Skip to main content
Top
Published in: Journal of Polymer Research 5/2019

01-05-2019 | ORIGINAL PAPER

Nafion®/ sulfated zirconia oxide-nanocomposite membrane: the effects of ammonia sulfate on fuel permeability

Authors: Rudzani Sigwadi, Touhami Mokrani, Mokhotjwa S. Dhlamini, Patrick Nonjola, Phumlani F. Msomi

Published in: Journal of Polymer Research | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nafion®/sulfated zirconium nanocomposite membranes were prepared by incorporating sulfonated zirconia with ammonia sulfate and sulphuric acid, which enhances proton conductivity and reduces fuel crossover on Nafion® membrane as they sustain water affinity and strong acidity. XRD, AFM, SEM, FTIR and TGA were used to investigate the morphology and high temperature degradation of nanocomposite membranes compared with commercial Nafion® 117 membrane. The results show that nanocomposite membranes have low water content angle, improved thermal degradation and higher conductivity than commercial Nafion® 117 membrane, which holds great promise for fuel cell application. The Nafion®/ sulfated zirconia nanocomposite membrane obtained a higher IEC and water uptake due to the presence of SO42− providing extra acid sites for water diffusion. The proton conductivity calculated from impedance spectroscopy measurements were 7.891 S/cm and 0.146 S/cm, respectively, when compared with 0.113 S/cm of commercial Nafion® 117 membrane. The Nafion®/sulfated zirconium nanocomposite membranes showed a highest power density of 183 m. cm−2 when evaluated using a direct single cell methanol fuel cell.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Service RF (2002) Fuel cells. Shrinking fuel cells promise power in your pocket. Science (New York, NY) 296:1222CrossRef Service RF (2002) Fuel cells. Shrinking fuel cells promise power in your pocket. Science (New York, NY) 296:1222CrossRef
2.
go back to reference Savadogo O (2004) Emerging membranes for electrochemical systems: Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications. J Power Sources 127:135–161CrossRef Savadogo O (2004) Emerging membranes for electrochemical systems: Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications. J Power Sources 127:135–161CrossRef
3.
go back to reference Santiago E, Isidoro R, Dresch M, Matos B, Linardi M, Fonseca F (2009) Nafion–TiO 2 hybrid electrolytes for stable operation of PEM fuel cells at high temperature. Electrochim Acta 54:4111–4117CrossRef Santiago E, Isidoro R, Dresch M, Matos B, Linardi M, Fonseca F (2009) Nafion–TiO 2 hybrid electrolytes for stable operation of PEM fuel cells at high temperature. Electrochim Acta 54:4111–4117CrossRef
4.
go back to reference Zhengbang W, Tang H, Mu P (2011) Self-assembly of durable Nafion/TiO 2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells. J Membr Sci 369:250–257CrossRef Zhengbang W, Tang H, Mu P (2011) Self-assembly of durable Nafion/TiO 2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells. J Membr Sci 369:250–257CrossRef
5.
go back to reference Savadogo O (1998) Emerging membrane for electrochemical systems:(I) solid polymer electrolyte membranes for fuel cell systems. J New Mater Electrochem Syst 1:47–66 Savadogo O (1998) Emerging membrane for electrochemical systems:(I) solid polymer electrolyte membranes for fuel cell systems. J New Mater Electrochem Syst 1:47–66
6.
go back to reference Kong X (2010) Characterization of proton exchange materials for fuel cells by solid state nuclear magnetic resonance Kong X (2010) Characterization of proton exchange materials for fuel cells by solid state nuclear magnetic resonance
7.
go back to reference Ghassemzadeh L, Pace G, Di Noto V, Müller K (2011) Effect of SiO 2 on the dynamics of proton conducting [Nafion/(SiO 2) X] composite membranes: a solid-state 19 F NMR study. Phys Chem Chem Phys 13:9327–9334CrossRef Ghassemzadeh L, Pace G, Di Noto V, Müller K (2011) Effect of SiO 2 on the dynamics of proton conducting [Nafion/(SiO 2) X] composite membranes: a solid-state 19 F NMR study. Phys Chem Chem Phys 13:9327–9334CrossRef
8.
