Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 11/2017

20-03-2017

Near-infrared quantum cutting and energy transfer mechanism in Lu2O3: Tm3+/Yb3+ phosphor for high-efficiency photovoltaics

Authors: Wen Liu, Jiahua Zhang, Zhendong Hao, Guotao Xiang, LiangLiang Zhang, Xia Zhang, Guohui Pan, Yongshi Luo, Haifeng Zhao, Huajun Wu

Published in: Journal of Materials Science: Materials in Electronics | Issue 11/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Near-infrared downconversion phenomenon has been demonstrated in Lu2O3: Tm3+/Yb3+ phosphor upon direct excitation of Tm3+:1G4 level at 463 nm. The efficient energy transfer from Tm3+: 1G4 → Yb: 2F5/2 has been elucidated by the excitation spectra, the visible and NIR spectra as well as the decay curves of Tm: 1G4 state. The mechanism of downconversion in Lu2O3:Tm3+/Yb3+ has been discussed in detail. According to analysis of the dependence of the initial transfer rate over Yb3+ ion concentration, it could be included that energy transfer (ET) from Tm3+ to Yb3+ is a single-step ET process instead of a cooperative one. By varying the Yb3+ concentrations, we obtain the Lu2O3: 0.2%Tm3+/30%Yb3+ sample with theoretical quantum efficiency as high as 148.2%. Because the excited state of Yb3+ just above the band edge of crystalline silicon, it suggested that Lu2O3: Tm3+/Yb3+ sample will be beneficial to improve the conversion efficiency of c-Si solar cells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S.E. Habas, HAS Platt, MFAM van Hest et al., Low-cost inorganic solar cells: from ink to printed device. Chem. Rev. 110(11), 6571–6594 (2010)CrossRef S.E. Habas, HAS Platt, MFAM van Hest et al., Low-cost inorganic solar cells: from ink to printed device. Chem. Rev. 110(11), 6571–6594 (2010)CrossRef
2.
go back to reference K. Lee, J. Lee, B.A. Mazor et al., Transforming the cost of solar-to-electrical energy conversion: Integrating thin-film GaAs solar cells with non-tracking mini-concentrators. Light 4(5), e288 (2015)CrossRef K. Lee, J. Lee, B.A. Mazor et al., Transforming the cost of solar-to-electrical energy conversion: Integrating thin-film GaAs solar cells with non-tracking mini-concentrators. Light 4(5), e288 (2015)CrossRef
3.
go back to reference K. Yu, J. Chen, Enhancing solar cell efficiencies through 1-D nanostructures. Nanoscale Res. Lett. 4(1), 1 (2008)CrossRef K. Yu, J. Chen, Enhancing solar cell efficiencies through 1-D nanostructures. Nanoscale Res. Lett. 4(1), 1 (2008)CrossRef
4.
go back to reference B.M. van der Ende, L. Aarts, A. Meijerink, Near-infrared quantum cutting for photovoltaics. Adv. Mater. 21(30), 3073–3077 (2009)CrossRef B.M. van der Ende, L. Aarts, A. Meijerink, Near-infrared quantum cutting for photovoltaics. Adv. Mater. 21(30), 3073–3077 (2009)CrossRef
5.
go back to reference J. Peet, J.Y. Kim, N.E. Coates et al., Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 6(7), 497–500 (2007)CrossRef J. Peet, J.Y. Kim, N.E. Coates et al., Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 6(7), 497–500 (2007)CrossRef
6.
go back to reference M. Al-Ibrahim, O. Ambacher, S. Sensfuss et al., Effects of solvent and annealing on the improved performance of solar cells based on poly (3-hexylthiophene): fullerene. Appl. Phys. Lett. 86(20), 201120 (2005)CrossRef M. Al-Ibrahim, O. Ambacher, S. Sensfuss et al., Effects of solvent and annealing on the improved performance of solar cells based on poly (3-hexylthiophene): fullerene. Appl. Phys. Lett. 86(20), 201120 (2005)CrossRef
7.
go back to reference X. Huang, S. Han, W. Huang et al., Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42(1), 173–201 (2013)CrossRef X. Huang, S. Han, W. Huang et al., Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42(1), 173–201 (2013)CrossRef
8.
go back to reference E.D. Kosten, J.H. Atwater, J. Parsons et al., Highly efficient GaAs solar cells by limiting light emission angle. Light. Sci. Appl. 2(1), e45 (2013) E.D. Kosten, J.H. Atwater, J. Parsons et al., Highly efficient GaAs solar cells by limiting light emission angle. Light. Sci. Appl. 2(1), e45 (2013)
9.
