Skip to main content
Erschienen in: Journal of Polymer Research 5/2019

01.05.2019 | ORIGINAL PAPER

Nafion®/ sulfated zirconia oxide-nanocomposite membrane: the effects of ammonia sulfate on fuel permeability

verfasst von: Rudzani Sigwadi, Touhami Mokrani, Mokhotjwa S. Dhlamini, Patrick Nonjola, Phumlani F. Msomi

Erschienen in: Journal of Polymer Research | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nafion®/sulfated zirconium nanocomposite membranes were prepared by incorporating sulfonated zirconia with ammonia sulfate and sulphuric acid, which enhances proton conductivity and reduces fuel crossover on Nafion® membrane as they sustain water affinity and strong acidity. XRD, AFM, SEM, FTIR and TGA were used to investigate the morphology and high temperature degradation of nanocomposite membranes compared with commercial Nafion® 117 membrane. The results show that nanocomposite membranes have low water content angle, improved thermal degradation and higher conductivity than commercial Nafion® 117 membrane, which holds great promise for fuel cell application. The Nafion®/ sulfated zirconia nanocomposite membrane obtained a higher IEC and water uptake due to the presence of SO42− providing extra acid sites for water diffusion. The proton conductivity calculated from impedance spectroscopy measurements were 7.891 S/cm and 0.146 S/cm, respectively, when compared with 0.113 S/cm of commercial Nafion® 117 membrane. The Nafion®/sulfated zirconium nanocomposite membranes showed a highest power density of 183 m. cm−2 when evaluated using a direct single cell methanol fuel cell.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Service RF (2002) Fuel cells. Shrinking fuel cells promise power in your pocket. Science (New York, NY) 296:1222CrossRef Service RF (2002) Fuel cells. Shrinking fuel cells promise power in your pocket. Science (New York, NY) 296:1222CrossRef
2.
Zurück zum Zitat Savadogo O (2004) Emerging membranes for electrochemical systems: Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications. J Power Sources 127:135–161CrossRef Savadogo O (2004) Emerging membranes for electrochemical systems: Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications. J Power Sources 127:135–161CrossRef
3.
Zurück zum Zitat Santiago E, Isidoro R, Dresch M, Matos B, Linardi M, Fonseca F (2009) Nafion–TiO 2 hybrid electrolytes for stable operation of PEM fuel cells at high temperature. Electrochim Acta 54:4111–4117CrossRef Santiago E, Isidoro R, Dresch M, Matos B, Linardi M, Fonseca F (2009) Nafion–TiO 2 hybrid electrolytes for stable operation of PEM fuel cells at high temperature. Electrochim Acta 54:4111–4117CrossRef
4.
Zurück zum Zitat Zhengbang W, Tang H, Mu P (2011) Self-assembly of durable Nafion/TiO 2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells. J Membr Sci 369:250–257CrossRef Zhengbang W, Tang H, Mu P (2011) Self-assembly of durable Nafion/TiO 2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells. J Membr Sci 369:250–257CrossRef
5.
Zurück zum Zitat Savadogo O (1998) Emerging membrane for electrochemical systems:(I) solid polymer electrolyte membranes for fuel cell systems. J New Mater Electrochem Syst 1:47–66 Savadogo O (1998) Emerging membrane for electrochemical systems:(I) solid polymer electrolyte membranes for fuel cell systems. J New Mater Electrochem Syst 1:47–66
6.
Zurück zum Zitat Kong X (2010) Characterization of proton exchange materials for fuel cells by solid state nuclear magnetic resonance Kong X (2010) Characterization of proton exchange materials for fuel cells by solid state nuclear magnetic resonance
7.
Zurück zum Zitat Ghassemzadeh L, Pace G, Di Noto V, Müller K (2011) Effect of SiO 2 on the dynamics of proton conducting [Nafion/(SiO 2) X] composite membranes: a solid-state 19 F NMR study. Phys Chem Chem Phys 13:9327–9334CrossRef Ghassemzadeh L, Pace G, Di Noto V, Müller K (2011) Effect of SiO 2 on the dynamics of proton conducting [Nafion/(SiO 2) X] composite membranes: a solid-state 19 F NMR study. Phys Chem Chem Phys 13:9327–9334CrossRef
8.
