Skip to main content
Top
Published in: Engineering with Computers 2/2018

11-11-2017 | Original Article

Multi-material proportional topology optimization based on the modified interpolation scheme

Authors: Mingtao Cui, Yifei Zhang, Xinfeng Yang, Chenchun Luo

Published in: Engineering with Computers | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A multi-material proportional topology optimization (PTO) method based on the modified material interpolation scheme is proposed in this work. PTO method is a highly heuristic algorithm by which satisfactory results are obtained. When the proposed method is used to solve the minimum compliance problem, the design variables are assigned to elements proportionally by the value of compliance during the optimization process. It is worth mentioning that PTO algorithm does not incorporate sensitivities. Accordingly, there is nothing about sensitivity calculation but just a weighted density used as filtering in the proposed method. Hence, non-sensitivity is also one of the salient features of this method. According to the characteristics, a density interpolation approach based on the logistic function is introduced in the present study. This approach cannot only establish the relationship between the material densities and Young’s modulus more reasonably, but also effectively realize the polarization of the intermediate-density elements. The complication associated with sensitivities can be avoided by the complicated interpolation scheme in conjunction with PTO algorithm. The multi-material interpolation scheme is modified from the extended SIMP interpolation approach in three-phase topology optimization. A density-filter-based Heaviside threshold function combined with the modified interpolation is introduced in this work to obtain clear 0/1 optimal topology design. The effectiveness and feasibility of the proposed method are demonstrated by several typical numerical examples of multi-material topology optimization, in which the optimal design with distinct boundaries can be obtained.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetCrossRefMATH Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetCrossRefMATH
2.
go back to reference Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRef
3.
go back to reference Andreassen E, Clausen A, Schevenels M, Lazarov B, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43(1):1–16CrossRefMATH Andreassen E, Clausen A, Schevenels M, Lazarov B, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43(1):1–16CrossRefMATH
4.
go back to reference Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246MathSciNetCrossRefMATH Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246MathSciNetCrossRefMATH
5.
go back to reference Allaire G, Gournay FD, Jouve F, Toader AM (2005) Structural optimization using topological and shape sensitivity via a level set method. Control Cybernet 34(1):59–80MathSciNetMATH Allaire G, Gournay FD, Jouve F, Toader AM (2005) Structural optimization using topological and shape sensitivity via a level set method. Control Cybernet 34(1):59–80MathSciNetMATH
6.
go back to reference Luo Z, Tong LY, Kang Z (2009) A level set method for structural shape and topology optimization using radial basis functions. Comput Struct 87(7–8):425–434CrossRef Luo Z, Tong LY, Kang Z (2009) A level set method for structural shape and topology optimization using radial basis functions. Comput Struct 87(7–8):425–434CrossRef
7.
go back to reference Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654MATH Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654MATH
8.
go back to reference Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4):401–424CrossRef Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4):401–424CrossRef
9.
go back to reference Tavakoli R (2014) Multimaterial topology optimization by volume constrained Allen–Cahn system and regularized projected steepest descent method. Comput Methods Appl Mech Eng 276:534–565MathSciNetCrossRef Tavakoli R (2014) Multimaterial topology optimization by volume constrained Allen–Cahn system and regularized projected steepest descent method. Comput Methods Appl Mech Eng 276:534–565MathSciNetCrossRef
10.
go back to reference Fuchs MB, Jiny S, Peleg N (2005) The SRV constraint for 0/1 topological design. Struct Multidiscip Optim 30(4):320–326CrossRef Fuchs MB, Jiny S, Peleg N (2005) The SRV constraint for 0/1 topological design. Struct Multidiscip Optim 30(4):320–326CrossRef
11.
go back to reference Du YX, Yan SQ, Zhang Y, Xie HH, Tian QH (2015) A modified interpolation approach for topology optimization. Acta Mech Solida Sin 28(4):420–430CrossRef Du YX, Yan SQ, Zhang Y, Xie HH, Tian QH (2015) A modified interpolation approach for topology optimization. Acta Mech Solida Sin 28(4):420–430CrossRef
12.
go back to reference Svanberg K, Werme M (2007) Sequential integer programming methods for stress constrained topology optimization. Struct Multidiscip Optim 34:277–299MathSciNetCrossRefMATH Svanberg K, Werme M (2007) Sequential integer programming methods for stress constrained topology optimization. Struct Multidiscip Optim 34:277–299MathSciNetCrossRefMATH
13.
go back to reference Munk DJ, Vio GA, Steven GP (2015) Topology and shape optimization methods using evolutionary algorithms: a review. Struct Multidiscip Optim 52:613–631MathSciNetCrossRef Munk DJ, Vio GA, Steven GP (2015) Topology and shape optimization methods using evolutionary algorithms: a review. Struct Multidiscip Optim 52:613–631MathSciNetCrossRef
14.
go back to reference Tai K, Akhtar S (2005) Structural topology optimization using a genetic algorithm with a morphological geometric representation scheme. Struct Multidiscip Optim 30:113–127CrossRef Tai K, Akhtar S (2005) Structural topology optimization using a genetic algorithm with a morphological geometric representation scheme. Struct Multidiscip Optim 30:113–127CrossRef
15.
go back to reference Prager W (1968) Optimality criteria in structural design. Proc Natl Acad Sci USA 61(3):794–796CrossRef Prager W (1968) Optimality criteria in structural design. Proc Natl Acad Sci USA 61(3):794–796CrossRef
16.