go back to reference J.C. Arvesen, R.N. Griffin, B.D. Pearson, Determination of extraterrestrial solar spectral irradiance from a research aircraft. Appl. Optics 8(11), 2215–2232 (1969)CrossRef J.C. Arvesen, R.N. Griffin, B.D. Pearson, Determination of extraterrestrial solar spectral irradiance from a research aircraft. Appl. Optics 8(11), 2215–2232 (1969)CrossRef
10.
go back to reference B.S. Richards, Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers. Sol. Energy Mater. Sol. cells 90(15), 2329–2337 (2006)CrossRef B.S. Richards, Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers. Sol. Energy Mater. Sol. cells 90(15), 2329–2337 (2006)CrossRef
11.
go back to reference B.M. van der Ende, L. Aarts, A. Meijerink, Lanthanide ions as spectral converters for solar cells. Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009)CrossRef B.M. van der Ende, L. Aarts, A. Meijerink, Lanthanide ions as spectral converters for solar cells. Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009)CrossRef
12.
go back to reference C. Strümpel, M. McCann, G. Beaucarne et al., Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials. Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007)CrossRef C. Strümpel, M. McCann, G. Beaucarne et al., Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials. Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007)CrossRef
13.
go back to reference Q.Y. Zhang, X.Y. Huang, Recent progress in quantum cutting phosphors. Prog. Mater. Sci. 55(5), 353–427 (2010)CrossRef Q.Y. Zhang, X.Y. Huang, Recent progress in quantum cutting phosphors. Prog. Mater. Sci. 55(5), 353–427 (2010)CrossRef
14.
go back to reference B.S. Richards, Luminescent layers for enhanced silicon solar cell performance: down-conversion. Sol. Energy Mater. Solar cells 90(9), 1189–1207 (2006)CrossRef B.S. Richards, Luminescent layers for enhanced silicon solar cell performance: down-conversion. Sol. Energy Mater. Solar cells 90(9), 1189–1207 (2006)CrossRef
15.
go back to reference D.C. Yu, R. Martín-Rodríguez, Q.Y. Zhang et al., Multi-photon quantum cutting in Gd2O2S: Tm3+ to enhance the photo-response of solar cells. Light. Sci. Appl. 4(10), e344 (2015) D.C. Yu, R. Martín-Rodríguez, Q.Y. Zhang et al., Multi-photon quantum cutting in Gd2O2S: Tm3+ to enhance the photo-response of solar cells. Light. Sci. Appl. 4(10), e344 (2015)
16.
go back to reference L. Aarts, B.M. Van der Ende, A. Meijerink, Downconversion for solar cells in NaYF4: Er, Yb. J. Appl. Phys. 106(2), 023522 (2009)CrossRef L. Aarts, B.M. Van der Ende, A. Meijerink, Downconversion for solar cells in NaYF4: Er, Yb. J. Appl. Phys. 106(2), 023522 (2009)CrossRef
17.
go back to reference G. Xiang, J. Zhang, Z. Hao et al., The energy transfer mechanism in Pr3+ and Yb3+ codoped β-NaLuF4 nanocrystals. Phys. Chem. Chem. Phys. 16(20), 9289–9293 (2014)CrossRef G. Xiang, J. Zhang, Z. Hao et al., The energy transfer mechanism in Pr3+ and Yb3+ codoped β-NaLuF4 nanocrystals. Phys. Chem. Chem. Phys. 16(20), 9289–9293 (2014)CrossRef
18.
go back to reference J. Li, L. Chen, Z. Hao et al., Efficient near-infrared downconversion and energy transfer mechanism of Ce3+/Yb3+ codoped calcium scandate phosphor. Inorg. Chem. 54(10), 4806–4810 (2015)CrossRef J. Li, L. Chen, Z. Hao et al., Efficient near-infrared downconversion and energy transfer mechanism of Ce3+/Yb3+ codoped calcium scandate phosphor. Inorg. Chem. 54(10), 4806–4810 (2015)CrossRef
19.
go back to reference K. Deng, T. Gong, L. Hu et al., Efficient near-infrared quantum cutting in NaYF4: Ho3+, Yb3+ for solar photovoltaics. Opt. Express 19(3), 1749–1754 (2011)CrossRef K. Deng, T. Gong, L. Hu et al., Efficient near-infrared quantum cutting in NaYF4: Ho3+, Yb3+ for solar photovoltaics. Opt. Express 19(3), 1749–1754 (2011)CrossRef
20.
go back to reference H. Lin, S. Zhou, X. Hou et al., Down-conversion from blue to near infrared in Tm–Yb codoped YO transparent ceramics. IEEE Photon. Technol. Lett. 22(12), 866–868 (2010)CrossRef H. Lin, S. Zhou, X. Hou et al., Down-conversion from blue to near infrared in Tm–Yb codoped YO transparent ceramics. IEEE Photon. Technol. Lett. 22(12), 866–868 (2010)CrossRef
21.