go back to reference Xu W, Lu T, Liu C, Xing W (2005) Low methanol permeable composite Nafion/silica/PWA membranes for low temperature direct methanol fuel cells. Electrochim Acta 50:3280–3285CrossRef Xu W, Lu T, Liu C, Xing W (2005) Low methanol permeable composite Nafion/silica/PWA membranes for low temperature direct methanol fuel cells. Electrochim Acta 50:3280–3285CrossRef
9.
go back to reference Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112:2780–2832CrossRef Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112:2780–2832CrossRef
10.
go back to reference Navarra M, Abbati C, Scrosati B (2008) Properties and fuel cell performance of a Nafion-based, sulfated zirconia-added, composite membrane. J Power Sources 183:109–113CrossRef Navarra M, Abbati C, Scrosati B (2008) Properties and fuel cell performance of a Nafion-based, sulfated zirconia-added, composite membrane. J Power Sources 183:109–113CrossRef
11.
go back to reference Chen X-R, Ju Y-H, Mou C-Y (2007) Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification. J Phys Chem C 111:18731–18737CrossRef Chen X-R, Ju Y-H, Mou C-Y (2007) Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification. J Phys Chem C 111:18731–18737CrossRef
12.
go back to reference Mercera P, Van Ommen J, Doesburg E, Burggraaf A, Ross J (1992) Influence of ethanol washing of the hydrous precursor on the textural and structural properties of zirconia. J Mater Sci 27:4890–4898CrossRef Mercera P, Van Ommen J, Doesburg E, Burggraaf A, Ross J (1992) Influence of ethanol washing of the hydrous precursor on the textural and structural properties of zirconia. J Mater Sci 27:4890–4898CrossRef
13.
go back to reference Sigwadi R, Dhlamini M, Mokrani T, Nonjola P (2017) Effect of synthesis temperature on particles size and morphology of zirconium oxide nanoparticle. J Nanopart Res 50:18–31CrossRef Sigwadi R, Dhlamini M, Mokrani T, Nonjola P (2017) Effect of synthesis temperature on particles size and morphology of zirconium oxide nanoparticle. J Nanopart Res 50:18–31CrossRef
14.
go back to reference Sigwadi RA, Mavundla SE, Moloto N, Mokrani T (2016) Synthesis of zirconia-based solid acid nanoparticles for fuel cell application. J Energy Southern Africa 27:60–67CrossRef Sigwadi RA, Mavundla SE, Moloto N, Mokrani T (2016) Synthesis of zirconia-based solid acid nanoparticles for fuel cell application. J Energy Southern Africa 27:60–67CrossRef
15.
go back to reference Vaivars G, Mokrani T, Hendricks N, Linkov V (2004) Inorganic membranes based on zirconium phosphate for fuel cells. J Solid State Electrochem 8:882–885CrossRef Vaivars G, Mokrani T, Hendricks N, Linkov V (2004) Inorganic membranes based on zirconium phosphate for fuel cells. J Solid State Electrochem 8:882–885CrossRef
16.
go back to reference Sigwadi R, Ṋemavhola F, Dhlamini S, Mokrani T (2018) Mechanical strength of Nafion®/ZrO2 Nano-composite membrane. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME) 8:54–65CrossRef Sigwadi R, Ṋemavhola F, Dhlamini S, Mokrani T (2018) Mechanical strength of Nafion®/ZrO2 Nano-composite membrane. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME) 8:54–65CrossRef
17.
