Skip to main content
Top
Published in: Metallurgical and Materials Transactions B 2/2015

01-04-2015

Multiple Size Group Modeling of Polydispersed Bubbly Flow in the Mold: An Analysis of Turbulence and Interfacial Force Models

Authors: Zhongqiu Liu, Fengsheng Qi, Baokuan Li, Maofa Jiang

Published in: Metallurgical and Materials Transactions B | Issue 2/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An inhomogeneous Multiple Size Group (MUSIG) model based on the Eulerian–Eulerian approach has been developed to describe the polydispersed bubbly flow inside the continuous-casting mold. A laboratory scale mold has been simulated using four different turbulence closure models (modified k − ɛ, RNG k − ɛ, k − ω, and SST) with the purpose of critically comparing their predictions of bubble Sauter mean diameter distribution with previous experimental data. Furthermore, the influences of all the interfacial momentum transfer terms including drag force, lift force, virtual mass force, wall lubrication force, and turbulent dispersion force are investigated. The breakup and coalescence effects of the bubbles are modeled according to the bubble breakup by the impact of turbulent eddies while for bubble coalescence by the random collisions driven by turbulence and wake entrainment. It has been found that the modified k − ɛ model shows better agreement than other models in predicting the bubble Sauter mean diameter profiles. Further, simulations have also been performed to understand the sensitivity of different interfacial forces. The appropriate drag force coefficient, lift force coefficient, virtual mass force coefficient, and turbulent dispersion force coefficient are chosen in accordance with measurements of water model experiments. However, the wall lubrication force does not have much effect on the current polydispersed bubbly flow system. Finally, the MUSIG model is then used to estimate the argon bubble diameter in the molten steel of the mold. The argon bubble Sauter mean diameter generated in molten steel is predicted to be larger than air bubbles in water for the similar conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B.G. Thomas, X. Huang and R. C. Suaaman: Metall. Mater. Trans., 1994, vol. 25B, pp. 527-47.CrossRef B.G. Thomas, X. Huang and R. C. Suaaman: Metall. Mater. Trans., 1994, vol. 25B, pp. 527-47.CrossRef
2.
go back to reference R. Sánchez-Pérez, R.D. Morales, L. García-Demedices, J. Palafox Ramos, and M. Díaz-Cruz: Metall. Mater. Trans., 2004, vol. 35B, pp. 85-99.CrossRef R. Sánchez-Pérez, R.D. Morales, L. García-Demedices, J. Palafox Ramos, and M. Díaz-Cruz: Metall. Mater. Trans., 2004, vol. 35B, pp. 85-99.CrossRef
4.
go back to reference M. Iguchi and N. Kasai: Metall Mater. Trans. B, 2000, vol. 31B, pp. 453-60.CrossRef M. Iguchi and N. Kasai: Metall Mater. Trans. B, 2000, vol. 31B, pp. 453-60.CrossRef
5.
go back to reference A. Ramos-Banderas, R.D. Morales, R. Sánchez-Pérez, L. García-Demedices, and G. Solorio-Diaz: International Journal of Multiphase Flow, 2005, vol. 31, pp. 643-65.CrossRef A. Ramos-Banderas, R.D. Morales, R. Sánchez-Pérez, L. García-Demedices, and G. Solorio-Diaz: International Journal of Multiphase Flow, 2005, vol. 31, pp. 643-65.CrossRef
6.
go back to reference H. Bai and B.G. Thomas: Metall. Mater. Trans., 2001, vol. 32B, pp. 1143-59.CrossRef H. Bai and B.G. Thomas: Metall. Mater. Trans., 2001, vol. 32B, pp. 1143-59.CrossRef
