Skip to main content
Top
Published in: Rare Metals 6/2021

18-01-2021 | Review

Three-dimensional graphene and its composite for gas sensors

Authors: Meng Hao, Wen Zeng, Yan-Qiong Li, Zhong-Chang Wang

Published in: Rare Metals | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As a two-dimensional (2D) material, graphene shows excellent advantages in the field of gas sensors due to its inherent large specific surface area and unique electrical properties. However, in the practical application of gas detection, graphene sheet is easy to form irreversible agglomeration and has some limitations such as low sensitivity, long response time and slow recovery speed, which greatly reduce its gas sensing performance. As a gas sensing material, three-dimensional (3D) porous graphene has been extensively studied in recent years owing to its larger specific surface area and stable structure. In order to synthesize graphene with different three-dimensional structures, many methods have been developed. Herein, the synthesis and assembly of three-dimensional graphene and its composites were reviewed, with emphasis on the application of three-dimensional graphene and its composites in the field of gas sensors. The challenges and development prospects of three-dimensional graphene materials in the application of gas sensors were briefly described.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Yang W, Li L. Efficiency evaluation of industrial waste gas control in China: a study based on data envelopment analysis (DEA) model. J Clean Prod. 2018;179:1.CrossRef Yang W, Li L. Efficiency evaluation of industrial waste gas control in China: a study based on data envelopment analysis (DEA) model. J Clean Prod. 2018;179:1.CrossRef
[2]
go back to reference Xu X, Xu Z, Chen L, Li C. How does industrial waste gas emission affect health care expenditure in different regions of China: an application of Bayesian Quantile Regression. Int J Environ Res Public Health. 2019;16(15):2748.CrossRef Xu X, Xu Z, Chen L, Li C. How does industrial waste gas emission affect health care expenditure in different regions of China: an application of Bayesian Quantile Regression. Int J Environ Res Public Health. 2019;16(15):2748.CrossRef
[3]
go back to reference Ghosh R, Gardner JW, Guha PK. Air pollution monitoring using near room temperature resistive gas sensors: a review. IEEE Trans Electron Devices. 2019;66(8):3254.CrossRef Ghosh R, Gardner JW, Guha PK. Air pollution monitoring using near room temperature resistive gas sensors: a review. IEEE Trans Electron Devices. 2019;66(8):3254.CrossRef
[4]
go back to reference Zhang X, Wang Y, Luo G, Xing M. Two-dimensional graphene family material: assembly, biocompatibility and sensors applications. Sensors (Basel). 2019;19(13):2966.CrossRef Zhang X, Wang Y, Luo G, Xing M. Two-dimensional graphene family material: assembly, biocompatibility and sensors applications. Sensors (Basel). 2019;19(13):2966.CrossRef
[5]
go back to reference Ugale AD, Umarji GG, Jung SH, Deshpande NG, Lee W, Cho HK, Yoo JB. ZnO decorated flexible and strong graphene fibers for sensing NO2 and H2S at room temperature. Sens Actuat B Chem. 2020;308:127690.CrossRef Ugale AD, Umarji GG, Jung SH, Deshpande NG, Lee W, Cho HK, Yoo JB. ZnO decorated flexible and strong graphene fibers for sensing NO2 and H2S at room temperature. Sens Actuat B Chem. 2020;308:127690.CrossRef
[6]
go back to reference Kumar R, Kumar A, Singh R, Kashyap R, Kumar R, Kumar D, Kumar M. Selective room temperature ammonia gas detection using 2-amino pyridine functionalized graphene oxide. Mater Sci Semicond Process. 2020;110:104920.CrossRef Kumar R, Kumar A, Singh R, Kashyap R, Kumar R, Kumar D, Kumar M. Selective room temperature ammonia gas detection using 2-amino pyridine functionalized graphene oxide. Mater Sci Semicond Process. 2020;110:104920.CrossRef
[7]
go back to reference Matsuyama S, Sugiyama T, Ikoma T, Cross JS. Fabrication of 3D graphene and 3D graphene oxide devices for sensing VOCs. MRS Adv. 2016;1(19):1359.CrossRef Matsuyama S, Sugiyama T, Ikoma T, Cross JS. Fabrication of 3D graphene and 3D graphene oxide devices for sensing VOCs. MRS Adv. 2016;1(19):1359.CrossRef
[8]
go back to reference He L, Gao C, Yang L, Zhang K, Chu X, Liang S, Zeng D. Facile synthesis of MgGa2O4/graphene composites for room temperature acetic acid gas sensing. Sens Actuat B Chem. 2020;306:127453.CrossRef He L, Gao C, Yang L, Zhang K, Chu X, Liang S, Zeng D. Facile synthesis of MgGa2O4/graphene composites for room temperature acetic acid gas sensing. Sens Actuat B Chem. 2020;306:127453.CrossRef
[9]
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666.CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666.CrossRef
[10]
go back to reference Zhou L, Qian R, Zhuo S, Chen Q, Wen Z, Li G. Oximation reaction induced reduced graphene oxide gas sensor for formaldehyde detection. J Saudi Chem Soc. 2020;24(4):364.CrossRef Zhou L, Qian R, Zhuo S, Chen Q, Wen Z, Li G. Oximation reaction induced reduced graphene oxide gas sensor for formaldehyde detection. J Saudi Chem Soc. 2020;24(4):364.CrossRef
[11]
go back to reference Hosseingholipourasl A, Hafizah Syed Ariffin S, Al-Otaibi YD, Akbari E, Hamid FK, Koloor SSR, Petru M. Analytical approach to study sensing properties of graphene based gas sensor. Sensors (Basel). 2020;20(5):1506.CrossRef Hosseingholipourasl A, Hafizah Syed Ariffin S, Al-Otaibi YD, Akbari E, Hamid FK, Koloor SSR, Petru M. Analytical approach to study sensing properties of graphene based gas sensor. Sensors (Basel). 2020;20(5):1506.CrossRef