go back to reference P. Vergeer, TJH Vlugt, MHF Kox et al., Quantum cutting by cooperative energy transfer in YbxY1– x PO4: Tb3+. Phys. Rev. B 71(1), 014119 (2005)CrossRef P. Vergeer, TJH Vlugt, MHF Kox et al., Quantum cutting by cooperative energy transfer in YbxY1– x PO4: Tb3+. Phys. Rev. B 71(1), 014119 (2005)CrossRef
22.
go back to reference J. Yang, C. Zhang, C. Peng et al., Controllable red, green, blue (RGB) and bright white upconversion luminescence of Lu2O3: Yb3+/Er3+/Tm3+ nanocrystals through single laser excitation at 980 nm. Chemistry 15(18), 4649–4655 (2009)CrossRef J. Yang, C. Zhang, C. Peng et al., Controllable red, green, blue (RGB) and bright white upconversion luminescence of Lu2O3: Yb3+/Er3+/Tm3+ nanocrystals through single laser excitation at 980 nm. Chemistry 15(18), 4649–4655 (2009)CrossRef
23.
go back to reference A. Ulas, K.K. Kuo, C. Gotzmer, Ignition and combustion of boron particles in fluorine-containing environments. Combust. Flame 127(1), 1935–1957 (2001)CrossRef A. Ulas, K.K. Kuo, C. Gotzmer, Ignition and combustion of boron particles in fluorine-containing environments. Combust. Flame 127(1), 1935–1957 (2001)CrossRef
24.
go back to reference R. Peters, C. Kränkel, K. Petermann et al., Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb: Lu2O3. J. Cryst. Growth 310(7), 1934–1938 (2008)CrossRef R. Peters, C. Kränkel, K. Petermann et al., Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb: Lu2O3. J. Cryst. Growth 310(7), 1934–1938 (2008)CrossRef
25.
go back to reference U. Griebner, V. Petrov, K. Petermann et al., Passively mode-locked Yb: Lu2O3 laser. Opt. Express 12(14), 3125–3130 (2004)CrossRef U. Griebner, V. Petrov, K. Petermann et al., Passively mode-locked Yb: Lu2O3 laser. Opt. Express 12(14), 3125–3130 (2004)CrossRef
26.
go back to reference A.I. Zagumennyi, G.B. Lutts, P.A. Popov et al., The thermal conductivity of YAG and YSAG laser crystals. Laser Phys. 3(5), 1064–1065 (1993) A.I. Zagumennyi, G.B. Lutts, P.A. Popov et al., The thermal conductivity of YAG and YSAG laser crystals. Laser Phys. 3(5), 1064–1065 (1993)
27.
go back to reference L. An, J. Zhang, M. Liu et al., Preparation and upconversion properties of Yb3+, Ho3+: Lu2O3 nanocrystalline powders. J. Am. Ceram. Soc. 88(4), 1010–1012 (2005)CrossRef L. An, J. Zhang, M. Liu et al., Preparation and upconversion properties of Yb3+, Ho3+: Lu2O3 nanocrystalline powders. J. Am. Ceram. Soc. 88(4), 1010–1012 (2005)CrossRef
28.
go back to reference Li Li, Xiantao Wei, C. Yonghu et al., Energy transfer in Tb3+, Yb3+ codoped Lu2O3 near-infrared downconversion nanophosphors. J. Rare Earths 30(3), 197–201 (2012)CrossRef Li Li, Xiantao Wei, C. Yonghu et al., Energy transfer in Tb3+, Yb3+ codoped Lu2O3 near-infrared downconversion nanophosphors. J. Rare Earths 30(3), 197–201 (2012)CrossRef
29.
go back to reference J. Li, J. Zhang, Z. Hao et al., Intense upconversion luminescence and origin study in Tm3+/Yb3+ codoped calcium scandate. Appl. Phys. Lett. 101(12), 121905 (2012)CrossRef J. Li, J. Zhang, Z. Hao et al., Intense upconversion luminescence and origin study in Tm3+/Yb3+ codoped calcium scandate. Appl. Phys. Lett. 101(12), 121905 (2012)CrossRef
30.
go back to reference W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)CrossRef W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)CrossRef
31.
go back to reference J.M. Meijer, L. Aarts, B.M. van der Ende et al., Downconversion for solar cells in YF3: Nd3+, Yb3+. Phys. Rev. B 81(3), 035107 (2010)CrossRef J.M. Meijer, L. Aarts, B.M. van der Ende et al., Downconversion for solar cells in YF3: Nd3+, Yb3+. Phys. Rev. B 81(3), 035107 (2010)CrossRef
Metadata
Title
Near-infrared quantum cutting and energy transfer mechanism in Lu2O3: Tm3+/Yb3+ phosphor for high-efficiency photovoltaics
Authors
Wen Liu
Jiahua Zhang
Zhendong Hao
Guotao Xiang
LiangLiang Zhang
Xia Zhang
Guohui Pan
Yongshi Luo
Haifeng Zhao
Huajun Wu
Publication date
20-03-2017
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 11/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-6506-5

Other articles of this Issue 11/2017

Journal of Materials Science: Materials in Electronics 11/2017 Go to the issue