Zurück zum Zitat Xu W, Lu T, Liu C, Xing W (2005) Low methanol permeable composite Nafion/silica/PWA membranes for low temperature direct methanol fuel cells. Electrochim Acta 50:3280–3285CrossRef Xu W, Lu T, Liu C, Xing W (2005) Low methanol permeable composite Nafion/silica/PWA membranes for low temperature direct methanol fuel cells. Electrochim Acta 50:3280–3285CrossRef
9.
Zurück zum Zitat Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112:2780–2832CrossRef Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112:2780–2832CrossRef
10.
Zurück zum Zitat Navarra M, Abbati C, Scrosati B (2008) Properties and fuel cell performance of a Nafion-based, sulfated zirconia-added, composite membrane. J Power Sources 183:109–113CrossRef Navarra M, Abbati C, Scrosati B (2008) Properties and fuel cell performance of a Nafion-based, sulfated zirconia-added, composite membrane. J Power Sources 183:109–113CrossRef
11.
Zurück zum Zitat Chen X-R, Ju Y-H, Mou C-Y (2007) Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification. J Phys Chem C 111:18731–18737CrossRef Chen X-R, Ju Y-H, Mou C-Y (2007) Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification. J Phys Chem C 111:18731–18737CrossRef
12.
Zurück zum Zitat Mercera P, Van Ommen J, Doesburg E, Burggraaf A, Ross J (1992) Influence of ethanol washing of the hydrous precursor on the textural and structural properties of zirconia. J Mater Sci 27:4890–4898CrossRef Mercera P, Van Ommen J, Doesburg E, Burggraaf A, Ross J (1992) Influence of ethanol washing of the hydrous precursor on the textural and structural properties of zirconia. J Mater Sci 27:4890–4898CrossRef
13.
Zurück zum Zitat Sigwadi R, Dhlamini M, Mokrani T, Nonjola P (2017) Effect of synthesis temperature on particles size and morphology of zirconium oxide nanoparticle. J Nanopart Res 50:18–31CrossRef Sigwadi R, Dhlamini M, Mokrani T, Nonjola P (2017) Effect of synthesis temperature on particles size and morphology of zirconium oxide nanoparticle. J Nanopart Res 50:18–31CrossRef
14.
Zurück zum Zitat Sigwadi RA, Mavundla SE, Moloto N, Mokrani T (2016) Synthesis of zirconia-based solid acid nanoparticles for fuel cell application. J Energy Southern Africa 27:60–67CrossRef Sigwadi RA, Mavundla SE, Moloto N, Mokrani T (2016) Synthesis of zirconia-based solid acid nanoparticles for fuel cell application. J Energy Southern Africa 27:60–67CrossRef
15.
Zurück zum Zitat Vaivars G, Mokrani T, Hendricks N, Linkov V (2004) Inorganic membranes based on zirconium phosphate for fuel cells. J Solid State Electrochem 8:882–885CrossRef Vaivars G, Mokrani T, Hendricks N, Linkov V (2004) Inorganic membranes based on zirconium phosphate for fuel cells. J Solid State Electrochem 8:882–885CrossRef
16.
Zurück zum Zitat Sigwadi R, Ṋemavhola F, Dhlamini S, Mokrani T (2018) Mechanical strength of Nafion®/ZrO2 Nano-composite membrane. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME) 8:54–65CrossRef Sigwadi R, Ṋemavhola F, Dhlamini S, Mokrani T (2018) Mechanical strength of Nafion®/ZrO2 Nano-composite membrane. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME) 8:54–65CrossRef
17.
