Skip to main content
Top
Published in: Rare Metals 6/2021

27-08-2020 | Original Article

Neurons-system-like structured SnS2/CNTs composite for high-performance sodium-ion battery anode

Authors: Ling Zhu, Xue-Xian Yang, Yan-Hong Xiang, Peng Kong, Xian-Wen Wu

Published in: Rare Metals | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sodium-ion batteries (SIBs) have attracted significant attention with respect to renewable energy power generation systems because of the abundant reserves of sodium on earth. However, anode materials are presently limited by low energy density, poor rate performance and inferior cycling stability. In recent years, tin disulfide (SnS2) with a particular layered structure has been considered as a promising anode material for SIBs due to its high theoretical capacity and low cost. Herein, a nervous-system-like structured SnS2/CNTs composite was successfully synthesized via a hydrothermal method. The SnS2 sheets were strung with carbon nanotubes (CNTs) to form a hierarchical porous structure, which is effective for electrolyte diffusion and electronic transmission. The large distance of the (001) plane (0.5899 nm) of SnS2 favors Na+ insertion–extraction dynamics. Benefitting from these structural characteristics, SnS2/CNTs electrodes exhibit high specific capacity, excellent rate performance and superior cycling stability. A high charge capacity of 642 mAh·g−1 was released at 0.2 A·g−1, and then, a high reversible capacity of 427 mAh·g−1 was retained after 100 cycles. Even charged at 2 A·g−1, the SnS2/CNTs electrode maintained a capacity of 282 mAh·g−1. The nervous-system-like structure of the SnS2/CNTs composite provides a novel strategy for the development of SIBs with high electrochemical performance.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Tang F, Gao JY, Ruan QY, Wu XW, Wu XS, Zhang T, Liu ZX, Xiang YH, He ZQ, Wu XM. Graphene-wrapped MnO/C composites by MOFs-derived as cathode material for aqueous zinc ion batteries. Electrochim Acta. 2020;353:136570.CrossRef Tang F, Gao JY, Ruan QY, Wu XW, Wu XS, Zhang T, Liu ZX, Xiang YH, He ZQ, Wu XM. Graphene-wrapped MnO/C composites by MOFs-derived as cathode material for aqueous zinc ion batteries. Electrochim Acta. 2020;353:136570.CrossRef
[2]
go back to reference Cai YS, Cao XX, Luo ZG, Fang GZ, Liu F, Zhou J, Pan AQ, Liang SQ. Caging Na3V2(PO4)2F3 microcubes in cross-linked graphene enabling ultra-fast sodium storage and long-term cycling. Adv Sci. 2018;5:1800680.CrossRef Cai YS, Cao XX, Luo ZG, Fang GZ, Liu F, Zhou J, Pan AQ, Liang SQ. Caging Na3V2(PO4)2F3 microcubes in cross-linked graphene enabling ultra-fast sodium storage and long-term cycling. Adv Sci. 2018;5:1800680.CrossRef
[3]
go back to reference Palomares V, Serras P, Villaluenga I, Hueso K, Gonzalez J, Rojo T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci. 2012;5:5884.CrossRef Palomares V, Serras P, Villaluenga I, Hueso K, Gonzalez J, Rojo T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci. 2012;5:5884.CrossRef
[4]
go back to reference Pang WL, Zhang XH, Guo JZ, Li JY, Yan X, Hou BH, Guan HY, Wu XL. P2-type Na2/3Mn1-xAlxO2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics. J Power Sources. 2017;356:80.CrossRef Pang WL, Zhang XH, Guo JZ, Li JY, Yan X, Hou BH, Guan HY, Wu XL. P2-type Na2/3Mn1-xAlxO2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics. J Power Sources. 2017;356:80.CrossRef
[5]