go back to reference Rozvany GIN. (1988) Optimality criteria and layout theory in structural design: recent developments and applications. In: Rozvany GIN, Karihaloo BL (eds) Structural optimization. Springer, DordrechtCrossRef Rozvany GIN. (1988) Optimality criteria and layout theory in structural design: recent developments and applications. In: Rozvany GIN, Karihaloo BL (eds) Structural optimization. Springer, DordrechtCrossRef
17.
go back to reference Rozvany GIN, Zhou M, Rotthaus M, Gollub W, Spengemann F (1989) Continuum-type optimality criteria methods for large finite element systems with a displacement constraint-Part I. Struct Optim 1(1):47–72CrossRef Rozvany GIN, Zhou M, Rotthaus M, Gollub W, Spengemann F (1989) Continuum-type optimality criteria methods for large finite element systems with a displacement constraint-Part I. Struct Optim 1(1):47–72CrossRef
18.
go back to reference Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21(2):120–127CrossRef Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21(2):120–127CrossRef
19.
go back to reference Gill PE, Murray W, Saunders MA (2002) SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM J Optim 12(4):979–1006MathSciNetCrossRefMATH Gill PE, Murray W, Saunders MA (2002) SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM J Optim 12(4):979–1006MathSciNetCrossRefMATH
20.
go back to reference Fleury C, Braibant V (1986) Structural optimization: A new dual method using mixed variables. Int J Numer Methods Eng 23(3):409–428MathSciNetCrossRefMATH Fleury C, Braibant V (1986) Structural optimization: A new dual method using mixed variables. Int J Numer Methods Eng 23(3):409–428MathSciNetCrossRefMATH
21.
go back to reference Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetCrossRefMATH Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetCrossRefMATH
22.
go back to reference Biyikli E, To AC (2015) Proportional topology optimization: a new non-sensitivity method for solving stress constrained and minimum compliance problems and its implementation in MATLAB. PLoS One 10(12):1–23CrossRef Biyikli E, To AC (2015) Proportional topology optimization: a new non-sensitivity method for solving stress constrained and minimum compliance problems and its implementation in MATLAB. PLoS One 10(12):1–23CrossRef
23.
go back to reference Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067MathSciNetCrossRef Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067MathSciNetCrossRef
24.
go back to reference Hvejsel CF, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidiscip Optim 43(6):811–825CrossRefMATH Hvejsel CF, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidiscip Optim 43(6):811–825CrossRefMATH
25.
go back to reference Yin L, Ananthasuresh GK (2001) Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct Multidiscip Optim 23(1):49–62CrossRef Yin L, Ananthasuresh GK (2001) Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct Multidiscip Optim 23(1):49–62CrossRef
26.
go back to reference Tavakoli R, Mohseni SM (2014) Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation. Struct Multidiscip Optim 49(4):621–642MathSciNetCrossRef Tavakoli R, Mohseni SM (2014) Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation. Struct Multidiscip Optim 49(4):621–642MathSciNetCrossRef
27.
go back to reference Huang X, Xie YM (2009) Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Computat Mech 43:393–401MathSciNetCrossRefMATH Huang X, Xie YM (2009) Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Computat Mech 43:393–401MathSciNetCrossRefMATH
28.
go back to reference Gao T, Zhang WH (2011) A mass constraint formulation for structural topology optimization with multiphase materials. Int J Numer Methods Eng 88(8):774–796CrossRefMATH Gao T, Zhang WH (2011) A mass constraint formulation for structural topology optimization with multiphase materials. Int J Numer Methods Eng 88(8):774–796CrossRefMATH
29.
go back to reference Wang MY, Zhou S (2004) Synthesis of shape and topology of multi-material structures with a phase-field method. J Comput Aided Mater Des 11(2–3):117–138CrossRef Wang MY, Zhou S (2004) Synthesis of shape and topology of multi-material structures with a phase-field method. J Comput Aided Mater Des 11(2–3):117–138CrossRef
30.
go back to reference Zhou S, Wang MY (2007) Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition. Struct Multidiscip Optim 33(2):89–111MathSciNetCrossRefMATH Zhou S, Wang MY (2007) Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition. Struct Multidiscip Optim 33(2):89–111MathSciNetCrossRefMATH
31.
go back to reference Díaz A, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Optim 10(1):40–45CrossRef Díaz A, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Optim 10(1):40–45CrossRef
32.
go back to reference Jog CS, Haber RB (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130(3–4):203–226MathSciNetCrossRefMATH Jog CS, Haber RB (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130(3–4):203–226MathSciNetCrossRefMATH
33.
go back to reference Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459CrossRefMATH Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459CrossRefMATH
35.
go back to reference Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254MathSciNetCrossRefMATH Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254MathSciNetCrossRefMATH
36.
go back to reference Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on heaviside functions. Struct Multidiscip Optim 41(4):495–505MathSciNetCrossRefMATH Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on heaviside functions. Struct Multidiscip Optim 41(4):495–505MathSciNetCrossRefMATH
37.
go back to reference Wang FW, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784CrossRefMATH Wang FW, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784CrossRefMATH
Metadata
Title
Multi-material proportional topology optimization based on the modified interpolation scheme
Authors
Mingtao Cui
Yifei Zhang
Xinfeng Yang
Chenchun Luo
Publication date
11-11-2017
Publisher
Springer London
Published in
Engineering with Computers / Issue 2/2018
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-017-0540-z

Other articles of this Issue 2/2018

Engineering with Computers 2/2018 Go to the issue