go back to reference Yu H, Ziegler C, Oszcipok M, Zobel M, Hebling C (2006) Hydrophilicity and hydrophobicity study of catalyst layers in proton exchange membrane fuel cells. Electrochim Acta 51:1199–1207CrossRef Yu H, Ziegler C, Oszcipok M, Zobel M, Hebling C (2006) Hydrophilicity and hydrophobicity study of catalyst layers in proton exchange membrane fuel cells. Electrochim Acta 51:1199–1207CrossRef
18.
go back to reference Fu R-Q, Woo J-J, Seo S-J, Lee J-S, Moon S-H (2008) Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network: preparation and characterizations. J Power Sources 179:458–466CrossRef Fu R-Q, Woo J-J, Seo S-J, Lee J-S, Moon S-H (2008) Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network: preparation and characterizations. J Power Sources 179:458–466CrossRef
19.
go back to reference Wu L, Zhou G, Liu X, Zhang Z, Li C, Xu T (2011) Environmentally friendly synthesis of alkaline anion exchange membrane for fuel cells via a solvent-free strategy. J Membr Sci 371:155–162CrossRef Wu L, Zhou G, Liu X, Zhang Z, Li C, Xu T (2011) Environmentally friendly synthesis of alkaline anion exchange membrane for fuel cells via a solvent-free strategy. J Membr Sci 371:155–162CrossRef
20.
go back to reference Di Noto V, Gliubizzi R, Negro E, Pace G (2006) Effect of SiO2 on relaxation phenomena and mechanism of ion conductivity of [Nafion/(SiO2) x] composite membranes. J Phys Chem B 110:24972–24986CrossRef Di Noto V, Gliubizzi R, Negro E, Pace G (2006) Effect of SiO2 on relaxation phenomena and mechanism of ion conductivity of [Nafion/(SiO2) x] composite membranes. J Phys Chem B 110:24972–24986CrossRef
21.
go back to reference Sarkar D, Mohapatra D, Ray S, Bhattacharyya S, Adak S, Mitra N (2007) Synthesis and characterization of sol–gel derived ZrO2 doped Al2O3 nanopowder. Ceram Int 33:1275–1282CrossRef Sarkar D, Mohapatra D, Ray S, Bhattacharyya S, Adak S, Mitra N (2007) Synthesis and characterization of sol–gel derived ZrO2 doped Al2O3 nanopowder. Ceram Int 33:1275–1282CrossRef
22.
go back to reference Stevens WJ, Meynen V, Bruijn E, Lebedev OI, Van Tendeloo G et al (2008) Mesoporous material formed by acidic hydrothermal assembly of silicalite-1 precursor nanoparticles in the absence of meso-templates. Microporous Mesoporous Mater 110:77–85CrossRef Stevens WJ, Meynen V, Bruijn E, Lebedev OI, Van Tendeloo G et al (2008) Mesoporous material formed by acidic hydrothermal assembly of silicalite-1 precursor nanoparticles in the absence of meso-templates. Microporous Mesoporous Mater 110:77–85CrossRef
23.
go back to reference Kinumoto T, Inaba M, Nakayama Y, Ogata K, Umebayashi R, Tasaka A, Iriyama Y, Abe T, Ogumi Z (2006) Durability of perfluorinated ionomer membrane against hydrogen peroxide. J Power Sources 158:1222–1228CrossRef Kinumoto T, Inaba M, Nakayama Y, Ogata K, Umebayashi R, Tasaka A, Iriyama Y, Abe T, Ogumi Z (2006) Durability of perfluorinated ionomer membrane against hydrogen peroxide. J Power Sources 158:1222–1228CrossRef
24.
go back to reference Li L, Pan Y, Chen L, Li G (2007) One-dimensional α-MnO2: trapping chemistry of tunnel structures, structural stability, and magnetic transitions. J Solid State Chem 180:2896–2904CrossRef Li L, Pan Y, Chen L, Li G (2007) One-dimensional α-MnO2: trapping chemistry of tunnel structures, structural stability, and magnetic transitions. J Solid State Chem 180:2896–2904CrossRef
25.