[12]
go back to reference Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev. 2010;110(1):132.CrossRef Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev. 2010;110(1):132.CrossRef
[13]
go back to reference Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. A roadmap for graphene. Nature. 2012;490(7419):192.CrossRef Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. A roadmap for graphene. Nature. 2012;490(7419):192.CrossRef
[14]
go back to reference Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385.CrossRef Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385.CrossRef
[15]
go back to reference Banszerus L, Schmitz M, Engels S, Dauber J, Oellers M, Haupt F, Watanabe K, Taniguchi T, Beschoten B, Stampfer C. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci Adv. 2015;1(6):e1500222.CrossRef Banszerus L, Schmitz M, Engels S, Dauber J, Oellers M, Haupt F, Watanabe K, Taniguchi T, Beschoten B, Stampfer C. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci Adv. 2015;1(6):e1500222.CrossRef
[16]
go back to reference Wang X, Dai H. Etching and narrowing of graphene from the edges. Nat Chem. 2010;2(8):661.CrossRef Wang X, Dai H. Etching and narrowing of graphene from the edges. Nat Chem. 2010;2(8):661.CrossRef
[17]
go back to reference Shi Q, Cha Y, Song Y, Lee JI, Zhu C, Li X, Song MK, Du D, Lin Y. 3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion. Nanoscale. 2016;8(34):15414.CrossRef Shi Q, Cha Y, Song Y, Lee JI, Zhu C, Li X, Song MK, Du D, Lin Y. 3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion. Nanoscale. 2016;8(34):15414.CrossRef
[18]
go back to reference Guo Z, Zhang D, Gong X-G. Thermal conductivity of graphene nanoribbons. Appl Phys Lett. 2009;95(16):163103.CrossRef Guo Z, Zhang D, Gong X-G. Thermal conductivity of graphene nanoribbons. Appl Phys Lett. 2009;95(16):163103.CrossRef
[19]
go back to reference Song S, Chen Q, Jin L, Sun F. Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber. Nanoscale. 2013;5(20):9615.CrossRef Song S, Chen Q, Jin L, Sun F. Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber. Nanoscale. 2013;5(20):9615.CrossRef
[20]
go back to reference Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nat Mater. 2007;6(9):652.CrossRef Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nat Mater. 2007;6(9):652.CrossRef
[21]
go back to reference Yuan W, Shi G. Graphene-based gas sensors. J Mater Chem A. 2013;1(35):10078.CrossRef Yuan W, Shi G. Graphene-based gas sensors. J Mater Chem A. 2013;1(35):10078.CrossRef
[22]
go back to reference Choi H, Choi JS, Kim JS, Choe JH, Chung KH, Shin JW, Kim JT, Youn DH, Kim KC, Lee JI, Choi SY, Kim P, Choi CG, Yu YJ. Flexible electronics: flexible and transparent gas molecule sensor integrated with sensing and heating graphene layers (Small 18/2014). Small. 2014;10(18):3812.CrossRef Choi H, Choi JS, Kim JS, Choe JH, Chung KH, Shin JW, Kim JT, Youn DH, Kim KC, Lee JI, Choi SY, Kim P, Choi CG, Yu YJ. Flexible electronics: flexible and transparent gas molecule sensor integrated with sensing and heating graphene layers (Small 18/2014). Small. 2014;10(18):3812.CrossRef
[23]
go back to reference Wehling TO, Katsnelson MI, Lichtenstein AI. Adsorbates on graphene: impurity states and electron scattering. Chem Phys Lett. 2009;476(4):125.CrossRef Wehling TO, Katsnelson MI, Lichtenstein AI. Adsorbates on graphene: impurity states and electron scattering. Chem Phys Lett. 2009;476(4):125.CrossRef
[24]
go back to reference Bi H, Yin K, Xie X, Ji J, Wan S, Sun L, Terrones M, Dresselhaus MS. Ultrahigh humidity sensitivity of graphene oxide. Sci Rep. 2013;3:2714.CrossRef Bi H, Yin K, Xie X, Ji J, Wan S, Sun L, Terrones M, Dresselhaus MS. Ultrahigh humidity sensitivity of graphene oxide. Sci Rep. 2013;3:2714.CrossRef
[25]
go back to reference Levesque PL, Sabri SS, Aguirre CM, Guillemette J, Siaj M, Desjardins P, Szkopek T, Martel R. Probing charge transfer at surfaces using graphene transistors. Nano Lett. 2011;11(1):132.CrossRef Levesque PL, Sabri SS, Aguirre CM, Guillemette J, Siaj M, Desjardins P, Szkopek T, Martel R. Probing charge transfer at surfaces using graphene transistors. Nano Lett. 2011;11(1):132.CrossRef
[26]
go back to reference Park HY, Yoon JS, Jeon J, Kim J, Jo SH, Yu HY, Lee S, Park JH. Controllable and air-stable graphene n-type doping on phosphosilicate glass for intrinsic graphene. Org Electron. 2015;22:117.CrossRef Park HY, Yoon JS, Jeon J, Kim J, Jo SH, Yu HY, Lee S, Park JH. Controllable and air-stable graphene n-type doping on phosphosilicate glass for intrinsic graphene. Org Electron. 2015;22:117.CrossRef
[27]
go back to reference Randeniya LK, Shi H, Barnard AS, Fang J, Martin PJ, Ostrikov K. Harnessing the influence of reactive edges and defects of graphene substrates for achieving complete cycle of room-temperature molecular sensing. Small. 2013;9(23):3993.CrossRef Randeniya LK, Shi H, Barnard AS, Fang J, Martin PJ, Ostrikov K. Harnessing the influence of reactive edges and defects of graphene substrates for achieving complete cycle of room-temperature molecular sensing. Small. 2013;9(23):3993.CrossRef
[28]
