Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2018

03.01.2018

Stress Wave Attenuation in Aluminum Alloy and Mild Steel Specimens Under SHPB Tensile Testing

verfasst von: J. R. Pothnis, G. Ravikumar, H. Arya, Chandra S. Yerramalli, N. K. Naik

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Investigations on the effect of intensity of incident pressure wave applied through the striker bar on the specimen force histories and stress wave attenuation during split Hopkinson pressure bar (SHPB) tensile testing are presented. Details of the tensile SHPB along with Lagrangian xt diagram of the setup are included. Studies were carried out on aluminum alloy 7075 T651 and IS 2062 mild steel. While testing specimens using the tensile SHPB setup, it was observed that the force calculated from the transmitter bar strain gauge was smaller than the force obtained from the incident bar strain gauge. This mismatch between the forces in the incident bar and the transmitter bar is explained on the basis of stress wave attenuation in the specimens. A methodology to obtain force histories using the strain gauges on the specimen during SHPB tensile testing is also presented. Further, scanning electron microscope images and photomicrographs are given. Correlation between the microstructure and mechanical properties is explained. Further, uncertainty analysis was conducted to ascertain the accuracy of the results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat R.L. Sierakowski and S.K. Chaturvedi, Dynamic Loading and Characterization of Fiber Reinforced Composites, Wiley, New York, 1997, p 57–68 R.L. Sierakowski and S.K. Chaturvedi, Dynamic Loading and Characterization of Fiber Reinforced Composites, Wiley, New York, 1997, p 57–68
2.
Zurück zum Zitat E.D.H. Davies and S.C. Hunter, The Dynamic Compression Testing of Solids by the Method of Split Hopkinson Pressure Bar, J. Mech. Phys. Solids, 1963, 11, p 155–184CrossRef E.D.H. Davies and S.C. Hunter, The Dynamic Compression Testing of Solids by the Method of Split Hopkinson Pressure Bar, J. Mech. Phys. Solids, 1963, 11, p 155–184CrossRef
3.
Zurück zum Zitat M.A. Meyers, Dynamic Behavior of Materials, Wiley, New York, 1994, p 23–65CrossRef M.A. Meyers, Dynamic Behavior of Materials, Wiley, New York, 1994, p 23–65CrossRef
4.
Zurück zum Zitat H. Zhao and G. Gary, On the Use of SHPB Techniques to Determine the Dynamic Behaviour of Materials in the Range of Small Strains, Int. J. Solids Struct., 1996, 33, p 3363–3375CrossRef H. Zhao and G. Gary, On the Use of SHPB Techniques to Determine the Dynamic Behaviour of Materials in the Range of Small Strains, Int. J. Solids Struct., 1996, 33, p 3363–3375CrossRef
5.
Zurück zum Zitat G.T. Gray, III, Classic split-Hopkinson pressure bar testing, Mechanical Testing and Evaluation, ASM Handbook, Vol 8, H. Kuhn and D. Medlin, Ed., ASM International, Novelty, 2000, p 462–476 G.T. Gray, III, Classic split-Hopkinson pressure bar testing, Mechanical Testing and Evaluation, ASM Handbook, Vol 8, H. Kuhn and D. Medlin, Ed., ASM International, Novelty, 2000, p 462–476
6.
Zurück zum Zitat B.A. Gama, S.L. Lopatnikov, and J.W. Gillespie, Jr., Hopkinson Bar Experimental Technique: A Critical Review, Appl. Mech. Rev., 2004, 57, p 223–249CrossRef B.A. Gama, S.L. Lopatnikov, and J.W. Gillespie, Jr., Hopkinson Bar Experimental Technique: A Critical Review, Appl. Mech. Rev., 2004, 57, p 223–249CrossRef
7.
Zurück zum Zitat D.J. Parry, P.R. Dixon, S. Hodson, and N. Al-Maliky, Stress Equilibrium Effects Within Hopkinson Bar Specimens, J. Phys. IV, 1994, C8(4), p 107–112 D.J. Parry, P.R. Dixon, S. Hodson, and N. Al-Maliky, Stress Equilibrium Effects Within Hopkinson Bar Specimens, J. Phys. IV, 1994, C8(4), p 107–112
8.