Zurück zum Zitat Yu H, Ziegler C, Oszcipok M, Zobel M, Hebling C (2006) Hydrophilicity and hydrophobicity study of catalyst layers in proton exchange membrane fuel cells. Electrochim Acta 51:1199–1207CrossRef Yu H, Ziegler C, Oszcipok M, Zobel M, Hebling C (2006) Hydrophilicity and hydrophobicity study of catalyst layers in proton exchange membrane fuel cells. Electrochim Acta 51:1199–1207CrossRef
18.
Zurück zum Zitat Fu R-Q, Woo J-J, Seo S-J, Lee J-S, Moon S-H (2008) Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network: preparation and characterizations. J Power Sources 179:458–466CrossRef Fu R-Q, Woo J-J, Seo S-J, Lee J-S, Moon S-H (2008) Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network: preparation and characterizations. J Power Sources 179:458–466CrossRef
19.
Zurück zum Zitat Wu L, Zhou G, Liu X, Zhang Z, Li C, Xu T (2011) Environmentally friendly synthesis of alkaline anion exchange membrane for fuel cells via a solvent-free strategy. J Membr Sci 371:155–162CrossRef Wu L, Zhou G, Liu X, Zhang Z, Li C, Xu T (2011) Environmentally friendly synthesis of alkaline anion exchange membrane for fuel cells via a solvent-free strategy. J Membr Sci 371:155–162CrossRef
20.
Zurück zum Zitat Di Noto V, Gliubizzi R, Negro E, Pace G (2006) Effect of SiO2 on relaxation phenomena and mechanism of ion conductivity of [Nafion/(SiO2) x] composite membranes. J Phys Chem B 110:24972–24986CrossRef Di Noto V, Gliubizzi R, Negro E, Pace G (2006) Effect of SiO2 on relaxation phenomena and mechanism of ion conductivity of [Nafion/(SiO2) x] composite membranes. J Phys Chem B 110:24972–24986CrossRef
21.
Zurück zum Zitat Sarkar D, Mohapatra D, Ray S, Bhattacharyya S, Adak S, Mitra N (2007) Synthesis and characterization of sol–gel derived ZrO2 doped Al2O3 nanopowder. Ceram Int 33:1275–1282CrossRef Sarkar D, Mohapatra D, Ray S, Bhattacharyya S, Adak S, Mitra N (2007) Synthesis and characterization of sol–gel derived ZrO2 doped Al2O3 nanopowder. Ceram Int 33:1275–1282CrossRef
22.
Zurück zum Zitat Stevens WJ, Meynen V, Bruijn E, Lebedev OI, Van Tendeloo G et al (2008) Mesoporous material formed by acidic hydrothermal assembly of silicalite-1 precursor nanoparticles in the absence of meso-templates. Microporous Mesoporous Mater 110:77–85CrossRef Stevens WJ, Meynen V, Bruijn E, Lebedev OI, Van Tendeloo G et al (2008) Mesoporous material formed by acidic hydrothermal assembly of silicalite-1 precursor nanoparticles in the absence of meso-templates. Microporous Mesoporous Mater 110:77–85CrossRef
23.
Zurück zum Zitat Kinumoto T, Inaba M, Nakayama Y, Ogata K, Umebayashi R, Tasaka A, Iriyama Y, Abe T, Ogumi Z (2006) Durability of perfluorinated ionomer membrane against hydrogen peroxide. J Power Sources 158:1222–1228CrossRef Kinumoto T, Inaba M, Nakayama Y, Ogata K, Umebayashi R, Tasaka A, Iriyama Y, Abe T, Ogumi Z (2006) Durability of perfluorinated ionomer membrane against hydrogen peroxide. J Power Sources 158:1222–1228CrossRef
24.
Zurück zum Zitat Li L, Pan Y, Chen L, Li G (2007) One-dimensional α-MnO2: trapping chemistry of tunnel structures, structural stability, and magnetic transitions. J Solid State Chem 180:2896–2904CrossRef Li L, Pan Y, Chen L, Li G (2007) One-dimensional α-MnO2: trapping chemistry of tunnel structures, structural stability, and magnetic transitions. J Solid State Chem 180:2896–2904CrossRef
25.