go back to reference Shin DW, Lee HM, Yu SM, Lim KS, Jung JH, Kim MK, Kim SW, Han JH, Ruoff RS, Yoo JB. A facile route to recover intrinsic graphene over large scale. ACS Nano. 2012;6(9):7781.CrossRef Shin DW, Lee HM, Yu SM, Lim KS, Jung JH, Kim MK, Kim SW, Han JH, Ruoff RS, Yoo JB. A facile route to recover intrinsic graphene over large scale. ACS Nano. 2012;6(9):7781.CrossRef
[29]
go back to reference Hill EW, Vijayaragahvan A, Novoselov K. Graphene sensors. IEEE Sens J. 2011;11(12):3161.CrossRef Hill EW, Vijayaragahvan A, Novoselov K. Graphene sensors. IEEE Sens J. 2011;11(12):3161.CrossRef
[30]
go back to reference Wu J, Li Z, Xie X, Tao K, Liu C, Khor KA, Miao J, Norford LK. 3D superhydrophobic reduced graphene oxide for activated NO2 sensing with enhanced immunity to humidity. J Mater Chem A. 2018;6(2):478.CrossRef Wu J, Li Z, Xie X, Tao K, Liu C, Khor KA, Miao J, Norford LK. 3D superhydrophobic reduced graphene oxide for activated NO2 sensing with enhanced immunity to humidity. J Mater Chem A. 2018;6(2):478.CrossRef
[31]
go back to reference Choi YR, Yoon YG, Choi KS, Kang JH, Shim YS, Kim YH, Chang HJ, Lee JH, Park CR, Kim SY, Jang HW. Role of oxygen functional groups in graphene oxide for reversible room-temperature NO2 sensing. Carbon. 2015;91:178.CrossRef Choi YR, Yoon YG, Choi KS, Kang JH, Shim YS, Kim YH, Chang HJ, Lee JH, Park CR, Kim SY, Jang HW. Role of oxygen functional groups in graphene oxide for reversible room-temperature NO2 sensing. Carbon. 2015;91:178.CrossRef
[32]
go back to reference Khurshid F, Jeyavelan M, Hussain T, Hudson MSL, Nagarajan S. Ammonia gas adsorption study on graphene oxide based sensing device under different humidity conditions. Mater Chem Phys. 2020;242:122485.CrossRef Khurshid F, Jeyavelan M, Hussain T, Hudson MSL, Nagarajan S. Ammonia gas adsorption study on graphene oxide based sensing device under different humidity conditions. Mater Chem Phys. 2020;242:122485.CrossRef
[33]
go back to reference Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE. Reduced graphene oxide molecular sensors. Nano Lett. 2008;8(10):3137.CrossRef Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE. Reduced graphene oxide molecular sensors. Nano Lett. 2008;8(10):3137.CrossRef
[34]
go back to reference Ma Y, Chen Y. Three-dimensional graphene networks: synthesis, properties and applications. Natl Sci Rev. 2015;2(1):40.CrossRef Ma Y, Chen Y. Three-dimensional graphene networks: synthesis, properties and applications. Natl Sci Rev. 2015;2(1):40.CrossRef
[35]
go back to reference Jiang L, Fan Z. Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale. 2014;6(4):1922.CrossRef Jiang L, Fan Z. Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale. 2014;6(4):1922.CrossRef
[36]
go back to reference Chi K, Zhang Z, Xi J, Huang Y, Xiao F, Wang S, Liu Y. Freestanding graphene paper supported three-dimensional porous graphene–polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Appl Mater Interfaces. 2014;6(18):16312.CrossRef Chi K, Zhang Z, Xi J, Huang Y, Xiao F, Wang S, Liu Y. Freestanding graphene paper supported three-dimensional porous graphene–polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Appl Mater Interfaces. 2014;6(18):16312.CrossRef
[37]
go back to reference Zhao J, Ren W, Cheng HM. Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. J Mater Chem. 2012;22(38):20197.CrossRef Zhao J, Ren W, Cheng HM. Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. J Mater Chem. 2012;22(38):20197.CrossRef
[38]
go back to reference Xu X, Sun Z, Chua DH, Pan L. Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance. Sci Rep. 2015;5(1):1. Xu X, Sun Z, Chua DH, Pan L. Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance. Sci Rep. 2015;5(1):1.
[39]
go back to reference Xu X, Pan L, Liu Y, Lu T, Sun Z, Chua DH. Facile synthesis of novel graphene sponge for high performance capacitive deionization. Sci Rep. 2015;5:8458.CrossRef Xu X, Pan L, Liu Y, Lu T, Sun Z, Chua DH. Facile synthesis of novel graphene sponge for high performance capacitive deionization. Sci Rep. 2015;5:8458.CrossRef
[40]
go back to reference Chu Z, Shi L, Jin W. 3D graphene nano-grid as a homogeneous protein distributor for ultrasensitive biosensors. Biosens Bioelectron. 2014;61:422.CrossRef Chu Z, Shi L, Jin W. 3D graphene nano-grid as a homogeneous protein distributor for ultrasensitive biosensors. Biosens Bioelectron. 2014;61:422.CrossRef
[41]
go back to reference Basu J, RoyChaudhuri C. Attomolar sensitivity of FET biosensor based on smooth and reliable graphene nanogrids. IEEE Electron Device Lett. 2016;37(4):492.CrossRef Basu J, RoyChaudhuri C. Attomolar sensitivity of FET biosensor based on smooth and reliable graphene nanogrids. IEEE Electron Device Lett. 2016;37(4):492.CrossRef
[42]
go back to reference Li L, Peng J, Chu Z, Jiang D, Jin W. Single layer of graphene/Prussian blue nano-grid as the low-potential biosensors with high electrocatalysis. Electrochim Acta. 2016;217:210.CrossRef Li L, Peng J, Chu Z, Jiang D, Jin W. Single layer of graphene/Prussian blue nano-grid as the low-potential biosensors with high electrocatalysis. Electrochim Acta. 2016;217:210.CrossRef
[43]
go back to reference Zhao Z, Wang X, Qiu J, Lin J, Xu D, Zhang CA, Lv M, Yang X. Three-dimensional graphene-based hydrogel/aerogel materials. Rev Adv Mater Sci. 2014;36:137. Zhao Z, Wang X, Qiu J, Lin J, Xu D, Zhang CA, Lv M, Yang X. Three-dimensional graphene-based hydrogel/aerogel materials. Rev Adv Mater Sci. 2014;36:137.