Zurück zum Zitat J. Rodriquez, R. Cortes, V. Martinez, V. Sanchez-Galvez, and C. Navarro, Numerical Study of the Specimen Size Effect in the Split Hopkinson Pressure Bar Tests, J. Mater. Sci., 1995, 30, p 4720–4725CrossRef J. Rodriquez, R. Cortes, V. Martinez, V. Sanchez-Galvez, and C. Navarro, Numerical Study of the Specimen Size Effect in the Split Hopkinson Pressure Bar Tests, J. Mater. Sci., 1995, 30, p 4720–4725CrossRef
9.
Zurück zum Zitat X.J. Wu and D.A. Gorham, Stress Equilibrium in the Split Hopkinson Pressure Bar Test, J. Phys. IV, 1997, C3(7), p 91–96 X.J. Wu and D.A. Gorham, Stress Equilibrium in the Split Hopkinson Pressure Bar Test, J. Phys. IV, 1997, C3(7), p 91–96
10.
Zurück zum Zitat L.M. Yang and V.P.M. Shim, An Analysis of Stress Uniformity in Split Hopkinson Bar Test Specimens, Int. J. Impact Eng., 2005, 31, p 129–150CrossRef L.M. Yang and V.P.M. Shim, An Analysis of Stress Uniformity in Split Hopkinson Bar Test Specimens, Int. J. Impact Eng., 2005, 31, p 129–150CrossRef
11.
Zurück zum Zitat R.A. Govender and R.J. Curry, The “Open” Hopkinson Pressure Bar: Towards Addressing Force Equilibrium in Specimens with Non-uniform Deformation, J. Dyn. Behav. Mater., 2016, 2, p 43–49CrossRef R.A. Govender and R.J. Curry, The “Open” Hopkinson Pressure Bar: Towards Addressing Force Equilibrium in Specimens with Non-uniform Deformation, J. Dyn. Behav. Mater., 2016, 2, p 43–49CrossRef
12.
Zurück zum Zitat M. Hassan and K. Willec, Experimental Impact Analysis on Ultra-High Performance Concrete (UHPC) for Achieving Stress Equilibrium (SE) and Constant Strain Rate (CSR) in Split Hopkinson Pressure Bar (SHPB) Using Pulse Shaping Technique, Constr. Build. Mater., 2017, 144, p 747–757CrossRef M. Hassan and K. Willec, Experimental Impact Analysis on Ultra-High Performance Concrete (UHPC) for Achieving Stress Equilibrium (SE) and Constant Strain Rate (CSR) in Split Hopkinson Pressure Bar (SHPB) Using Pulse Shaping Technique, Constr. Build. Mater., 2017, 144, p 747–757CrossRef
13.
Zurück zum Zitat J. Harding, E.O. Wood, and J.D. Campbell, Tensile Testing of Materials at Impact Rates of Strain, J. Mech. Eng. Sci., 1960, 2, p 88–96CrossRef J. Harding, E.O. Wood, and J.D. Campbell, Tensile Testing of Materials at Impact Rates of Strain, J. Mech. Eng. Sci., 1960, 2, p 88–96CrossRef
14.
Zurück zum Zitat U.S. Lindholm, R.L. Bessey, and G.V. Smith, Effect of Strain Rate on Yield Strength, Tensile Strength, and Elongation of Three Aluminium Alloys, J. Mater., 1971, 6, p 119–133 U.S. Lindholm, R.L. Bessey, and G.V. Smith, Effect of Strain Rate on Yield Strength, Tensile Strength, and Elongation of Three Aluminium Alloys, J. Mater., 1971, 6, p 119–133
15.
Zurück zum Zitat T. Nicholas, Tensile Testing of Materials at High Rates of Strain, Exp. Mech., 1981, 21, p 177–185CrossRef T. Nicholas, Tensile Testing of Materials at High Rates of Strain, Exp. Mech., 1981, 21, p 177–185CrossRef
16.
Zurück zum Zitat S. Ellwood, L.J. Griffiths, and D.J. Parry, A Tensile Technique for Materials Testing at High Strain Rates, J. Phys., 1982, 15, p 1169–1172 S. Ellwood, L.J. Griffiths, and D.J. Parry, A Tensile Technique for Materials Testing at High Strain Rates, J. Phys., 1982, 15, p 1169–1172
17.
Zurück zum Zitat L.A. Cross, S.J. Bless, A.M. Rajendran, E.A. Strader, and D.S. Dawicke, New Technique to Investigate Necking in a Tensile Hopkinson Bar, Exp. Mech., 1984, 24, p 184–187CrossRef L.A. Cross, S.J. Bless, A.M. Rajendran, E.A. Strader, and D.S. Dawicke, New Technique to Investigate Necking in a Tensile Hopkinson Bar, Exp. Mech., 1984, 24, p 184–187CrossRef
18.