Zurück zum Zitat Starkweather Jr HW (1982) Crystallinity in perfluorosulfonic acid ionomers and related polymers. Macromolecules 15:320–323CrossRef Starkweather Jr HW (1982) Crystallinity in perfluorosulfonic acid ionomers and related polymers. Macromolecules 15:320–323CrossRef
26.
Zurück zum Zitat Li K, Ye G, Pan J, Zhang H, Pan M (2010) Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes. J Membr Sci 347:26–31CrossRef Li K, Ye G, Pan J, Zhang H, Pan M (2010) Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes. J Membr Sci 347:26–31CrossRef
27.
Zurück zum Zitat Kyu T, Hashiyama M, Eisenberg A (1983) Dynamic mechanical studies of partially ionized and neutralized Nafion polymers. Can J Chem 61:680–687CrossRef Kyu T, Hashiyama M, Eisenberg A (1983) Dynamic mechanical studies of partially ionized and neutralized Nafion polymers. Can J Chem 61:680–687CrossRef
28.
Zurück zum Zitat Zhai Y, Zhang H, Hu J, Yi B (2006) Preparation and characterization of sulfated zirconia (SO42−/ZrO2)/Nafion composite membranes for PEMFC operation at high temperature/low humidity. J Membr Sci 280:148–155CrossRef Zhai Y, Zhang H, Hu J, Yi B (2006) Preparation and characterization of sulfated zirconia (SO42−/ZrO2)/Nafion composite membranes for PEMFC operation at high temperature/low humidity. J Membr Sci 280:148–155CrossRef
29.
Zurück zum Zitat Jalani NH, Dunn K, Datta R (2005) Synthesis and characterization of Nafion®-MO2 (M= Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells. Electrochim Acta 51:553–560CrossRef Jalani NH, Dunn K, Datta R (2005) Synthesis and characterization of Nafion®-MO2 (M= Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells. Electrochim Acta 51:553–560CrossRef
30.
Zurück zum Zitat Zheng H, Mathe M (2011) Enhanced conductivity and stability of composite membranes based on poly (2, 5-benzimidazole) and zirconium oxide nanoparticles for fuel cells. J Power Sources 196:894–898CrossRef Zheng H, Mathe M (2011) Enhanced conductivity and stability of composite membranes based on poly (2, 5-benzimidazole) and zirconium oxide nanoparticles for fuel cells. J Power Sources 196:894–898CrossRef
31.
Zurück zum Zitat James P, Elliott J, McMaster T, Newton J, Elliott A et al (2000) Hydration of Nafion® studied by AFM and X-ray scattering. J Mater Sci 35:5111–5119CrossRef James P, Elliott J, McMaster T, Newton J, Elliott A et al (2000) Hydration of Nafion® studied by AFM and X-ray scattering. J Mater Sci 35:5111–5119CrossRef
32.
Zurück zum Zitat Velayutham P, Sahu AK, Parthasarathy S (2017) A Nafion-ceria composite membrane electrolyte for reduced methanol crossover in direct methanol fuel cells. Energies 10:259CrossRef Velayutham P, Sahu AK, Parthasarathy S (2017) A Nafion-ceria composite membrane electrolyte for reduced methanol crossover in direct methanol fuel cells. Energies 10:259CrossRef
33.
Zurück zum Zitat Li KYG, Pan J, Zhang H, Pan M (2010) Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes. J Membr Sci 347:26–31CrossRef Li KYG, Pan J, Zhang H, Pan M (2010) Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes. J Membr Sci 347:26–31CrossRef
34.
Zurück zum Zitat Sigwadi R, Dhlamini M, Mokrani T, ṊEMAVHOLA F (2017) Wettability and mechanical STRENGTH of modified NAFION® nanocomposite membrane for fuel cell. Digest Journal of Nanomaterials & Biostructures (DJNB):12 Sigwadi R, Dhlamini M, Mokrani T, ṊEMAVHOLA F (2017) Wettability and mechanical STRENGTH of modified NAFION® nanocomposite membrane for fuel cell. Digest Journal of Nanomaterials & Biostructures (DJNB):12
35.