[44]
go back to reference Qiu L, Liu D, Wang Y, Cheng C, Zhou K, Ding J, Truong VT, Li D. Mechanically robust, electrically conductive and stimuli-responsive binary network hydrogels enabled by superelastic graphene aerogels. Adv Mater. 2014;26(20):3333.CrossRef Qiu L, Liu D, Wang Y, Cheng C, Zhou K, Ding J, Truong VT, Li D. Mechanically robust, electrically conductive and stimuli-responsive binary network hydrogels enabled by superelastic graphene aerogels. Adv Mater. 2014;26(20):3333.CrossRef
[45]
go back to reference Cong HP, Ren XC, Wang P, Yu SH. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano. 2012;6(3):2693.CrossRef Cong HP, Ren XC, Wang P, Yu SH. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano. 2012;6(3):2693.CrossRef
[46]
go back to reference Chen T, Xue Y, Roy AK, Dai L. Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano. 2014;8(1):1309.CrossRef Chen T, Xue Y, Roy AK, Dai L. Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano. 2014;8(1):1309.CrossRef
[47]
go back to reference Li Z, Kinloch IA, Young RJ, Novoselov KS, Anagnostopoulos G, Parthenios J, Galiotis C, Papagelis K, Lu CY, Britnell L. Deformation of wrinkled graphene. ACS Nano. 2015;9(4):3917.CrossRef Li Z, Kinloch IA, Young RJ, Novoselov KS, Anagnostopoulos G, Parthenios J, Galiotis C, Papagelis K, Lu CY, Britnell L. Deformation of wrinkled graphene. ACS Nano. 2015;9(4):3917.CrossRef
[48]
go back to reference Guo Y, Guo W. Electronic and field emission properties of wrinkled graphene. J Phys Chem C. 2013;117(1):692.CrossRef Guo Y, Guo W. Electronic and field emission properties of wrinkled graphene. J Phys Chem C. 2013;117(1):692.CrossRef
[49]
go back to reference Yavari F, Chen Z, Thomas AV, Ren W, Cheng HM, Koratkar N. High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci Rep. 2011;1:166.CrossRef Yavari F, Chen Z, Thomas AV, Ren W, Cheng HM, Koratkar N. High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci Rep. 2011;1:166.CrossRef
[50]
go back to reference Chen Z, Xu C, Ma C, Ren W, Cheng HM. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater. 2013;25(9):1296.CrossRef Chen Z, Xu C, Ma C, Ren W, Cheng HM. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater. 2013;25(9):1296.CrossRef
[51]
go back to reference Zhao Y, Liu J, Hu Y, Cheng H, Hu C, Jiang C, Jiang L, Cao A, Qu L. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv Mater. 2013;25(4):591.CrossRef Zhao Y, Liu J, Hu Y, Cheng H, Hu C, Jiang C, Jiang L, Cao A, Qu L. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv Mater. 2013;25(4):591.CrossRef
[52]
go back to reference Chen K, Chen L, Chen Y, Bai H, Li L. Three-dimensional porous graphene-based composite materials: electrochemical synthesis and application. J Mater Chem. 2012;22(39):20968.CrossRef Chen K, Chen L, Chen Y, Bai H, Li L. Three-dimensional porous graphene-based composite materials: electrochemical synthesis and application. J Mater Chem. 2012;22(39):20968.CrossRef
[53]
go back to reference Li L, He S, Liu M, Zhang C, Chen W. Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature. Anal Chem. 2015;87(3):1638.CrossRef Li L, He S, Liu M, Zhang C, Chen W. Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature. Anal Chem. 2015;87(3):1638.CrossRef
[54]
go back to reference Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater. 2011;10(6):424.CrossRef Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater. 2011;10(6):424.CrossRef
[55]
go back to reference Liu C, Yu Z, Neff D, Zhamu A, Jang BZ. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 2010;10(12):4863.CrossRef Liu C, Yu Z, Neff D, Zhamu A, Jang BZ. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 2010;10(12):4863.CrossRef
[56]
go back to reference Wu ZS, Winter A, Chen L, Sun Y, Turchanin A, Feng X, Mullen K. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv Mater. 2012;24(37):5130.CrossRef Wu ZS, Winter A, Chen L, Sun Y, Turchanin A, Feng X, Mullen K. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv Mater. 2012;24(37):5130.CrossRef
[57]
go back to reference Wang ZL, Xu D, Wang HG, Wu Z, Zhang XB. In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano. 2013;7(3):2422.CrossRef Wang ZL, Xu D, Wang HG, Wu Z, Zhang XB. In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano. 2013;7(3):2422.CrossRef
[58]
go back to reference Bi H, Xie X, Yin K, Zhou Y, Wan S, He L, Xu F, Banhart F, Sun L, Ruoff RS. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Func Mater. 2012;22(21):4421.CrossRef Bi H, Xie X, Yin K, Zhou Y, Wan S, He L, Xu F, Banhart F, Sun L, Ruoff RS. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Func Mater. 2012;22(21):4421.CrossRef
[59]
go back to reference Chen W, Yan L. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale. 2011;3(8):3132.CrossRef Chen W, Yan L. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale. 2011;3(8):3132.CrossRef
[60]
go back to reference Chen W, Li S, Chen C, Yan L. Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater. 2011;23(47):5679.CrossRef Chen W, Li S, Chen C, Yan L. Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater. 2011;23(47):5679.CrossRef
[61]
go back to reference Zhang Q, Zhang F, Medarametla SP, Li H, Zhou C, Lin D. 3D printing of graphene aerogels. Small. 2016;12(13):1702.CrossRef Zhang Q, Zhang F, Medarametla SP, Li H, Zhou C, Lin D. 3D printing of graphene aerogels. Small. 2016;12(13):1702.CrossRef
[62]
go back to reference Garcia-Tunon E, Barg S, Franco J, Bell R, Eslava S, D’Elia E, Maher RC, Guitian F, Saiz E. Printing in three dimensions with graphene. Adv Mater. 2015;27(10):1688.CrossRef Garcia-Tunon E, Barg S, Franco J, Bell R, Eslava S, D’Elia E, Maher RC, Guitian F, Saiz E. Printing in three dimensions with graphene. Adv Mater. 2015;27(10):1688.CrossRef
[63]