7.
8.
go back to reference Y. Wang and L.F. Zhang: Metall. Mater. Trans., 2011, vol. 42B, pp. 1319-51.CrossRef Y. Wang and L.F. Zhang: Metall. Mater. Trans., 2011, vol. 42B, pp. 1319-51.CrossRef
10.
go back to reference Z.Q. Liu, B.K. Li, and M.F. Jiang: Metall. Mater. Trans., 2014, vol.45B, pp. 675-97.CrossRef Z.Q. Liu, B.K. Li, and M.F. Jiang: Metall. Mater. Trans., 2014, vol.45B, pp. 675-97.CrossRef
11.
go back to reference Z.Q. Liu, B.K. Li, M.F. Jiang and F. Tsukihashi. ISIJ Int., 2013, Vol. 53, pp. 484–92.CrossRef Z.Q. Liu, B.K. Li, M.F. Jiang and F. Tsukihashi. ISIJ Int., 2013, Vol. 53, pp. 484–92.CrossRef
12.
go back to reference S.C.P. Cheung, G.H. Yeoh, and J.Y. Tu: Chem. Eng. Sci., 2007, vol. 62, pp. 4659-74.CrossRef S.C.P. Cheung, G.H. Yeoh, and J.Y. Tu: Chem. Eng. Sci., 2007, vol. 62, pp. 4659-74.CrossRef
13.
go back to reference X.Y. Duan, S.C.P. Cheung, G.H. Yeoh, J.Y. Tu, E. Krepper, and D. Lucas: Che. Eng. Sci., 2011, vol. 66, pp. 872-83.CrossRef X.Y. Duan, S.C.P. Cheung, G.H. Yeoh, J.Y. Tu, E. Krepper, and D. Lucas: Che. Eng. Sci., 2011, vol. 66, pp. 872-83.CrossRef
14.
go back to reference T. Frank, Ph.J. Zwart, J.M. Shi, E. Krepper, D. Lucas, and U. Rohde: in Inter. Conf. of Nuclear Energy for New Europe, Bled, Slovenia, September 2005. T. Frank, Ph.J. Zwart, J.M. Shi, E. Krepper, D. Lucas, and U. Rohde: in Inter. Conf. of Nuclear Energy for New Europe, Bled, Slovenia, September 2005.
15.
16.
go back to reference S.C.P. Cheung, G.H. Yeoh, and J.Y. Tu: Fluid Mech. and Trans. Phen., 2008, vol. 54, pp. 1689-1710. S.C.P. Cheung, G.H. Yeoh, and J.Y. Tu: Fluid Mech. and Trans. Phen., 2008, vol. 54, pp. 1689-1710.
17.
go back to reference S. Lo: AEAT-1096, AEA Technical, June 1996. S. Lo: AEAT-1096, AEA Technical, June 1996.
18.
go back to reference Q. Yuan, T. Shi, S. P. Vanka, and B.G. Thomas: Computational Modeling of Materials, Minerals and Metals Processing, Warrendale, PA, 2001, pp. 491-500. Q. Yuan, T. Shi, S. P. Vanka, and B.G. Thomas: Computational Modeling of Materials, Minerals and Metals Processing, Warrendale, PA, 2001, pp. 491-500.
20.
go back to reference E. Krepper, D. Lucas, and H. Prasser: Nucl. Eng. Des., 2005, vol. 235, pp. 597-611.CrossRef E. Krepper, D. Lucas, and H. Prasser: Nucl. Eng. Des., 2005, vol. 235, pp. 597-611.CrossRef
21.
go back to reference H.A. Jakobsen, B.H. Sannaes, S. Grevskott and H. F. Svendsen: Ind. Eng. Chem. Res., 1997, vol. 36, pp. 4052-74.CrossRef H.A. Jakobsen, B.H. Sannaes, S. Grevskott and H. F. Svendsen: Ind. Eng. Chem. Res., 1997, vol. 36, pp. 4052-74.CrossRef
22.
go back to reference Y. Sato and K. Sekiguchi: Inter. J. of Mult. Flow, 1975, vol. 2, pp. 79-87.CrossRef Y. Sato and K. Sekiguchi: Inter. J. of Mult. Flow, 1975, vol. 2, pp. 79-87.CrossRef
23.
go back to reference ANSYS CFX 14.0 User’s Manual, ANSYS Inc., 2012. ANSYS CFX 14.0 User’s Manual, ANSYS Inc., 2012.
24.
go back to reference O. Simonin, and P.L. Viollet: in Proc. Conf., Euromech, Toulouse, France, vol. 234, 1988. O. Simonin, and P.L. Viollet: in Proc. Conf., Euromech, Toulouse, France, vol. 234, 1988.
25.
go back to reference D.C. Wilcox: in AIAA 24th Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, 1986. D.C. Wilcox: in AIAA 24th Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, 1986.
26.
go back to reference F.R. Menter: AIAA Journal, 1994, vol. 32, pp. 1598–05. F.R. Menter: AIAA Journal, 1994, vol. 32, pp. 1598–05.