Zurück zum Zitat Msomi PF, Ndungu PG, Ramontja J (2018) Quaternized poly (2.6 dimethyl – 1.4 phenylene oxide)/Polysulfone anion exchange membrane reinforced with graphene oxide for methanol alkaline fuel cell application. J Polym Res 25:143–154 Msomi PF, Ndungu PG, Ramontja J (2018) Quaternized poly (2.6 dimethyl – 1.4 phenylene oxide)/Polysulfone anion exchange membrane reinforced with graphene oxide for methanol alkaline fuel cell application. J Polym Res 25:143–154
36.
Zurück zum Zitat Sacca AGI, Carbone A, Pedicini R, Passalacqua E (2006) ZrO 2–Nafion composite membranes for polymer electrolyte fuel cells (PEFCs) at intermediate temperature. J Power Sources 163:47–51CrossRef Sacca AGI, Carbone A, Pedicini R, Passalacqua E (2006) ZrO 2–Nafion composite membranes for polymer electrolyte fuel cells (PEFCs) at intermediate temperature. J Power Sources 163:47–51CrossRef
37.
Zurück zum Zitat D’Epifanio A, Navarra MA, Weise FC, Mecheri B, Farrington J et al (2009) Composite nafion/sulfated zirconia membranes: effect of the filler surface properties on proton transport characteristics. Chem Mater 22:813–821CrossRef D’Epifanio A, Navarra MA, Weise FC, Mecheri B, Farrington J et al (2009) Composite nafion/sulfated zirconia membranes: effect of the filler surface properties on proton transport characteristics. Chem Mater 22:813–821CrossRef
38.
Zurück zum Zitat Zheng J, Bi W, Dong X, Zhu J, Mao H, Li S, Zhang S (2016) High performance tetra-sulfonated poly (p-phenylene-co-aryl ether ketone) membranes with microblock moieties for passive direct methanol fuel cells. J Membr Sci 517:47–56CrossRef Zheng J, Bi W, Dong X, Zhu J, Mao H, Li S, Zhang S (2016) High performance tetra-sulfonated poly (p-phenylene-co-aryl ether ketone) membranes with microblock moieties for passive direct methanol fuel cells. J Membr Sci 517:47–56CrossRef
39.
Zurück zum Zitat Zhao D, Yi B, Zhang H, Yu H (2010) MnO2/SiO2–SO3H nanocomposite as hydrogen peroxide scavenger for durability improvement in proton exchange membranes. J Membr Sci 346:143–151CrossRef Zhao D, Yi B, Zhang H, Yu H (2010) MnO2/SiO2–SO3H nanocomposite as hydrogen peroxide scavenger for durability improvement in proton exchange membranes. J Membr Sci 346:143–151CrossRef
40.
Zurück zum Zitat Chien H-C, Tsai L-D, Huang C-P, C-y K, Lin J-N, Chang F-C (2013) Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells. Int J Hydrog Energy 38:13792–13801CrossRef Chien H-C, Tsai L-D, Huang C-P, C-y K, Lin J-N, Chang F-C (2013) Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells. Int J Hydrog Energy 38:13792–13801CrossRef
41.
Zurück zum Zitat Hudiono Y, Choi S, Shu S, Koros WJ, Tsapatsis M, Nair S (2009) Porous layered oxide/Nafion® nanocomposite membranes for direct methanol fuel cell applications. Microporous Mesoporous Mater 118:427–434CrossRef Hudiono Y, Choi S, Shu S, Koros WJ, Tsapatsis M, Nair S (2009) Porous layered oxide/Nafion® nanocomposite membranes for direct methanol fuel cell applications. Microporous Mesoporous Mater 118:427–434CrossRef
42.