go back to reference Sha J, Li Y, Villegas SR, Wang T, Dong P, Ji Y, Lee SK, Zhang C, Zhang J, Smith RH, Ajayan PM, Lou J, Zhao N, Tour JM. Three-dimensional printed graphene foams. ACS Nano. 2017;11(7):6860.CrossRef Sha J, Li Y, Villegas SR, Wang T, Dong P, Ji Y, Lee SK, Zhang C, Zhang J, Smith RH, Ajayan PM, Lou J, Zhao N, Tour JM. Three-dimensional printed graphene foams. ACS Nano. 2017;11(7):6860.CrossRef
[64]
go back to reference Liu F, Song S, Xue D, Zhang H. Folded structured graphene paper for high performance electrode materials. Adv Mater. 2012;24(8):1089.CrossRef Liu F, Song S, Xue D, Zhang H. Folded structured graphene paper for high performance electrode materials. Adv Mater. 2012;24(8):1089.CrossRef
[65]
go back to reference Liu C, Wang K, Luo S, Tang Y, Chen L. Direct electrodeposition of graphene enabling the one-step synthesis of graphene–metal nanocomposite films. Small. 2011;7(9):1203.CrossRef Liu C, Wang K, Luo S, Tang Y, Chen L. Direct electrodeposition of graphene enabling the one-step synthesis of graphene–metal nanocomposite films. Small. 2011;7(9):1203.CrossRef
[66]
go back to reference Wang X, Zhang Y, Zhi C, Wang X, Tang D, Xu Y, Weng Q, Jiang X, Mitome M, Golberg D. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nature Commun. 2013;4(1):1.CrossRef Wang X, Zhang Y, Zhi C, Wang X, Tang D, Xu Y, Weng Q, Jiang X, Mitome M, Golberg D. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nature Commun. 2013;4(1):1.CrossRef
[67]
go back to reference Wu J, Feng S, Wei X, Shen J, Lu W, Shi H, Tao K, Lu S, Sun T, Yu L, Du C, Miao J, Norford LK. Facile synthesis of 3D graphene flowers for ultrasensitive and highly reversible gas sensing. Adv Func Mater. 2016;26(41):7462.CrossRef Wu J, Feng S, Wei X, Shen J, Lu W, Shi H, Tao K, Lu S, Sun T, Yu L, Du C, Miao J, Norford LK. Facile synthesis of 3D graphene flowers for ultrasensitive and highly reversible gas sensing. Adv Func Mater. 2016;26(41):7462.CrossRef
[68]
go back to reference Wu J, Liu M, Sharma PP, Yadav RM, Ma L, Yang Y, Zou X, Zhou XD, Vajtai R, Yakobson BI. Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam. Nano Lett. 2016;16(1):466.CrossRef Wu J, Liu M, Sharma PP, Yadav RM, Ma L, Yang Y, Zou X, Zhou XD, Vajtai R, Yakobson BI. Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam. Nano Lett. 2016;16(1):466.CrossRef
[69]
go back to reference Lusk MT, Carr LD. Nanoengineering defect structures on graphene. Phys Rev Lett. 2008;100(17):175503.CrossRef Lusk MT, Carr LD. Nanoengineering defect structures on graphene. Phys Rev Lett. 2008;100(17):175503.CrossRef
[70]
go back to reference Zhang YH, Chen YB, Zhou KG, Liu CH, Zeng J, Zhang HL, Peng Y. Improving gas sensing properties of graphene by introducing dopants and defects: afirst-principles study. Nanotechnology. 2009;20(18):185504.CrossRef Zhang YH, Chen YB, Zhou KG, Liu CH, Zeng J, Zhang HL, Peng Y. Improving gas sensing properties of graphene by introducing dopants and defects: afirst-principles study. Nanotechnology. 2009;20(18):185504.CrossRef
[71]
go back to reference Wang Z, Zhao C, Han T, Zhang Y, Liu S, Fei T, Lu G, Zhang T. High-performance reduced graphene oxide-based room-temperature NO2 sensors: a combined surface modification of SnO2 nanoparticles and nitrogen doping approach. Sens Actuat B Chem. 2017;242:269.CrossRef Wang Z, Zhao C, Han T, Zhang Y, Liu S, Fei T, Lu G, Zhang T. High-performance reduced graphene oxide-based room-temperature NO2 sensors: a combined surface modification of SnO2 nanoparticles and nitrogen doping approach. Sens Actuat B Chem. 2017;242:269.CrossRef
[72]
go back to reference Iamprasertkun P, Krittayavathananon A, Sawangphruk M. N-doped reduced graphene oxide aerogel coated on carboxyl-modified carbon fiber paper for high-performance ionic-liquid supercapacitors. Carbon. 2016;102:455.CrossRef Iamprasertkun P, Krittayavathananon A, Sawangphruk M. N-doped reduced graphene oxide aerogel coated on carboxyl-modified carbon fiber paper for high-performance ionic-liquid supercapacitors. Carbon. 2016;102:455.CrossRef
[73]
go back to reference Niu F, Liu JM, Tao LM, Wang W, Song WG. Nitrogen and silica co-doped graphene nanosheets for NO2 gas sensing. J Mater Chem A. 2013;1(20):6130.CrossRef Niu F, Liu JM, Tao LM, Wang W, Song WG. Nitrogen and silica co-doped graphene nanosheets for NO2 gas sensing. J Mater Chem A. 2013;1(20):6130.CrossRef
[74]
go back to reference Fan YY, Tu HL, Pang Y, Wei F, Zhao HB, Yang Y, Ren TL. Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection. Rare Met. 2020;39(6):651.CrossRef Fan YY, Tu HL, Pang Y, Wei F, Zhao HB, Yang Y, Ren TL. Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection. Rare Met. 2020;39(6):651.CrossRef
[75]
go back to reference Ao Z, Yang J, Li S, Jiang Q. Enhancement of CO detection in Al doped graphene. Chem Phys Lett. 2008;461(4–6):276.CrossRef Ao Z, Yang J, Li S, Jiang Q. Enhancement of CO detection in Al doped graphene. Chem Phys Lett. 2008;461(4–6):276.CrossRef
[76]
go back to reference Zhang H, Wang Y, Zhang B, Yan Y, Xia J, Liu X, Qiu X, Tang Y. Construction of ultrasensitive ammonia sensor using ultrafine Ir decorated hollow graphene nanospheres. Electrochim Acta. 2019;304:109.CrossRef Zhang H, Wang Y, Zhang B, Yan Y, Xia J, Liu X, Qiu X, Tang Y. Construction of ultrasensitive ammonia sensor using ultrafine Ir decorated hollow graphene nanospheres. Electrochim Acta. 2019;304:109.CrossRef
[77]
go back to reference Zhu J, Cho M, Li Y, Cho I, Suh JH, Orbe DD, Jeong Y, Ren TL, Park I. Biomimetic turbinate-like artificial nose for hydrogen detection based on 3D porous laser-induced graphene. ACS Appl Mater Interfaces. 2019;11(27):24386.CrossRef Zhu J, Cho M, Li Y, Cho I, Suh JH, Orbe DD, Jeong Y, Ren TL, Park I. Biomimetic turbinate-like artificial nose for hydrogen detection based on 3D porous laser-induced graphene. ACS Appl Mater Interfaces. 2019;11(27):24386.CrossRef
[78]
