Press, Shenyang, 2005, p 132–152 L. Wang, Mech. Prope. Mater., Northeastern University Press, Shenyang, 2005, p 132–152
34.
Zurück zum Zitat I. de Diego-Calderón, M.J. Santofimia, J.M. Molina-Aldareguia, M.A. Monclús, and I. Sabirov, Deformation Behavior of a High Strength Multiphase Steel at Macro- and Micro-Scales, Mater. Sci. Eng., A, 2014, 611, p 201–211CrossRef I. de Diego-Calderón, M.J. Santofimia, J.M. Molina-Aldareguia, M.A. Monclús, and I. Sabirov, Deformation Behavior of a High Strength Multiphase Steel at Macro- and Micro-Scales, Mater. Sci. Eng., A, 2014, 611, p 201–211CrossRef
35.
Zurück zum Zitat J.G. Speer, F.C. Rizzo Assunção, D.K. Matlock, and D.V. Edmonds, The “Quenching and Partitioning” Process: Background and Recent Progress, Materi. Res., 2005, 8(4), p 417–423CrossRef J.G. Speer, F.C. Rizzo Assunção, D.K. Matlock, and D.V. Edmonds, The “Quenching and Partitioning” Process: Background and Recent Progress, Materi. Res., 2005, 8(4), p 417–423CrossRef
36.
Zurück zum Zitat J.S. Byun, J.H. Shim, Y.W. Cho, and D.N. Lee, Non-metallic Inclusion and Intragranular Nucleation of Ferrite in Ti-killed C-Mn Steel, Acta Mater., 2003, 51(6), p 1593–1606CrossRef J.S. Byun, J.H. Shim, Y.W. Cho, and D.N. Lee, Non-metallic Inclusion and Intragranular Nucleation of Ferrite in Ti-killed C-Mn Steel, Acta Mater., 2003, 51(6), p 1593–1606CrossRef
37.
Zurück zum Zitat E. Bonnevie, G. Ferriere, A. Ikhlef, D. Kaplan, and J.M. Orain, Morphological Aspects of Martensite–Austenite Constituents in Intercritical and Coarse Grain Heat Affected Zones of Structural Steels, Mater. Sci. Eng., A, 2004, 385, p 352–358CrossRef E. Bonnevie, G. Ferriere, A. Ikhlef, D. Kaplan, and J.M. Orain, Morphological Aspects of Martensite–Austenite Constituents in Intercritical and Coarse Grain Heat Affected Zones of Structural Steels, Mater. Sci. Eng., A, 2004, 385, p 352–358CrossRef
38.
Zurück zum Zitat S.M. Hong, E.K. Park, J.J. Park, M.K. Lee, and J.G. Lee, Effect of Nano-sized TiC Particle Addition on Microstructure and Mechanical Properties of SA-106B Carbon Steel, Mater. Sci. Eng., A, 2015, 643, p 37–46CrossRef S.M. Hong, E.K. Park, J.J. Park, M.K. Lee, and J.G. Lee, Effect of Nano-sized TiC Particle Addition on Microstructure and Mechanical Properties of SA-106B Carbon Steel, Mater. Sci. Eng., A, 2015, 643, p 37–46CrossRef
39.
Zurück zum Zitat M.R. Akbarpour, E. Salahi, F. Alikhani Hesari, H.S. Kim, and A. Simchi, Effect of Nanoparticle Content on the Microstructural and Mechanical Properties of Nano-SiC Dispersed Bulk Ultrafine-Grained Cu Matrix Composites, Mater. Des., 2013, 52, p 881–887CrossRef M.R. Akbarpour, E. Salahi, F. Alikhani Hesari, H.S. Kim, and A. Simchi, Effect of Nanoparticle Content on the Microstructural and Mechanical Properties of Nano-SiC Dispersed Bulk Ultrafine-Grained Cu Matrix Composites, Mater. Des., 2013, 52, p 881–887CrossRef
Metadaten
Titel
Microstructure-Property Correlations in Fiber Laser Welded Nb-Ti Microalloyed C-Mn Steel
verfasst von
Qian Sun
Xiao-Kang Nie
Yang Li
Hong-Shuang Di
Publikationsdatum
17.01.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3138-8

Weitere Artikel der Ausgabe 2/2018

Journal of Materials Engineering and Performance 2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.