go back to reference Jian Z, Sun Y, Ji X. A new low-voltage plateau of Na3V2(PO4)3 as an anode for Na-ion batteries. Chem Commun. 2015;51(29):6381.CrossRef Jian Z, Sun Y, Ji X. A new low-voltage plateau of Na3V2(PO4)3 as an anode for Na-ion batteries. Chem Commun. 2015;51(29):6381.CrossRef
[6]
go back to reference Luo W, Allen M, Raju V, Ji X. An organic pigment as a high-performance cathode for sodium-ion batteries. Adv Eng Mater. 2014;4(15):1400554.CrossRef Luo W, Allen M, Raju V, Ji X. An organic pigment as a high-performance cathode for sodium-ion batteries. Adv Eng Mater. 2014;4(15):1400554.CrossRef
[7]
go back to reference Ma XD, Xiong XH, Zou PJ, Liu WZ, Wang F, Liang LW, Liu Y, Yuan CZ, Lin Z. General and scalable fabrication of core-shell metal sulfides@C anchored on 3D N-doped foam toward flexible sodium ion batteries. Small. 2019;15:1903259.CrossRef Ma XD, Xiong XH, Zou PJ, Liu WZ, Wang F, Liang LW, Liu Y, Yuan CZ, Lin Z. General and scalable fabrication of core-shell metal sulfides@C anchored on 3D N-doped foam toward flexible sodium ion batteries. Small. 2019;15:1903259.CrossRef
[8]
go back to reference Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(3):167.CrossRef Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(3):167.CrossRef
[9]
go back to reference Ge XC, Li XH, Wang ZX, Guo HJ, Yan GC, Wu XW, Wang JX. Facile synthesis of NaVPO4F/C cathode with enhanced interfacial conductivity towards long-cycle and high-rate sodium-ion batteries. Chem Eng J. 2019;357:458.CrossRef Ge XC, Li XH, Wang ZX, Guo HJ, Yan GC, Wu XW, Wang JX. Facile synthesis of NaVPO4F/C cathode with enhanced interfacial conductivity towards long-cycle and high-rate sodium-ion batteries. Chem Eng J. 2019;357:458.CrossRef
[10]
go back to reference Wang HG, Li W, Liu DP, Feng XL, Wang J, Yang XY, Zhang XB, Zhu Y, Zhang Y. Flexible electrodes for sodium-ion batteries: recent progress and perspectives. Adv Mater. 2017;29:11. Wang HG, Li W, Liu DP, Feng XL, Wang J, Yang XY, Zhang XB, Zhu Y, Zhang Y. Flexible electrodes for sodium-ion batteries: recent progress and perspectives. Adv Mater. 2017;29:11.
[11]
go back to reference Rahman MM, Sultana I, Chen Z, Mateti S, Li L, Dai X, Chen Y. Ex situ electrochemical sodiation/desodiation observation of Co3O4 anchored carbon nanotubes: a high performance sodium-ion battery anode produced by pulsed plasma in a liquid. Nanoscale. 2015;7:13088.CrossRef Rahman MM, Sultana I, Chen Z, Mateti S, Li L, Dai X, Chen Y. Ex situ electrochemical sodiation/desodiation observation of Co3O4 anchored carbon nanotubes: a high performance sodium-ion battery anode produced by pulsed plasma in a liquid. Nanoscale. 2015;7:13088.CrossRef
[12]
go back to reference Kong P, Zhu L, Li F, Xu G. Self-supporting electrode composed of SnSe nanosheets, thermally treated protein, and reduced graphene oxide with enhanced pseudocapacitance for advanced sodium-ion batteries. ChemElectroChem. 2019;6:5642.CrossRef Kong P, Zhu L, Li F, Xu G. Self-supporting electrode composed of SnSe nanosheets, thermally treated protein, and reduced graphene oxide with enhanced pseudocapacitance for advanced sodium-ion batteries. ChemElectroChem. 2019;6:5642.CrossRef
[13]
go back to reference Jache B, Adelhelm P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of Co-intercalation phenomena. Angew Chem. 2014;53(38):10169.CrossRef Jache B, Adelhelm P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of Co-intercalation phenomena. Angew Chem. 2014;53(38):10169.CrossRef
[14]