go back to reference Wu J, Tao K, Zhang J, Guo Y, Miao J, Norford LK. Chemically functionalized 3D graphene hydrogel for high performance gas sensing. J Mater Chem A. 2016;4(21):8130.CrossRef Wu J, Tao K, Zhang J, Guo Y, Miao J, Norford LK. Chemically functionalized 3D graphene hydrogel for high performance gas sensing. J Mater Chem A. 2016;4(21):8130.CrossRef
[79]
go back to reference Zou B, Guo Y, Shen N, Xiao A, Li M, Zhu L, Wan P, Sun X. Sulfophenyl-functionalized reduced graphene oxide networks on electrospun 3D scaffold for ultrasensitive NO2 gas sensor. Sensors (Basel). 2017;17(12):2954.CrossRef Zou B, Guo Y, Shen N, Xiao A, Li M, Zhu L, Wan P, Sun X. Sulfophenyl-functionalized reduced graphene oxide networks on electrospun 3D scaffold for ultrasensitive NO2 gas sensor. Sensors (Basel). 2017;17(12):2954.CrossRef
[81]
go back to reference Song YG, Shim YS, Kim S, Han SD, Moon HG, Noh MS, Lee K, Lee HR, Kim JS, Ju BK. Downsizing gas sensors based on semiconducting metal oxide: effects of electrodes on gas sensing properties. Sens Actuat B Chem. 2017;248:949.CrossRef Song YG, Shim YS, Kim S, Han SD, Moon HG, Noh MS, Lee K, Lee HR, Kim JS, Ju BK. Downsizing gas sensors based on semiconducting metal oxide: effects of electrodes on gas sensing properties. Sens Actuat B Chem. 2017;248:949.CrossRef
[82]
go back to reference Moseley PT. Progress in the development of semiconducting metal oxide gas sensors: a review. Meas Sci Technol. 2017;28(8):082001.CrossRef Moseley PT. Progress in the development of semiconducting metal oxide gas sensors: a review. Meas Sci Technol. 2017;28(8):082001.CrossRef
[83]
go back to reference Lahlalia A, Filipovic L, Selberherr S. Modeling and simulation of novel semiconducting metal oxide gas sensors for wearable devices. IEEE Sens J. 2018;18(5):1960.CrossRef Lahlalia A, Filipovic L, Selberherr S. Modeling and simulation of novel semiconducting metal oxide gas sensors for wearable devices. IEEE Sens J. 2018;18(5):1960.CrossRef
[84]
go back to reference Fernandez AC, Sakthivel P, Jesudurai J. Semiconducting metal oxides for gas sensor applications. J Mater Sci Mater Electron. 2018;29(1):357.CrossRef Fernandez AC, Sakthivel P, Jesudurai J. Semiconducting metal oxides for gas sensor applications. J Mater Sci Mater Electron. 2018;29(1):357.CrossRef
[85]
go back to reference Zhu L, Zeng W. Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens Actuat A. 2017;267:242.CrossRef Zhu L, Zeng W. Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens Actuat A. 2017;267:242.CrossRef
[86]
go back to reference Navaneethan M, Patil V, Ponnusamy S, Muthamizhchelvan C, Kawasaki S, Patil P, Hayakawa Y. Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature. Sens Actuat B Chem. 2018;255:672.CrossRef Navaneethan M, Patil V, Ponnusamy S, Muthamizhchelvan C, Kawasaki S, Patil P, Hayakawa Y. Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature. Sens Actuat B Chem. 2018;255:672.CrossRef
[87]
go back to reference Rieu M, Camara M, Tournier G, Viricelle JP, Pijolat C, de Rooij NF, Briand D. Fully inkjet printed SnO2 gas sensor on plastic substrate. Sens Actuat B Chem. 2016;236:1091.CrossRef Rieu M, Camara M, Tournier G, Viricelle JP, Pijolat C, de Rooij NF, Briand D. Fully inkjet printed SnO2 gas sensor on plastic substrate. Sens Actuat B Chem. 2016;236:1091.CrossRef
[88]
go back to reference Li Y, Chen N, Deng D, Xing X, Xiao X, Wang Y. Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity. Sens Actuat B Chem. 2017;238:264.CrossRef Li Y, Chen N, Deng D, Xing X, Xiao X, Wang Y. Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity. Sens Actuat B Chem. 2017;238:264.CrossRef
[89]
go back to reference Krško O, Plecenik T, Roch T, Grančič B, Satrapinskyy L, Truchlý M, Ďurina P, Gregor M, Kúš P, Plecenik A. Flexible highly sensitive hydrogen gas sensor based on a TiO2 thin film on polyimide foil. Sens Actuat B Chem. 2017;240:1058.CrossRef Krško O, Plecenik T, Roch T, Grančič B, Satrapinskyy L, Truchlý M, Ďurina P, Gregor M, Kúš P, Plecenik A. Flexible highly sensitive hydrogen gas sensor based on a TiO2 thin film on polyimide foil. Sens Actuat B Chem. 2017;240:1058.CrossRef
[90]
go back to reference Li F, Gao X, Wang R, Zhang T, Lu G. Study on TiO2–SnO2 core-shell heterostructure nanofibers with different work function and its application in gas sensor. Sens Actuat B Chem. 2017;248:812.CrossRef Li F, Gao X, Wang R, Zhang T, Lu G. Study on TiO2–SnO2 core-shell heterostructure nanofibers with different work function and its application in gas sensor. Sens Actuat B Chem. 2017;248:812.CrossRef
[91]
go back to reference Tai H, Duan Z, He Z, Li X, Xu J, Liu B, Jiang Y. Enhanced ammonia response of Ti3C2T nanosheets supported by TiO2 nanoparticles at room temperature. Sens Actuat B Chem. 2019;298:126874.CrossRef Tai H, Duan Z, He Z, Li X, Xu J, Liu B, Jiang Y. Enhanced ammonia response of Ti3C2T nanosheets supported by TiO2 nanoparticles at room temperature. Sens Actuat B Chem. 2019;298:126874.CrossRef
[92]
go back to reference Liu X, Li J, Sun J, Zhang X. 3D Fe3O4 nanoparticle/graphene aerogel for NO2 sensing at room temperature. RSC Adv. 2015;5(90):73699.CrossRef Liu X, Li J, Sun J, Zhang X. 3D Fe3O4 nanoparticle/graphene aerogel for NO2 sensing at room temperature. RSC Adv. 2015;5(90):73699.CrossRef
[93]
go back to reference Wu J, Wu Z, Ding H, Wei Y, Huang W, Yang X, Li Z, Qiu L, Wang X. Three-dimensional graphene hydrogel decorated with SnO2 for high-performance NO2 sensing with enhanced immunity to humidity. ACS Appl Mater Interfaces. 2020;12(2):2634.CrossRef Wu J, Wu Z, Ding H, Wei Y, Huang W, Yang X, Li Z, Qiu L, Wang X. Three-dimensional graphene hydrogel decorated with SnO2 for high-performance NO2 sensing with enhanced immunity to humidity. ACS Appl Mater Interfaces. 2020;12(2):2634.CrossRef
[94]
