Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 11/2017

07-02-2017

Reduced graphene oxide/Cu2O nanostructure composite films as an effective and stable hydrogen evolution photocathode for water splitting

Authors: Y. Ghayeb, M. M. Momeni, M. Menati

Published in: Journal of Materials Science: Materials in Electronics | Issue 11/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An efficient photocathode consisting of reduced graphene oxide/Cu2O/Cu (rGO/Cu2O/Cu) has been successfully prepared in this work via a facile two step method, consisting of chemical oxidation of a copper foil in alkaline solution using (NH4)2S2O8 as the oxidizing agent, dipping the prepared samples in graphene oxide (GO) solution and calcination at vacuum to form a rGO layer onto Cu2O/Cu photocathode, which acts as a protective layer. The products were composed of a thin Cu2O layer topped with a thin rGO film as the protective coating. The chemical composition and rGO amount in the composite materials were easily controlled by changing the immersion time to enhance PEC performance. UV–Vis spectroscopy, Raman spectroscopy, XRD, SEM, TEM and FTIR spectroscopy were used in the optical and morphological characterization of the graphene oxide and prepared photocathodes. Distinct patches of GO film are formed on the Cu(OH)2 nanostructure surface, as shown by SEM results. Linear sweep voltammetry and chronoamperometry analysis have been applied in the photoelectrochemical characterizations in the dark and under illumination conditions. Photocurrent density provided by rGO/Cu2O/Cu photocathode − 2.54 mA cm− 2 is three times greater than that of bare Cu2O/Cu photocathode − 0.82 mA cm− 2 at 0 V vs. RHE under illumination. Low photostability of 42% is exhibited by bare Cu2O/Cu photocathode after 200 s irradiation whereas rGO/Cu2O/Cu photocathode shows approximately 98% of the initial photocurrent density. Therefore, a strategy has been developed in this work for the synthesis of this new photocathode using Cu2O/Cu as an effective photocathode for photoelectrochemical (PEC) water splitting.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
5.
go back to reference T. Jingqi, L. Haiyan, X. Zhicai, W. Lei, L. Yonglan, Catal. Sci. Technol. 2, 2227 (2012)CrossRef T. Jingqi, L. Haiyan, X. Zhicai, W. Lei, L. Yonglan, Catal. Sci. Technol. 2, 2227 (2012)CrossRef
6.
go back to reference F. Shao, F.H. Ramirez, J.D. Prades, C. Fabrega, Appl. Surf. Sci. 311, 177 (2014)CrossRef F. Shao, F.H. Ramirez, J.D. Prades, C. Fabrega, Appl. Surf. Sci. 311, 177 (2014)CrossRef
7.
9.
go back to reference L. Ma, Y. Lin, Y. Wang, J. Li, E. Wang, M. Qiu, Y. Yu, J. Phys. Chem. C 112, 18916 (2008)CrossRef L. Ma, Y. Lin, Y. Wang, J. Li, E. Wang, M. Qiu, Y. Yu, J. Phys. Chem. C 112, 18916 (2008)CrossRef
10.
go back to reference A. Paracchino, J.C. Brauer, J.-E. Moser, E. Thimsen, M. Gr¨atzel, J. Phys. Chem. C 116, 7341 (2012)CrossRef A. Paracchino, J.C. Brauer, J.-E. Moser, E. Thimsen, M. Gr¨atzel, J. Phys. Chem. C 116, 7341 (2012)CrossRef
11.
go back to reference P.E. de Jongh, D. Vanmaekelbergh, J.J. Kelly, J. Electrochem. Soc. 147, 486 (2000)CrossRef P.E. de Jongh, D. Vanmaekelbergh, J.J. Kelly, J. Electrochem. Soc. 147, 486 (2000)CrossRef
12.
go back to reference A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, Nat. Mater. 10, 456 (2011)CrossRef A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, Nat. Mater. 10, 456 (2011)CrossRef
14.
go back to reference F. Shao, J. Sun, L. Gao, J. Luo, Y. Liu, S. Yang, Adv. Funct. Mater. 22, 3907 (2012)CrossRef F. Shao, J. Sun, L. Gao, J. Luo, Y. Liu, S. Yang, Adv. Funct. Mater. 22, 3907 (2012)CrossRef
16.
17.
go back to reference C. Yang, P.D. Tran, P.P. Boix, P.S. Bassi, N. Yantara, L.H. Wong, J. Barber, Nanoscale 6, 6506 (2014)CrossRef C. Yang, P.D. Tran, P.P. Boix, P.S. Bassi, N. Yantara, L.H. Wong, J. Barber, Nanoscale 6, 6506 (2014)CrossRef
18.
go back to reference S. Weina, Z. Xiaofan, L. Shaohui, Z. Bingyan, Appl. Surf. Sci. 358, 404 (2015)CrossRef S. Weina, Z. Xiaofan, L. Shaohui, Z. Bingyan, Appl. Surf. Sci. 358, 404 (2015)CrossRef