go back to reference Zheng Z, Li P, Huang J, Liu H, Zao Y, Hu Z, Zhang L, Chen H, Wang MS, Peng DL, Zhang Q. High performance columnar-like Fe2O3@carbon composite anode via yolk@shell structural design. J Energy Chem. 2020;41:126.CrossRef Zheng Z, Li P, Huang J, Liu H, Zao Y, Hu Z, Zhang L, Chen H, Wang MS, Peng DL, Zhang Q. High performance columnar-like Fe2O3@carbon composite anode via yolk@shell structural design. J Energy Chem. 2020;41:126.CrossRef
[15]
go back to reference Lu HH, Shi CS, Zhao NQ, Liu EZ, He CN, He F. Carbon and few-layer MoS2 nanosheets co-modified TiO2 nanosheets with enhanced electrochemical properties for lithium storage. Rare Met. 2018;37(2):107.CrossRef Lu HH, Shi CS, Zhao NQ, Liu EZ, He CN, He F. Carbon and few-layer MoS2 nanosheets co-modified TiO2 nanosheets with enhanced electrochemical properties for lithium storage. Rare Met. 2018;37(2):107.CrossRef
[16]
go back to reference Wang J, Luo C, Mao J, Zhu Y, Fan X, Gao T, Mignerey AC, Wang C. Solid-state fabrication of SnS2/C nanospheres for high-performance sodium ion battery anode. ACS Appl Mater Int. 2015;7(21):11476.CrossRef Wang J, Luo C, Mao J, Zhu Y, Fan X, Gao T, Mignerey AC, Wang C. Solid-state fabrication of SnS2/C nanospheres for high-performance sodium ion battery anode. ACS Appl Mater Int. 2015;7(21):11476.CrossRef
[17]
go back to reference Wang J, Liu X, Mao S, Huang J. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 2012;12(11):5897.CrossRef Wang J, Liu X, Mao S, Huang J. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 2012;12(11):5897.CrossRef
[18]
go back to reference Zhang S, Chowdari B, Wen Z, Jin J, Yang J. Constructing highly oriented configuration by few-layer MoS2: toward high-performance lithium-ion batteries and hydrogen evolution reactions. ACS Nano. 2015;9(12):12464.CrossRef Zhang S, Chowdari B, Wen Z, Jin J, Yang J. Constructing highly oriented configuration by few-layer MoS2: toward high-performance lithium-ion batteries and hydrogen evolution reactions. ACS Nano. 2015;9(12):12464.CrossRef
[19]
go back to reference Sun W, Rui X, Yang D, Sun Z, Li B, Zhang W, Zong Y, Madhavi S, Dou S, Yan Q. Two-dimensional tin disulfide nanosheets for enhanced sodium storage. ACS Nano. 2015;9(11):11371.CrossRef Sun W, Rui X, Yang D, Sun Z, Li B, Zhang W, Zong Y, Madhavi S, Dou S, Yan Q. Two-dimensional tin disulfide nanosheets for enhanced sodium storage. ACS Nano. 2015;9(11):11371.CrossRef
[20]
go back to reference Zhang Z, Zhao H, Fang J, Chang X, Li Z, Lina Z. Tin disulfide nanosheets with active site enriched surface interfacially bonded on rGO sheets as ultra-robust anode for lithium and sodium storage. ACS Appl Mater Int. 2018;10(34):28533.CrossRef Zhang Z, Zhao H, Fang J, Chang X, Li Z, Lina Z. Tin disulfide nanosheets with active site enriched surface interfacially bonded on rGO sheets as ultra-robust anode for lithium and sodium storage. ACS Appl Mater Int. 2018;10(34):28533.CrossRef
[21]
go back to reference Modarres MH, Lim JHW, George C, De Volder M. Evolution of reduced graphene oxide-SnS2 hybrid nanoparticle electrodes in Li-ion batteries. J Phys Chem C Nanomater Interfaces. 2017;121(24):13018.CrossRef Modarres MH, Lim JHW, George C, De Volder M. Evolution of reduced graphene oxide-SnS2 hybrid nanoparticle electrodes in Li-ion batteries. J Phys Chem C Nanomater Interfaces. 2017;121(24):13018.CrossRef
[22]