go back to reference Zou C, Hu J, Su Y, Zhou Z, Cai B, Tao Z, Huo T, Hu N, Zhang Y. Highly repeatable and sensitive three-dimensional γ-Fe2O3@reduced graphene oxide gas sensors by magnetic-field assisted assembly process. Sens Actuat B Chem. 2020;306:127546.CrossRef Zou C, Hu J, Su Y, Zhou Z, Cai B, Tao Z, Huo T, Hu N, Zhang Y. Highly repeatable and sensitive three-dimensional γ-Fe2O3@reduced graphene oxide gas sensors by magnetic-field assisted assembly process. Sens Actuat B Chem. 2020;306:127546.CrossRef
[95]
go back to reference Huang D, Yang Z, Li X, Zhang L, Hu J, Su Y, Hu N, Yin G, He D, Zhang Y. Three-dimensional conductive networks based on stacked SiO2@graphene frameworks for enhanced gas sensing. Nanoscale. 2017;9(1):109.CrossRef Huang D, Yang Z, Li X, Zhang L, Hu J, Su Y, Hu N, Yin G, He D, Zhang Y. Three-dimensional conductive networks based on stacked SiO2@graphene frameworks for enhanced gas sensing. Nanoscale. 2017;9(1):109.CrossRef
[96]
go back to reference Seekaew Y, Wisitsoraat A, Phokharatkul D, Wongchoosuk C. Room temperature toluene gas sensor based on TiO2 nanoparticles decorated 3D graphene-carbon nanotube nanostructures. Sens Actuat B Chem. 2019;279:69.CrossRef Seekaew Y, Wisitsoraat A, Phokharatkul D, Wongchoosuk C. Room temperature toluene gas sensor based on TiO2 nanoparticles decorated 3D graphene-carbon nanotube nanostructures. Sens Actuat B Chem. 2019;279:69.CrossRef
[97]
go back to reference Liu X, Cui J, Sun J, Zhang X. 3D graphene aerogel-supported SnO2 nanoparticles for efficient detection of NO2. RSC Adv. 2014;4(43):22601.CrossRef Liu X, Cui J, Sun J, Zhang X. 3D graphene aerogel-supported SnO2 nanoparticles for efficient detection of NO2. RSC Adv. 2014;4(43):22601.CrossRef
[98]
go back to reference Ma Z, Song P, Yang Z, Wang Q. Trimethylamine detection of 3D rGO/mesoporous In2O3 nanocomposites at room temperature. Appl Surf Sci. 2019;465:625.CrossRef Ma Z, Song P, Yang Z, Wang Q. Trimethylamine detection of 3D rGO/mesoporous In2O3 nanocomposites at room temperature. Appl Surf Sci. 2019;465:625.CrossRef
[99]
go back to reference Liu X, Sun J, Zhang X. Novel 3D graphene aerogel–ZnO composites as efficient detection for NO2 at room temperature. Sens Actuat B Chem. 2015;211:220.CrossRef Liu X, Sun J, Zhang X. Novel 3D graphene aerogel–ZnO composites as efficient detection for NO2 at room temperature. Sens Actuat B Chem. 2015;211:220.CrossRef
[100]
go back to reference Ha NH, Thinh DD, Huong NT, Phuong NH, Thach PD, Hong HS. Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene oxide. Appl Surf Sci. 2018;434:1048.CrossRef Ha NH, Thinh DD, Huong NT, Phuong NH, Thach PD, Hong HS. Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene oxide. Appl Surf Sci. 2018;434:1048.CrossRef
[101]
go back to reference Zou C, Hu J, Su Y, Shao F, Tao Z, Huo T, Zhou Z, Hu N, Yang Z, Kong ESW, Zhang Y. Three-dimensional Fe3O4@reduced graphene oxide heterojunctions for high-performance room-temperature NO2 sensors. Front Mater. 2019;6:195.CrossRef Zou C, Hu J, Su Y, Shao F, Tao Z, Huo T, Zhou Z, Hu N, Yang Z, Kong ESW, Zhang Y. Three-dimensional Fe3O4@reduced graphene oxide heterojunctions for high-performance room-temperature NO2 sensors. Front Mater. 2019;6:195.CrossRef
[102]
go back to reference Huang Q, Zeng D, Li H, Xie C. Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites. Nanoscale. 2012;4(18):5651.CrossRef Huang Q, Zeng D, Li H, Xie C. Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites. Nanoscale. 2012;4(18):5651.CrossRef
[103]
go back to reference Yan H, Song P, Zhang S, Yang Z, Wang Q. Facile synthesis, characterization and gas sensing performance of ZnO nanoparticles-coated MoS2 nanosheets. J Alloys Compd. 2016;662:118.CrossRef Yan H, Song P, Zhang S, Yang Z, Wang Q. Facile synthesis, characterization and gas sensing performance of ZnO nanoparticles-coated MoS2 nanosheets. J Alloys Compd. 2016;662:118.CrossRef
[104]
go back to reference Kim HJ, Lee JH. Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens Actuat B Chem. 2014;192:607.CrossRef Kim HJ, Lee JH. Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens Actuat B Chem. 2014;192:607.CrossRef
[105]
go back to reference Lee JH, Katoch A, Choi SW, Kim JH, Kim HW, Kim SS. Extraordinary improvement of gas-sensing performances in SnO2 nanofibers due to creation of local p–n heterojunctions by loading reduced graphene oxide nanosheets. ACS Appl Mater Interfaces. 2015;7(5):3101.CrossRef Lee JH, Katoch A, Choi SW, Kim JH, Kim HW, Kim SS. Extraordinary improvement of gas-sensing performances in SnO2 nanofibers due to creation of local p–n heterojunctions by loading reduced graphene oxide nanosheets. ACS Appl Mater Interfaces. 2015;7(5):3101.CrossRef
[106]
go back to reference Singkammo S, Wisitsoraat A, Sriprachuabwong C, Tuantranont A, Phanichphant S, Liewhiran C. Electrolytically exfoliated graphene-loaded flame-made Ni-doped SnO2 composite film for acetone sensing. ACS Appl Mater Interfaces. 2015;7(5):3077.CrossRef Singkammo S, Wisitsoraat A, Sriprachuabwong C, Tuantranont A, Phanichphant S, Liewhiran C. Electrolytically exfoliated graphene-loaded flame-made Ni-doped SnO2 composite film for acetone sensing. ACS Appl Mater Interfaces. 2015;7(5):3077.CrossRef
[107]
go back to reference Anand K, Singh O, Singh MP, Kaur J, Singh RC. Hydrogen sensor based on graphene/ZnO nanocomposite. Sens Actuat B Chem. 2014;195:409.CrossRef Anand K, Singh O, Singh MP, Kaur J, Singh RC. Hydrogen sensor based on graphene/ZnO nanocomposite. Sens Actuat B Chem. 2014;195:409.CrossRef
[108]
go back to reference Liu Z, Yu L, Guo F, Liu S, Qi L, Shan M, Fan X. Facial development of high performance room temperature NO2 gas sensors based on ZnO nanowalls decorated rGO nanosheets. Appl Surf Sci. 2017;423:721.CrossRef Liu Z, Yu L, Guo F, Liu S, Qi L, Shan M, Fan X. Facial development of high performance room temperature NO2 gas sensors based on ZnO nanowalls decorated rGO nanosheets. Appl Surf Sci. 2017;423:721.CrossRef
[109]
go back to reference Zou R, He G, Xu K, Liu Q, Zhang Z, Hu J. ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties. J Mater Chem A. 2013;1(29):8445.CrossRef Zou R, He G, Xu K, Liu Q, Zhang Z, Hu J. ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties. J Mater Chem A. 2013;1(29):8445.CrossRef