Zurück zum Zitat K. Ogawa, Mechanical Behaviour of Metals Under Tension-Compression Loading at High Strain Rate, Int. J. Plast., 1985, 1, p 347–358CrossRef K. Ogawa, Mechanical Behaviour of Metals Under Tension-Compression Loading at High Strain Rate, Int. J. Plast., 1985, 1, p 347–358CrossRef
19.
Zurück zum Zitat G.H. Staab and A. Gilat, A Direct-Tension Split Hopkinson Bar for High Strain Rate Testing, Exp. Mech., 1991, 31, p 232–235CrossRef G.H. Staab and A. Gilat, A Direct-Tension Split Hopkinson Bar for High Strain Rate Testing, Exp. Mech., 1991, 31, p 232–235CrossRef
20.
Zurück zum Zitat M. Li, R. Wang, and M.B. Han, A Kolsky Bar: Tension,Tension-Tension, Exp. Mech., 1993, 33, p 7–14CrossRef M. Li, R. Wang, and M.B. Han, A Kolsky Bar: Tension,Tension-Tension, Exp. Mech., 1993, 33, p 7–14CrossRef
21.
Zurück zum Zitat M.M. LeBlanc and D.H. Lassila, Dynamic Tensile Testing of Sheet Material Using the Split-Hopkinson Bar Technique, Exp. Tech., 1993, 17, p 37–42CrossRef M.M. LeBlanc and D.H. Lassila, Dynamic Tensile Testing of Sheet Material Using the Split-Hopkinson Bar Technique, Exp. Tech., 1993, 17, p 37–42CrossRef
22.
Zurück zum Zitat J. Rodriguez, C. Navarro, and V. Sanchez-Galvez, Numerical Assessment of the Dynamic Tension Test Using the Split Hopkinson Bar, J. Test. Eval., 1994, 22, p 335–342CrossRef J. Rodriguez, C. Navarro, and V. Sanchez-Galvez, Numerical Assessment of the Dynamic Tension Test Using the Split Hopkinson Bar, J. Test. Eval., 1994, 22, p 335–342CrossRef
23.
Zurück zum Zitat J.P. Noble, B.D. Goldthorpe, P. Church, and J. Harding, The Use of the Hopkinson Bar to Validate Constitutive Relations at High Rates of Strain, J. Mech. Phys. Solids, 1999, 47, p 1187–1206CrossRef J.P. Noble, B.D. Goldthorpe, P. Church, and J. Harding, The Use of the Hopkinson Bar to Validate Constitutive Relations at High Rates of Strain, J. Mech. Phys. Solids, 1999, 47, p 1187–1206CrossRef
24.
Zurück zum Zitat M. Itabashi and K. Kawata, Carbon Content Effect on High-Strain-Rate Tensile Properties for Carbon Steels, Int. J. Impact Eng., 2000, 24, p 117–131CrossRef M. Itabashi and K. Kawata, Carbon Content Effect on High-Strain-Rate Tensile Properties for Carbon Steels, Int. J. Impact Eng., 2000, 24, p 117–131CrossRef
25.
Zurück zum Zitat O.S. Lee and M.S. Kim, Dynamic Material Property Characterization by Using Split Hopkinson Pressure Bar (SHPB) Technique, Nucl. Eng. Des., 2003, 226, p 119–125CrossRef O.S. Lee and M.S. Kim, Dynamic Material Property Characterization by Using Split Hopkinson Pressure Bar (SHPB) Technique, Nucl. Eng. Des., 2003, 226, p 119–125CrossRef
26.
Zurück zum Zitat Y. Wang, Y. Zhou, and Y. Xia, A Constitutive Description of Tensile Behavior for Brass Over a Wide Range of Strain Rates, Mater. Sci. Eng. A, 2004, 372, p 186–190CrossRef Y. Wang, Y. Zhou, and Y. Xia, A Constitutive Description of Tensile Behavior for Brass Over a Wide Range of Strain Rates, Mater. Sci. Eng. A, 2004, 372, p 186–190CrossRef
27.
Zurück zum Zitat G. Solomos, C. Albertini, K. Labibes, V. Pizzinato, and B. Viaccoz, Strain Rate Effects in Nuclear Steels at Room and Higher Temperatures, Nucl. Eng. Des., 2004, 229, p 139–149CrossRef G. Solomos, C. Albertini, K. Labibes, V. Pizzinato, and B. Viaccoz, Strain Rate Effects in Nuclear Steels at Room and Higher Temperatures, Nucl. Eng. Des., 2004, 229, p 139–149CrossRef
28.