go back to reference Bai YLB, Liu YS, Ma C, Wang KX, Chen JS. Neuron-inspired design of high performance electrode materials for sodium-ion batteries. ACS Nano. 2018;12(11):11503.CrossRef Bai YLB, Liu YS, Ma C, Wang KX, Chen JS. Neuron-inspired design of high performance electrode materials for sodium-ion batteries. ACS Nano. 2018;12(11):11503.CrossRef
[23]
go back to reference Zheng P, Dai Z, Zhang Y, Dinh K, Zheng Y, Fan H, Yang J, Dangol R, Li B, Zong Y, Yan Q, Liu X. Scalable synthesis of SnS2/S-doped graphene composites for superior Li/Na-ion batteries. Nanoscale. 2017;9:14820.CrossRef Zheng P, Dai Z, Zhang Y, Dinh K, Zheng Y, Fan H, Yang J, Dangol R, Li B, Zong Y, Yan Q, Liu X. Scalable synthesis of SnS2/S-doped graphene composites for superior Li/Na-ion batteries. Nanoscale. 2017;9:14820.CrossRef
[24]
go back to reference Jiang X, Yang X, Zhu Y, Shen J, Fan K, Li C. In situ assembly of graphene sheets-supported SnS2 nanoplates into 3D macroporous aerogels for high-performance lithium ion batteries. J Power Sources. 2013;237:178.CrossRef Jiang X, Yang X, Zhu Y, Shen J, Fan K, Li C. In situ assembly of graphene sheets-supported SnS2 nanoplates into 3D macroporous aerogels for high-performance lithium ion batteries. J Power Sources. 2013;237:178.CrossRef
[25]
go back to reference Wu Y, Nie P, Wu L, Dou H, Zhang X. 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries. Chem Eng J. 2018;334:932.CrossRef Wu Y, Nie P, Wu L, Dou H, Zhang X. 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries. Chem Eng J. 2018;334:932.CrossRef
[26]
go back to reference Liu H, Chen X, Deng L, Su X, Guo K, Zhu Z. Preparation of ultrathin 2D MoS2/graphene heterostructure assembled foam-like structure with enhanced electrochemical performance for lithium-ion batteries. Electrochim Acta. 2016;206:184.CrossRef Liu H, Chen X, Deng L, Su X, Guo K, Zhu Z. Preparation of ultrathin 2D MoS2/graphene heterostructure assembled foam-like structure with enhanced electrochemical performance for lithium-ion batteries. Electrochim Acta. 2016;206:184.CrossRef
[27]
go back to reference Prikhodchenko P, Yu D, Batabyal S, Uvarov V, Gun J, Sladkevich S, Mikhaylov A, Medvedev A, Lev O. Nanocrystalline tin disulfide coating of reduced graphene oxide produced by the peroxostannate deposition route for sodium ion battery anodes. J Mater Chem A. 2014;2(22):8431.CrossRef Prikhodchenko P, Yu D, Batabyal S, Uvarov V, Gun J, Sladkevich S, Mikhaylov A, Medvedev A, Lev O. Nanocrystalline tin disulfide coating of reduced graphene oxide produced by the peroxostannate deposition route for sodium ion battery anodes. J Mater Chem A. 2014;2(22):8431.CrossRef
[28]
go back to reference Shi X, Chen SL, Fan H, Chen XH, Yuan D, Tang Q, Hu A, Luo W, Liu HK. Metallic-state SnS2 nanosheets with expanded lattice spacing for high-performance sodium-ion batteries. Chemsuschem. 2019;12(17):4046.CrossRef Shi X, Chen SL, Fan H, Chen XH, Yuan D, Tang Q, Hu A, Luo W, Liu HK. Metallic-state SnS2 nanosheets with expanded lattice spacing for high-performance sodium-ion batteries. Chemsuschem. 2019;12(17):4046.CrossRef
[29]
go back to reference Wu X, Li Y, Zhao S, Zeng F, Peng X, Xiang Y, Ruan Q, Gao F, He T, Wu J. Fabrication of F-doped, C-coated NiCo2O4 nanocomposites and its electrochemical performances for lithium-ion batteries. Solid State Ionics. 2019;334:48.CrossRef Wu X, Li Y, Zhao S, Zeng F, Peng X, Xiang Y, Ruan Q, Gao F, He T, Wu J. Fabrication of F-doped, C-coated NiCo2O4 nanocomposites and its electrochemical performances for lithium-ion batteries. Solid State Ionics. 2019;334:48.CrossRef