Zurück zum Zitat Lee CH, Hwang SY, Sohn JY, Park HB, Kim JY, Lee YM (2006) Water-stable crosslinked sulfonated polyimide–silica nanocomposite containing interpenetrating polymer network. J Power Sources 163:339–348CrossRef Lee CH, Hwang SY, Sohn JY, Park HB, Kim JY, Lee YM (2006) Water-stable crosslinked sulfonated polyimide–silica nanocomposite containing interpenetrating polymer network. J Power Sources 163:339–348CrossRef
43.
Zurück zum Zitat Ren SSG, Li C, Song S, Xin Q, Yang X (2006) Sulfated zirconia–Nafion composite membranes for higher temperature direct methanol fuel cells. J Power Sources 157:724–726CrossRef Ren SSG, Li C, Song S, Xin Q, Yang X (2006) Sulfated zirconia–Nafion composite membranes for higher temperature direct methanol fuel cells. J Power Sources 157:724–726CrossRef
44.
Zurück zum Zitat Yuan JZG, Pu H (2008) Preparation and properties of Nafion®/hollow silica spheres composite membranes. J Membr Sci 325:742–748CrossRef Yuan JZG, Pu H (2008) Preparation and properties of Nafion®/hollow silica spheres composite membranes. J Membr Sci 325:742–748CrossRef
45.
Zurück zum Zitat Chen ZHB, Li W, Wang X, Deng W, Munoz R, Yan Y (2006) Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell. Chem Mater 18:5669–5675CrossRef Chen ZHB, Li W, Wang X, Deng W, Munoz R, Yan Y (2006) Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell. Chem Mater 18:5669–5675CrossRef
46.
Zurück zum Zitat Cai Z, Li L, Su L, Zhang Y (2012) Supercritical carbon dioxide treated Nafion 212 commercial membranes for direct methanol fuel cells. Electrochem Commun 14:9–12CrossRef Cai Z, Li L, Su L, Zhang Y (2012) Supercritical carbon dioxide treated Nafion 212 commercial membranes for direct methanol fuel cells. Electrochem Commun 14:9–12CrossRef
47.
Zurück zum Zitat Parthiban VSAK, Parthasarathy S (2017) A Nafion-ceria composite membrane electrolyte for reduced methanol crossover in direct methanol fuel cells. Energies 10:259–271CrossRef Parthiban VSAK, Parthasarathy S (2017) A Nafion-ceria composite membrane electrolyte for reduced methanol crossover in direct methanol fuel cells. Energies 10:259–271CrossRef
48.
Zurück zum Zitat Dutta K, Das S, Kundu PP (2015) Partially sulfonated polyaniline induced high ion-exchange capacity and selectivity of Nafion membrane for application in direct methanol fuel cells. J Membr Sci 473:94–101CrossRef Dutta K, Das S, Kundu PP (2015) Partially sulfonated polyaniline induced high ion-exchange capacity and selectivity of Nafion membrane for application in direct methanol fuel cells. J Membr Sci 473:94–101CrossRef
49.
Zurück zum Zitat Hasani-Sadrabadi MMDE, Mokarramd N, Majedi FS, Jacob KI (2012) Triple-layer proton exchange membranes based on chitosan biopolymer with reduced methanol crossover for high-performance direct methanol fuel cells application. Polymer 53:2643–2651CrossRef Hasani-Sadrabadi MMDE, Mokarramd N, Majedi FS, Jacob KI (2012) Triple-layer proton exchange membranes based on chitosan biopolymer with reduced methanol crossover for high-performance direct methanol fuel cells application. Polymer 53:2643–2651CrossRef
Metadaten
Titel
Nafion®/ sulfated zirconia oxide-nanocomposite membrane: the effects of ammonia sulfate on fuel permeability
verfasst von
Rudzani Sigwadi
Touhami Mokrani
Mokhotjwa S. Dhlamini
Patrick Nonjola
Phumlani F. Msomi
Publikationsdatum
01.05.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 5/2019
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-019-1760-2

Weitere Artikel der Ausgabe 5/2019

Journal of Polymer Research 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.