[110]
go back to reference Yang Y, Tian C, Wang J, Sun L, Shi K, Zhou W, Fu H. Facile synthesis of novel 3D nanoflower-like CuxO/multilayer graphene composites for room temperature NOx gas sensor application. Nanoscale. 2014;6(13):7369.CrossRef Yang Y, Tian C, Wang J, Sun L, Shi K, Zhou W, Fu H. Facile synthesis of novel 3D nanoflower-like CuxO/multilayer graphene composites for room temperature NOx gas sensor application. Nanoscale. 2014;6(13):7369.CrossRef
[111]
go back to reference Xia Y, Li R, Chen R, Wang J, Xiang L. 3D architectured graphene/metal oxide hybrids for gas sensors: a review. Sensors (Basel). 2018;18(5):1456.CrossRef Xia Y, Li R, Chen R, Wang J, Xiang L. 3D architectured graphene/metal oxide hybrids for gas sensors: a review. Sensors (Basel). 2018;18(5):1456.CrossRef
[112]
go back to reference Shao G, Ovsianytskyi O, Bekheet MF, Gurlo A. On-chip assembly of 3D graphene-based aerogels for chemiresistive gas sensing. Chem Commun (Camb). 2020;56(3):450.CrossRef Shao G, Ovsianytskyi O, Bekheet MF, Gurlo A. On-chip assembly of 3D graphene-based aerogels for chemiresistive gas sensing. Chem Commun (Camb). 2020;56(3):450.CrossRef
[114]
go back to reference Zhang Y, Tang ZR, Fu X, Xu YJ. TiO2− graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2− graphene truly different from other TiO2− carbon composite materials. ACS Nano. 2010;4(12):7303.CrossRef Zhang Y, Tang ZR, Fu X, Xu YJ. TiO2− graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2− graphene truly different from other TiO2− carbon composite materials. ACS Nano. 2010;4(12):7303.CrossRef
[115]
go back to reference Esfandiar A, Ghasemi S, Irajizad A, Akhavan O, Gholami M. The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing. Int J Hydrog Energy. 2012;37(20):15423.CrossRef Esfandiar A, Ghasemi S, Irajizad A, Akhavan O, Gholami M. The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing. Int J Hydrog Energy. 2012;37(20):15423.CrossRef
[116]
go back to reference Nicolas-Debarnot D, Poncin-Epaillard F. Polyaniline as a new sensitive layer for gas sensors. Anal Chim Acta. 2003;475(1–2):1.CrossRef Nicolas-Debarnot D, Poncin-Epaillard F. Polyaniline as a new sensitive layer for gas sensors. Anal Chim Acta. 2003;475(1–2):1.CrossRef
[117]
go back to reference Virji S, Huang J, Kaner RB, Weiller BH. Polyaniline nanofiber gas sensors: examination of response mechanisms. Nano Lett. 2004;4(3):491.CrossRef Virji S, Huang J, Kaner RB, Weiller BH. Polyaniline nanofiber gas sensors: examination of response mechanisms. Nano Lett. 2004;4(3):491.CrossRef
[118]
go back to reference Agbor N, Petty M, Monkman A. Polyaniline thin films for gas sensing. Sens Actuat B Chem. 1995;28(3):173.CrossRef Agbor N, Petty M, Monkman A. Polyaniline thin films for gas sensing. Sens Actuat B Chem. 1995;28(3):173.CrossRef
[119]
go back to reference Fratoddi I, Venditti I, Cametti C, Russo MV. Chemiresistive polyaniline-based gas sensors: a mini review. Sens Actuat B Chem. 2015;220:534.CrossRef Fratoddi I, Venditti I, Cametti C, Russo MV. Chemiresistive polyaniline-based gas sensors: a mini review. Sens Actuat B Chem. 2015;220:534.CrossRef
[120]
go back to reference Sadek A, Wlodarski W, Kalantar-Zadeh K, Baker C, Kaner R. Doped and dedoped polyaniline nanofiber based conductometric hydrogen gas sensors. Sens Actuat A. 2007;139(1–2):53.CrossRef Sadek A, Wlodarski W, Kalantar-Zadeh K, Baker C, Kaner R. Doped and dedoped polyaniline nanofiber based conductometric hydrogen gas sensors. Sens Actuat A. 2007;139(1–2):53.CrossRef
[121]
go back to reference Jin Z, Su Y, Duan Y. Development of a polyaniline-based optical ammonia sensor. Sens Actuat B Chem. 2001;72(1):75.CrossRef Jin Z, Su Y, Duan Y. Development of a polyaniline-based optical ammonia sensor. Sens Actuat B Chem. 2001;72(1):75.CrossRef
[122]
go back to reference Hosseini SH, Abdi OS, Entezami AA. Toxic gas and vapor detection by polyaniline gas sensors, 2005; 14(4): 333. Hosseini SH, Abdi OS, Entezami AA. Toxic gas and vapor detection by polyaniline gas sensors, 2005; 14(4): 333.
[123]
go back to reference Suri K, Annapoorni S, Sarkar A, Tandon R. Gas and humidity sensors based on iron oxide–polypyrrole nanocomposites. Sens Actuat B Chem. 2002;81(2–3):277.CrossRef Suri K, Annapoorni S, Sarkar A, Tandon R. Gas and humidity sensors based on iron oxide–polypyrrole nanocomposites. Sens Actuat B Chem. 2002;81(2–3):277.CrossRef
[124]
go back to reference Kincal D, Kumar A, Child AD, Reynolds JR. Conductivity switching in polypyrrole-coated textile fabrics as gas sensors. Synth Met. 1998;92(1):53.CrossRef Kincal D, Kumar A, Child AD, Reynolds JR. Conductivity switching in polypyrrole-coated textile fabrics as gas sensors. Synth Met. 1998;92(1):53.CrossRef
[125]
go back to reference Bibi S, Ullah H, Ahmad SM, AliShah AUH, Bilal S, Tahir AA, Ayub K. Molecular and electronic structure elucidation of polypyrrole gas sensors. J Phys Chem C. 2015;119(28):15994.CrossRef Bibi S, Ullah H, Ahmad SM, AliShah AUH, Bilal S, Tahir AA, Ayub K. Molecular and electronic structure elucidation of polypyrrole gas sensors. J Phys Chem C. 2015;119(28):15994.CrossRef
[126]
go back to reference Sahiner N. Conductive polymer containing graphene aerogel composites as sensor for CO2. Polym Compos. 2018;40(S2):E1208.CrossRef Sahiner N. Conductive polymer containing graphene aerogel composites as sensor for CO2. Polym Compos. 2018;40(S2):E1208.CrossRef
Metadata
Title
Three-dimensional graphene and its composite for gas sensors
Authors
Meng Hao
Wen Zeng
Yan-Qiong Li
Zhong-Chang Wang
Publication date
18-01-2021
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 6/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01633-9

Other articles of this Issue 6/2021

Rare Metals 6/2021 Go to the issue

Premium Partners