Zurück zum Zitat N.D. Beynon, T.B. Jones, and G. Fourlaris, Effect of High Strain Rate Deformation on Microstructure of Strip Steels Tested Under Dynamic Tensile Conditions, Mater. Sci. Technol., 2005, 21, p 103–112CrossRef N.D. Beynon, T.B. Jones, and G. Fourlaris, Effect of High Strain Rate Deformation on Microstructure of Strip Steels Tested Under Dynamic Tensile Conditions, Mater. Sci. Technol., 2005, 21, p 103–112CrossRef
29.
Zurück zum Zitat R. Smerd, S. Winkler, C. Salisbury, M. Worswick, D. Lloyd, and M. Finn, High Strain Rate Tensile Testing of Automotive Aluminum Alloy Sheet, Int. J. Impact Eng., 2005, 32, p 541–560CrossRef R. Smerd, S. Winkler, C. Salisbury, M. Worswick, D. Lloyd, and M. Finn, High Strain Rate Tensile Testing of Automotive Aluminum Alloy Sheet, Int. J. Impact Eng., 2005, 32, p 541–560CrossRef
30.
Zurück zum Zitat I. Rohr, H. Nahme, and K. Thoma, Material Characterization and Constitutive Modeling of Ductile High Strength Steel for a Wide Range of Strain Rates, Int. J. Impact Eng., 2005, 31, p 401–433CrossRef I. Rohr, H. Nahme, and K. Thoma, Material Characterization and Constitutive Modeling of Ductile High Strength Steel for a Wide Range of Strain Rates, Int. J. Impact Eng., 2005, 31, p 401–433CrossRef
31.
Zurück zum Zitat D. Mohr and G. Gary, High Strain Rate Tensile Testing Using A Split Hopkinson Pressure Bar Apparatus, J. Phys. IV, 2006, 134, p 617–622 D. Mohr and G. Gary, High Strain Rate Tensile Testing Using A Split Hopkinson Pressure Bar Apparatus, J. Phys. IV, 2006, 134, p 617–622
32.
Zurück zum Zitat N.K. Naik and Y. Perla, Mechanical Behaviour of Acrylic Under High Strain Rate Tensile Loading, Polym. Test., 2008, 27, p 504–512CrossRef N.K. Naik and Y. Perla, Mechanical Behaviour of Acrylic Under High Strain Rate Tensile Loading, Polym. Test., 2008, 27, p 504–512CrossRef
33.
Zurück zum Zitat B.L. Boyce and M.F. Dilmore, The Dynamic Tensile Behavior of Tough, Ultrahigh-Strength Steels at Strain-Rates from 0.0002 s−1 to 200 s−1, Int. J. Impact Eng., 2009, 36, p 263–271CrossRef B.L. Boyce and M.F. Dilmore, The Dynamic Tensile Behavior of Tough, Ultrahigh-Strength Steels at Strain-Rates from 0.0002 s−1 to 200 s−1, Int. J. Impact Eng., 2009, 36, p 263–271CrossRef
34.
Zurück zum Zitat H. Huh, J.H. Lim, and S.H. Park, High Speed Tensile Test of Steel Sheets for the Stress–Strain Curve at the Intermediate Strain Rate, Int. J. Automot. Technol., 2009, 10, p 195–204CrossRef H. Huh, J.H. Lim, and S.H. Park, High Speed Tensile Test of Steel Sheets for the Stress–Strain Curve at the Intermediate Strain Rate, Int. J. Automot. Technol., 2009, 10, p 195–204CrossRef
35.
Zurück zum Zitat H. Yu, Y. Guo, K. Zhang, and X. Lai, Constitutive Model on the Description of Plastic Behavior of DP 600 Steel at Strain Rate from 10−4 to 103 s−1, Comput. Mater. Sci., 2009, 46, p 36–41CrossRef H. Yu, Y. Guo, K. Zhang, and X. Lai, Constitutive Model on the Description of Plastic Behavior of DP 600 Steel at Strain Rate from 10−4 to 103 s−1, Comput. Mater. Sci., 2009, 46, p 36–41CrossRef
36.