[30]
go back to reference Zhao L, Wu HH, Yang C, Zhang Q, Zhong G, Zheng Z, Chen H, Wang J, He K, Wang B, Zhu T, Zeng XC, Liu M, Wang MS. Mechanistic origin of the high performance of Yolk@Shell Bi2S3@N-doped carbon nanowire electrodes. ACS Nano. 2018;12(12):12597.CrossRef Zhao L, Wu HH, Yang C, Zhang Q, Zhong G, Zheng Z, Chen H, Wang J, He K, Wang B, Zhu T, Zeng XC, Liu M, Wang MS. Mechanistic origin of the high performance of Yolk@Shell Bi2S3@N-doped carbon nanowire electrodes. ACS Nano. 2018;12(12):12597.CrossRef
[31]
go back to reference Ren Z, Wen J, Liu W, Jiang X, Dong Y, Guo X, Zhao Q, Guipeng J, Wang R, Hu N, Qu B, Xu C. Rational design of layered SnS2 on ultralight graphene fiber fabrics as binder-free anodes for enhanced practical capacity of sodium-ion batteries. Nano-Micro Lett. 2019;11(1):66.CrossRef Ren Z, Wen J, Liu W, Jiang X, Dong Y, Guo X, Zhao Q, Guipeng J, Wang R, Hu N, Qu B, Xu C. Rational design of layered SnS2 on ultralight graphene fiber fabrics as binder-free anodes for enhanced practical capacity of sodium-ion batteries. Nano-Micro Lett. 2019;11(1):66.CrossRef
[32]
go back to reference Yang S, Zhang M, Wu X, Wu X, Zeng F, Li Y, Duan S, Fan D, Yang Y, Wu X. The excellent electrochemical performances of ZnMn2O4/Mn2O3: the composite cathode material for potential aqueous zinc ion batteries. J Electroanal Chem. 2019;832:69.CrossRef Yang S, Zhang M, Wu X, Wu X, Zeng F, Li Y, Duan S, Fan D, Yang Y, Wu X. The excellent electrochemical performances of ZnMn2O4/Mn2O3: the composite cathode material for potential aqueous zinc ion batteries. J Electroanal Chem. 2019;832:69.CrossRef
[33]
go back to reference Zheng J, Xiong X, Wang G, Lin Z, Ou X, Yang C, Liu M. SnS2 nanoparticles anchored on three-dimensional reduced graphene oxide as a durable anode for sodium ion batteries. Chem Eng J. 2018;339:78.CrossRef Zheng J, Xiong X, Wang G, Lin Z, Ou X, Yang C, Liu M. SnS2 nanoparticles anchored on three-dimensional reduced graphene oxide as a durable anode for sodium ion batteries. Chem Eng J. 2018;339:78.CrossRef
[34]
go back to reference Xu G, Liu X, Huang S, Li L, Wei X, Cao J, Yang L, Chu PK. Freestanding, hierarchical, and porous bilayered NaxV2O5·nH2O/rGO/CNT composites as high-performance cathode materials for nonaqueous K-ion batteries and aqueous zinc-ion batteries. ACS Appl Mater Int. 2020;12(1):706.CrossRef Xu G, Liu X, Huang S, Li L, Wei X, Cao J, Yang L, Chu PK. Freestanding, hierarchical, and porous bilayered NaxV2OnH2O/rGO/CNT composites as high-performance cathode materials for nonaqueous K-ion batteries and aqueous zinc-ion batteries. ACS Appl Mater Int. 2020;12(1):706.CrossRef
[35]
go back to reference Thangavel R, Pandian A, Ramasamy H, Lee YS. Rapidly synthesized, few-layered pseudocapacitive SnS2 anode for high-power sodium ion batteries. ACS Appl Mater Int. 2017;9(46):40187.CrossRef Thangavel R, Pandian A, Ramasamy H, Lee YS. Rapidly synthesized, few-layered pseudocapacitive SnS2 anode for high-power sodium ion batteries. ACS Appl Mater Int. 2017;9(46):40187.CrossRef
Metadata
Title
Neurons-system-like structured SnS2/CNTs composite for high-performance sodium-ion battery anode
Authors
Ling Zhu
Xue-Xian Yang
Yan-Hong Xiang
Peng Kong
Xian-Wen Wu
Publication date
27-08-2020
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 6/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01555-6

Other articles of this Issue 6/2021

Rare Metals 6/2021 Go to the issue

Premium Partners