go back to reference Starkweather Jr HW (1982) Crystallinity in perfluorosulfonic acid ionomers and related polymers. Macromolecules 15:320–323CrossRef Starkweather Jr HW (1982) Crystallinity in perfluorosulfonic acid ionomers and related polymers. Macromolecules 15:320–323CrossRef
26.
go back to reference Li K, Ye G, Pan J, Zhang H, Pan M (2010) Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes. J Membr Sci 347:26–31CrossRef Li K, Ye G, Pan J, Zhang H, Pan M (2010) Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes. J Membr Sci 347:26–31CrossRef
27.
go back to reference Kyu T, Hashiyama M, Eisenberg A (1983) Dynamic mechanical studies of partially ionized and neutralized Nafion polymers. Can J Chem 61:680–687CrossRef Kyu T, Hashiyama M, Eisenberg A (1983) Dynamic mechanical studies of partially ionized and neutralized Nafion polymers. Can J Chem 61:680–687CrossRef
28.
go back to reference Zhai Y, Zhang H, Hu J, Yi B (2006) Preparation and characterization of sulfated zirconia (SO42−/ZrO2)/Nafion composite membranes for PEMFC operation at high temperature/low humidity. J Membr Sci 280:148–155CrossRef Zhai Y, Zhang H, Hu J, Yi B (2006) Preparation and characterization of sulfated zirconia (SO42−/ZrO2)/Nafion composite membranes for PEMFC operation at high temperature/low humidity. J Membr Sci 280:148–155CrossRef
29.
go back to reference Jalani NH, Dunn K, Datta R (2005) Synthesis and characterization of Nafion®-MO2 (M= Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells. Electrochim Acta 51:553–560CrossRef Jalani NH, Dunn K, Datta R (2005) Synthesis and characterization of Nafion®-MO2 (M= Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells. Electrochim Acta 51:553–560CrossRef
30.
go back to reference Zheng H, Mathe M (2011) Enhanced conductivity and stability of composite membranes based on poly (2, 5-benzimidazole) and zirconium oxide nanoparticles for fuel cells. J Power Sources 196:894–898CrossRef Zheng H, Mathe M (2011) Enhanced conductivity and stability of composite membranes based on poly (2, 5-benzimidazole) and zirconium oxide nanoparticles for fuel cells. J Power Sources 196:894–898CrossRef
31.
go back to reference James P, Elliott J, McMaster T, Newton J, Elliott A et al (2000) Hydration of Nafion® studied by AFM and X-ray scattering. J Mater Sci 35:5111–5119CrossRef James P, Elliott J, McMaster T, Newton J, Elliott A et al (2000) Hydration of Nafion® studied by AFM and X-ray scattering. J Mater Sci 35:5111–5119CrossRef
32.
go back to reference Velayutham P, Sahu AK, Parthasarathy S (2017) A Nafion-ceria composite membrane electrolyte for reduced methanol crossover in direct methanol fuel cells. Energies 10:259CrossRef Velayutham P, Sahu AK, Parthasarathy S (2017) A Nafion-ceria composite membrane electrolyte for reduced methanol crossover in direct methanol fuel cells. Energies 10:259CrossRef
33.
go back to reference Li KYG, Pan J, Zhang H, Pan M (2010) Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes. J Membr Sci 347:26–31CrossRef Li KYG, Pan J, Zhang H, Pan M (2010) Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes. J Membr Sci 347:26–31CrossRef
34.
go back to reference Sigwadi R, Dhlamini M, Mokrani T, ṊEMAVHOLA F (2017) Wettability and mechanical STRENGTH of modified NAFION® nanocomposite membrane for fuel cell. Digest Journal of Nanomaterials & Biostructures (DJNB):12 Sigwadi R, Dhlamini M, Mokrani T, ṊEMAVHOLA F (2017) Wettability and mechanical STRENGTH of modified NAFION® nanocomposite membrane for fuel cell. Digest Journal of Nanomaterials & Biostructures (DJNB):12
35.