Zurück zum Zitat Y. Chen, A.H. Clausen, O.S. Hopperstad, and M. Langseth, Stress–Strain Behaviour of Aluminium Alloys at a Wide Range of Strain Rates, Int. J. Solids Struct., 2009, 46, p 3825–3835CrossRef Y. Chen, A.H. Clausen, O.S. Hopperstad, and M. Langseth, Stress–Strain Behaviour of Aluminium Alloys at a Wide Range of Strain Rates, Int. J. Solids Struct., 2009, 46, p 3825–3835CrossRef
37.
Zurück zum Zitat I. Torca, A. Aginagalde, J.A. Esnaola, L. Galdos, Z. Azpilgain, and C. Garcia, Tensile Behaviour of 6082 Aluminium Alloy Sheet Under Different Conditions of Heat Treatment, Temperature and Strain Rate, Key Eng. Mater., 2010, 423, p 105–112CrossRef I. Torca, A. Aginagalde, J.A. Esnaola, L. Galdos, Z. Azpilgain, and C. Garcia, Tensile Behaviour of 6082 Aluminium Alloy Sheet Under Different Conditions of Heat Treatment, Temperature and Strain Rate, Key Eng. Mater., 2010, 423, p 105–112CrossRef
38.
Zurück zum Zitat N.K. Naik, P. Yernamma, N.M. Thoram, R. Gadipatri, and V.R. Kavala, High Strain Rate Tensile Behavior of Woven Fabric E-glass/Epoxy Composite, Polym. Test., 2010, 29, p 14–22CrossRef N.K. Naik, P. Yernamma, N.M. Thoram, R. Gadipatri, and V.R. Kavala, High Strain Rate Tensile Behavior of Woven Fabric E-glass/Epoxy Composite, Polym. Test., 2010, 29, p 14–22CrossRef
39.
Zurück zum Zitat J.R. Pothnis, Y. Perla, H. Arya, and N.K. Naik, High Strain Rate Tensile Behavior of Aluminum Alloy 7075 T651 and IS 2062 Mild Steel, J. Eng. Mater. Technol., 2011, 133, p 021026CrossRef J.R. Pothnis, Y. Perla, H. Arya, and N.K. Naik, High Strain Rate Tensile Behavior of Aluminum Alloy 7075 T651 and IS 2062 Mild Steel, J. Eng. Mater. Technol., 2011, 133, p 021026CrossRef
40.
Zurück zum Zitat K. Cao, Y. Wang, and Y. Wang, Effects of Strain Rate and Temperature on the Tension Behavior of Polycarbonate, Mater. Des., 2012, 38, p 53–58CrossRef K. Cao, Y. Wang, and Y. Wang, Effects of Strain Rate and Temperature on the Tension Behavior of Polycarbonate, Mater. Des., 2012, 38, p 53–58CrossRef
41.
Zurück zum Zitat F. Feng, S. Huang, Z. Meng, J. Hu, Y. Lei, M. Zhou, D. Wu, and Z. Yang, Experimental Study on Tensile Property of AZ31B Magnesium Alloy at Different High Strain Rates and Temperatures, Mater. Des., 2014, 57, p 10–20CrossRef F. Feng, S. Huang, Z. Meng, J. Hu, Y. Lei, M. Zhou, D. Wu, and Z. Yang, Experimental Study on Tensile Property of AZ31B Magnesium Alloy at Different High Strain Rates and Temperatures, Mater. Des., 2014, 57, p 10–20CrossRef
42.
Zurück zum Zitat N. Iqbala, P. Xuea, B. Wang, and Y. Lia, On the High Strain Rate Behavior of 63–37 Sn–Pb Eutectic Solders with Temperature Effects, J. Impact Eng., 2014, 74, p 126–131CrossRef N. Iqbala, P. Xuea, B. Wang, and Y. Lia, On the High Strain Rate Behavior of 63–37 Sn–Pb Eutectic Solders with Temperature Effects, J. Impact Eng., 2014, 74, p 126–131CrossRef
43.
Zurück zum Zitat E. Ezio Cadonia, M. Dottaa, D. Fornia, and H. Kaufmann, Effects of Strain Rate on Mechanical Properties in Tension of a Commercial Aluminium Alloy Used in Armour Applications, Procedia Struct. Integr., 2016, 2, p 986–993CrossRef E. Ezio Cadonia, M. Dottaa, D. Fornia, and H. Kaufmann, Effects of Strain Rate on Mechanical Properties in Tension of a Commercial Aluminium Alloy Used in Armour Applications, Procedia Struct. Integr., 2016, 2, p 986–993CrossRef
44.
