Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

03-07-2019 | Issue 2/2020

Fire Technology 2/2020

Model Considerations for Fire Scene Reconstruction Using a Bayesian Framework

Journal:
Fire Technology > Issue 2/2020
Authors:
Andrew Kurzawski, Jan-Michael Cabrera, Ofodike A. Ezekoye
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Towards the development of a more rigorous approach for coupling collected fire scene data to computational tools, a Bayesian computational strategy is presented in this work. The Bayesian inversion technique is exercised on synthetic, time-integrated data to invert for the location, size, and time-to-peak of an unknown fire using two well-known forward models; Consolidated Model of Fire and Smoke Transport (CFAST) and Fire Dynamics Simulator (FDS). A Gaussian process surrogate model was fit to coarse FDS simulations to facilitate Markov Chain Monte Carlo sampling. The inversion framework was able to predict the total energy release by all fire cases except for one CFAST forward model, a 1000 kW steady fire. It was found that insufficient information was available in the time-integrated data to distinguish the temporal variations in peak times. FDS performed better than CFAST in predicting the maximum energy release rate with the posterior mean of the best configurations being 0.05% and 2.77% of the true values respectively. Both models performed equally well on locating the fire in a compartment.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 2/2020

Fire Technology 2/2020 Go to the issue