27.
go back to reference D.A. Drew and R.T. Lahey: Inter. J. of Mult. Flow, 1987, vol. 13, pp. 113-21.CrossRef D.A. Drew and R.T. Lahey: Inter. J. of Mult. Flow, 1987, vol. 13, pp. 113-21.CrossRef
28.
go back to reference A.D. Burns, T. Frank, I. Hamill, and J. Shi: in Proc. Fifth Int. Conf. Multiph. Flow, Yokohama, Japan, 2004. A.D. Burns, T. Frank, I. Hamill, and J. Shi: in Proc. Fifth Int. Conf. Multiph. Flow, Yokohama, Japan, 2004.
29.
go back to reference H. Luo and H. Svendsen (1996) American Institute of Chem. Eng., vol. 42, pp. 1225-33.CrossRef H. Luo and H. Svendsen (1996) American Institute of Chem. Eng., vol. 42, pp. 1225-33.CrossRef
30.
go back to reference M.J. Prince and H.W. Blanch: American Institute of Chem. Eng., 1990, vol. 36, pp. 1485-99.CrossRef M.J. Prince and H.W. Blanch: American Institute of Chem. Eng., 1990, vol. 36, pp. 1485-99.CrossRef
31.
go back to reference A.K. Chesters and G. Hoffman: Applied Scientific Research, 1982, vol. 38, pp. 353-61.CrossRef A.K. Chesters and G. Hoffman: Applied Scientific Research, 1982, vol. 38, pp. 353-61.CrossRef
32.
go back to reference R.I.L. Guthrie: Engineering in Process Metallurgy, Clarendon Press, Oxford, United Kingdom, 1992, p.457. R.I.L. Guthrie: Engineering in Process Metallurgy, Clarendon Press, Oxford, United Kingdom, 1992, p.457.
33.
35.
36.
go back to reference S.C.P. Cheung, G.H. Yeoh, and J.Y. Tu: Chem. Eng. Pro., 2007, vol. 46, pp. 742-56.CrossRef S.C.P. Cheung, G.H. Yeoh, and J.Y. Tu: Chem. Eng. Pro., 2007, vol. 46, pp. 742-56.CrossRef
37.
go back to reference Th. Frank, P. J. Zwart, E. Krepper, H. M. Prasser, and D. Lucas: J. Nuclear Engineering & Design, 2008, vol. 238, pp. 647–659.CrossRef Th. Frank, P. J. Zwart, E. Krepper, H. M. Prasser, and D. Lucas: J. Nuclear Engineering & Design, 2008, vol. 238, pp. 647–659.CrossRef
38.
39.
go back to reference L. Schiller and A. Naumann: Zeitschrift des Vereines Deutscher Ingenieure, 1933, vol. 77, pp. 318-20. L. Schiller and A. Naumann: Zeitschrift des Vereines Deutscher Ingenieure, 1933, vol. 77, pp. 318-20.
41.
go back to reference R. Mei and J. F. Klausner: Int. J. Heat and Fluid Flow, 1994, vol. 15, pp. 62-65.CrossRef R. Mei and J. F. Klausner: Int. J. Heat and Fluid Flow, 1994, vol. 15, pp. 62-65.CrossRef
42.
go back to reference D. Legendre and J. Magnaudet: J. Fluid Mech., 1998, vol. 368, pp. 81–126.CrossRef D. Legendre and J. Magnaudet: J. Fluid Mech., 1998, vol. 368, pp. 81–126.CrossRef
43.
go back to reference A. Tomiyama: in 3rd Int. Conf. Multiph. Flow, Lyon, France, 1998, pp. 1–18. A. Tomiyama: in 3rd Int. Conf. Multiph. Flow, Lyon, France, 1998, pp. 1–18.
44.
go back to reference S. P. Antal, R.T. Lahey, and J. E. Flaherty: Int. J. Multiphase Flow, 1991, vol. 7, pp. 635-652.CrossRef S. P. Antal, R.T. Lahey, and J. E. Flaherty: Int. J. Multiphase Flow, 1991, vol. 7, pp. 635-652.CrossRef
Metadata
Title
Multiple Size Group Modeling of Polydispersed Bubbly Flow in the Mold: An Analysis of Turbulence and Interfacial Force Models
Authors
Zhongqiu Liu
Fengsheng Qi
Baokuan Li
Maofa Jiang
Publication date
01-04-2015
Publisher
Springer US
Published in
Metallurgical and Materials Transactions B / Issue 2/2015
Print ISSN: 1073-5615
Electronic ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-014-0255-0

Other articles of this Issue 2/2015

Metallurgical and Materials Transactions B 2/2015 Go to the issue

Premium Partners