19.
go back to reference A. Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S.D. Tilley, Energy Environ. Sci. 5, 8673 (2012)CrossRef A. Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S.D. Tilley, Energy Environ. Sci. 5, 8673 (2012)CrossRef
20.
21.
23.
25.
go back to reference S.H. Cheng, T.M. Weng, M.L. Lu, W.C. Tan, Sci. Rep. 1, 1 (2013) S.H. Cheng, T.M. Weng, M.L. Lu, W.C. Tan, Sci. Rep. 1, 1 (2013)
27.
go back to reference Y. Wang, H.J. Zhang, L. Lu, L.P. Stubbs, C.C. Wong, L. Jianyi, ACS Nano. 4, 4753 (2010)CrossRef Y. Wang, H.J. Zhang, L. Lu, L.P. Stubbs, C.C. Wong, L. Jianyi, ACS Nano. 4, 4753 (2010)CrossRef
29.
go back to reference K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, Solid State Commun. 146, 351 (2008)CrossRef K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, Solid State Commun. 146, 351 (2008)CrossRef
30.
go back to reference K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, Science 306, 666 (2004)CrossRef K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, Science 306, 666 (2004)CrossRef
32.
go back to reference R. Gusain, P. Kumar, O.P. Sharma, S.L. Jain, O.P. Khatri, Appl. Catal. B 181, 362 (2016)CrossRef R. Gusain, P. Kumar, O.P. Sharma, S.L. Jain, O.P. Khatri, Appl. Catal. B 181, 362 (2016)CrossRef
34.
go back to reference W. Zou, L. Zhang, L. Liua, X. Wang, J. Sunb, S. Wu, Y. Deng, C. Tang, F. Gao, L. Donga, Appl. Catal. B 181, 503 (2016)CrossRef W. Zou, L. Zhang, L. Liua, X. Wang, J. Sunb, S. Wu, Y. Deng, C. Tang, F. Gao, L. Donga, Appl. Catal. B 181, 503 (2016)CrossRef
35.
go back to reference W. Zhang, X. Li, Z. Yang, X. Tang, Y. Ma, M. Li, N. Hu, H. Wei, Y. Zhang, Nanotechnology 27, 265703 (2016)CrossRef W. Zhang, X. Li, Z. Yang, X. Tang, Y. Ma, M. Li, N. Hu, H. Wei, Y. Zhang, Nanotechnology 27, 265703 (2016)CrossRef
38.
39.
go back to reference C.A. Amarnath, C.E. Hong, N.H. Kim, B.C. Ku, T. Kuila, J.H. Lee, Carbon 49, 3502 (2011)CrossRef C.A. Amarnath, C.E. Hong, N.H. Kim, B.C. Ku, T. Kuila, J.H. Lee, Carbon 49, 3502 (2011)CrossRef
42.
go back to reference C.Z. Zhu, S.J. Guo, Y.X. Fang, S.J. Dong, ACS Nano. 4, 2437 (2010) C.Z. Zhu, S.J. Guo, Y.X. Fang, S.J. Dong, ACS Nano. 4, 2437 (2010)
43.
go back to reference C.F. Chen, T.T. Chen, H.L. Wang, G.B. Sun, X.J. Yang, Nanotechnology 22, 405602 (2011)CrossRef C.F. Chen, T.T. Chen, H.L. Wang, G.B. Sun, X.J. Yang, Nanotechnology 22, 405602 (2011)CrossRef
44.
go back to reference M.M. Momeni, Z. Nazari, M. Hakimiyan, S.M. Mirhoseini, Surf. Eng. 30, 775 (2014)CrossRef M.M. Momeni, Z. Nazari, M. Hakimiyan, S.M. Mirhoseini, Surf. Eng. 30, 775 (2014)CrossRef
45.
go back to reference C. Hontoria-Lucas, A.J. López-Peinado, J.D. López-González, Carbon 33, 1585 (1995)CrossRef C. Hontoria-Lucas, A.J. López-Peinado, J.D. López-González, Carbon 33, 1585 (1995)CrossRef
46.
go back to reference S.P. Meshram, P.V. Adhyapak, U.P. Mulik, D.P. Amalnerkar, Chem. Eng. J. 204–206, 158 (2012)CrossRef S.P. Meshram, P.V. Adhyapak, U.P. Mulik, D.P. Amalnerkar, Chem. Eng. J. 204–206, 158 (2012)CrossRef
47.
go back to reference G. Papadimitropoulos, N. Vourdas, V.E. Vamvakas, D. Davazoglou, Thin Solid Films 515, 2428 (2006)CrossRef G. Papadimitropoulos, N. Vourdas, V.E. Vamvakas, D. Davazoglou, Thin Solid Films 515, 2428 (2006)CrossRef
50.
go back to reference S. Yang, S. Du, S. Yiming, Z. Dongfeng, G. Lin, Chem. Eur. J. 18, 14261 (2012)CrossRef S. Yang, S. Du, S. Yiming, Z. Dongfeng, G. Lin, Chem. Eur. J. 18, 14261 (2012)CrossRef
Metadata
Title
Reduced graphene oxide/Cu2O nanostructure composite films as an effective and stable hydrogen evolution photocathode for water splitting
Authors
Y. Ghayeb
M. M. Momeni
M. Menati
Publication date
07-02-2017
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 11/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-6458-9

Other articles of this Issue 11/2017

Journal of Materials Science: Materials in Electronics 11/2017 Go to the issue