go back to reference Msomi PF, Ndungu PG, Ramontja J (2018) Quaternized poly (2.6 dimethyl – 1.4 phenylene oxide)/Polysulfone anion exchange membrane reinforced with graphene oxide for methanol alkaline fuel cell application. J Polym Res 25:143–154 Msomi PF, Ndungu PG, Ramontja J (2018) Quaternized poly (2.6 dimethyl – 1.4 phenylene oxide)/Polysulfone anion exchange membrane reinforced with graphene oxide for methanol alkaline fuel cell application. J Polym Res 25:143–154
36.
go back to reference Sacca AGI, Carbone A, Pedicini R, Passalacqua E (2006) ZrO 2–Nafion composite membranes for polymer electrolyte fuel cells (PEFCs) at intermediate temperature. J Power Sources 163:47–51CrossRef Sacca AGI, Carbone A, Pedicini R, Passalacqua E (2006) ZrO 2–Nafion composite membranes for polymer electrolyte fuel cells (PEFCs) at intermediate temperature. J Power Sources 163:47–51CrossRef
37.
go back to reference D’Epifanio A, Navarra MA, Weise FC, Mecheri B, Farrington J et al (2009) Composite nafion/sulfated zirconia membranes: effect of the filler surface properties on proton transport characteristics. Chem Mater 22:813–821CrossRef D’Epifanio A, Navarra MA, Weise FC, Mecheri B, Farrington J et al (2009) Composite nafion/sulfated zirconia membranes: effect of the filler surface properties on proton transport characteristics. Chem Mater 22:813–821CrossRef
38.
go back to reference Zheng J, Bi W, Dong X, Zhu J, Mao H, Li S, Zhang S (2016) High performance tetra-sulfonated poly (p-phenylene-co-aryl ether ketone) membranes with microblock moieties for passive direct methanol fuel cells. J Membr Sci 517:47–56CrossRef Zheng J, Bi W, Dong X, Zhu J, Mao H, Li S, Zhang S (2016) High performance tetra-sulfonated poly (p-phenylene-co-aryl ether ketone) membranes with microblock moieties for passive direct methanol fuel cells. J Membr Sci 517:47–56CrossRef
39.
go back to reference Zhao D, Yi B, Zhang H, Yu H (2010) MnO2/SiO2–SO3H nanocomposite as hydrogen peroxide scavenger for durability improvement in proton exchange membranes. J Membr Sci 346:143–151CrossRef Zhao D, Yi B, Zhang H, Yu H (2010) MnO2/SiO2–SO3H nanocomposite as hydrogen peroxide scavenger for durability improvement in proton exchange membranes. J Membr Sci 346:143–151CrossRef
40.
go back to reference Chien H-C, Tsai L-D, Huang C-P, C-y K, Lin J-N, Chang F-C (2013) Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells. Int J Hydrog Energy 38:13792–13801CrossRef Chien H-C, Tsai L-D, Huang C-P, C-y K, Lin J-N, Chang F-C (2013) Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells. Int J Hydrog Energy 38:13792–13801CrossRef
41.
go back to reference Hudiono Y, Choi S, Shu S, Koros WJ, Tsapatsis M, Nair S (2009) Porous layered oxide/Nafion® nanocomposite membranes for direct methanol fuel cell applications. Microporous Mesoporous Mater 118:427–434CrossRef Hudiono Y, Choi S, Shu S, Koros WJ, Tsapatsis M, Nair S (2009) Porous layered oxide/Nafion® nanocomposite membranes for direct methanol fuel cell applications. Microporous Mesoporous Mater 118:427–434CrossRef
42.