Zurück zum Zitat R. Bobbili, V. Madhu, and A.K. Gogia, Tensile Behaviour of Aluminium 7017 Alloy at Various Temperatures and Strain Rates, J. Mater. Res. Technol., 2016, 5(2), p 190–197CrossRef R. Bobbili, V. Madhu, and A.K. Gogia, Tensile Behaviour of Aluminium 7017 Alloy at Various Temperatures and Strain Rates, J. Mater. Res. Technol., 2016, 5(2), p 190–197CrossRef
45.
Zurück zum Zitat R. Bobbili, A. Paman, and V. Madhu, High Strain Rate Tensile Behavior of Al-4.8Cu-1.2Mg Alloy, Mater. Sci. Eng. A, 2016, 651, p 753–762CrossRef R. Bobbili, A. Paman, and V. Madhu, High Strain Rate Tensile Behavior of Al-4.8Cu-1.2Mg Alloy, Mater. Sci. Eng. A, 2016, 651, p 753–762CrossRef
46.
Zurück zum Zitat F. Campana, E. Mancini, D. Pilone, and M. Sasso, Strain Rate and Density-Dependent Strength of AlSi7 Alloy Foams, Mater. Sci. Eng. A, 2016, 651, p 657–667CrossRef F. Campana, E. Mancini, D. Pilone, and M. Sasso, Strain Rate and Density-Dependent Strength of AlSi7 Alloy Foams, Mater. Sci. Eng. A, 2016, 651, p 657–667CrossRef
47.
Zurück zum Zitat D. Sil and S.K. Varma, The Combined Effect of Grain Size and Strain Rate on the Dislocation Substructures and Mechanical Properties in Pure Aluminum, Metall. Trans. A, 1993, 24A, p 1153–1161CrossRef D. Sil and S.K. Varma, The Combined Effect of Grain Size and Strain Rate on the Dislocation Substructures and Mechanical Properties in Pure Aluminum, Metall. Trans. A, 1993, 24A, p 1153–1161CrossRef
48.
Zurück zum Zitat R.R. Cordero and F. Labbe, Monitoring the Strain-Rate Progression of an Aluminium Sample Undergoing Tensile Deformation by Electronic Speckle-Pattern Interferometry (ESPI), J. Phys. D Appl. Phys., 2006, 39, p 2419–2426CrossRef R.R. Cordero and F. Labbe, Monitoring the Strain-Rate Progression of an Aluminium Sample Undergoing Tensile Deformation by Electronic Speckle-Pattern Interferometry (ESPI), J. Phys. D Appl. Phys., 2006, 39, p 2419–2426CrossRef
49.
Zurück zum Zitat W.S. Lee and W.C.Y. Liu, The Effects of Temperature and Strain Rate on the Dynamic Flow Behaviour of Different Steels, Mater. Sci. Eng. A, 2006, 426, p 101–113CrossRef W.S. Lee and W.C.Y. Liu, The Effects of Temperature and Strain Rate on the Dynamic Flow Behaviour of Different Steels, Mater. Sci. Eng. A, 2006, 426, p 101–113CrossRef
50.
Zurück zum Zitat A.M. Lennon and K.T. Ramesh, The Influence of Crystal Structure on the Dynamic Behavior of Materials at High Temperatures, Int. J. Plast., 2004, 20, p 269–290CrossRef A.M. Lennon and K.T. Ramesh, The Influence of Crystal Structure on the Dynamic Behavior of Materials at High Temperatures, Int. J. Plast., 2004, 20, p 269–290CrossRef
51.
Zurück zum Zitat S. Bell, A Beginner’s Guide to Uncertainty of Measurement, Issue 2 (National Physical Laboratory, Middlesex, 2001) S. Bell, A Beginner’s Guide to Uncertainty of Measurement, Issue 2 (National Physical Laboratory, Middlesex, 2001)
52.
Zurück zum Zitat United Kingdom Accreditation Service Publication M3003, The Expression of Uncertainty and Confidence in Measurement, 2nd edn. (UKAS Publications, Middlesex, 2007) United Kingdom Accreditation Service Publication M3003, The Expression of Uncertainty and Confidence in Measurement, 2nd edn. (UKAS Publications, Middlesex, 2007)
Metadaten
Titel
Stress Wave Attenuation in Aluminum Alloy and Mild Steel Specimens Under SHPB Tensile Testing
verfasst von
J. R. Pothnis
G. Ravikumar
H. Arya
Chandra S. Yerramalli
N. K. Naik
Publikationsdatum
03.01.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-3120-x

Weitere Artikel der Ausgabe 2/2018

Journal of Materials Engineering and Performance 2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.