go back to reference Lee CH, Hwang SY, Sohn JY, Park HB, Kim JY, Lee YM (2006) Water-stable crosslinked sulfonated polyimide–silica nanocomposite containing interpenetrating polymer network. J Power Sources 163:339–348CrossRef Lee CH, Hwang SY, Sohn JY, Park HB, Kim JY, Lee YM (2006) Water-stable crosslinked sulfonated polyimide–silica nanocomposite containing interpenetrating polymer network. J Power Sources 163:339–348CrossRef
43.
go back to reference Ren SSG, Li C, Song S, Xin Q, Yang X (2006) Sulfated zirconia–Nafion composite membranes for higher temperature direct methanol fuel cells. J Power Sources 157:724–726CrossRef Ren SSG, Li C, Song S, Xin Q, Yang X (2006) Sulfated zirconia–Nafion composite membranes for higher temperature direct methanol fuel cells. J Power Sources 157:724–726CrossRef
44.
go back to reference Yuan JZG, Pu H (2008) Preparation and properties of Nafion®/hollow silica spheres composite membranes. J Membr Sci 325:742–748CrossRef Yuan JZG, Pu H (2008) Preparation and properties of Nafion®/hollow silica spheres composite membranes. J Membr Sci 325:742–748CrossRef
45.
go back to reference Chen ZHB, Li W, Wang X, Deng W, Munoz R, Yan Y (2006) Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell. Chem Mater 18:5669–5675CrossRef Chen ZHB, Li W, Wang X, Deng W, Munoz R, Yan Y (2006) Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell. Chem Mater 18:5669–5675CrossRef
46.
go back to reference Cai Z, Li L, Su L, Zhang Y (2012) Supercritical carbon dioxide treated Nafion 212 commercial membranes for direct methanol fuel cells. Electrochem Commun 14:9–12CrossRef Cai Z, Li L, Su L, Zhang Y (2012) Supercritical carbon dioxide treated Nafion 212 commercial membranes for direct methanol fuel cells. Electrochem Commun 14:9–12CrossRef
47.
go back to reference Parthiban VSAK, Parthasarathy S (2017) A Nafion-ceria composite membrane electrolyte for reduced methanol crossover in direct methanol fuel cells. Energies 10:259–271CrossRef Parthiban VSAK, Parthasarathy S (2017) A Nafion-ceria composite membrane electrolyte for reduced methanol crossover in direct methanol fuel cells. Energies 10:259–271CrossRef
48.
go back to reference Dutta K, Das S, Kundu PP (2015) Partially sulfonated polyaniline induced high ion-exchange capacity and selectivity of Nafion membrane for application in direct methanol fuel cells. J Membr Sci 473:94–101CrossRef Dutta K, Das S, Kundu PP (2015) Partially sulfonated polyaniline induced high ion-exchange capacity and selectivity of Nafion membrane for application in direct methanol fuel cells. J Membr Sci 473:94–101CrossRef
49.
go back to reference Hasani-Sadrabadi MMDE, Mokarramd N, Majedi FS, Jacob KI (2012) Triple-layer proton exchange membranes based on chitosan biopolymer with reduced methanol crossover for high-performance direct methanol fuel cells application. Polymer 53:2643–2651CrossRef Hasani-Sadrabadi MMDE, Mokarramd N, Majedi FS, Jacob KI (2012) Triple-layer proton exchange membranes based on chitosan biopolymer with reduced methanol crossover for high-performance direct methanol fuel cells application. Polymer 53:2643–2651CrossRef
Metadata
Title
Nafion®/ sulfated zirconia oxide-nanocomposite membrane: the effects of ammonia sulfate on fuel permeability
Authors
Rudzani Sigwadi
Touhami Mokrani
Mokhotjwa S. Dhlamini
Patrick Nonjola
Phumlani F. Msomi
Publication date
01-05-2019
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 5/2019
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-019-1760-2

Other articles of this Issue 5/2019

Journal of Polymer Research 5/2019 Go to the issue

Premium Partners