Skip to main content
Top
Published in: Rare Metals 6/2021

20-08-2020 | Original Article

Gradually activated lithium uptake in sodium citrate toward high-capacity organic anode for lithium-ion batteries

Authors: Rong Long, Gu-Lian Wang, Zhong-Li Hu, Peng-Fei Sun, Li Zhang

Published in: Rare Metals | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lithium-ion batteries (LIBs) have been used to power various electric devices and store energy, but their toxic components by using inorganic materials generally cause serious environmental issues when disused. Recently, environmentally friendly and naturally abundant organic compounds have been adopted as promising electrode materials for next-generation LIBs. Herein, a new organic anode electrode based on sodium citrate is proposed, which shows gradually activated electrochemical behavior and delivers a high reversible capacity of 776.8 mAh·g−1 after 1770 cycles at a current density of 2 A·g−1. With the aid of the electrochemical characterization, Fourier-transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis, the lithium uptake mechanism of sodium citrate-based anodes is identified to be a combination of three-electron lithiation/delithiation and fast Li+ intercalation/deintercalation processes, in which Faradaic reactions could offer a theoretical contribution of 312 mAh·g−1 and intercalation pseudocapacitance would provide extra capacity. This work demonstrates the great potential for developing high-capacity organic electrodes for LIBs in future.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Tang L, He YB, Wang C, Wang S, Wagemaker M, Li BH, Yang QH, Kang FY. High-density microporous Li4Ti5O12 microbars with superior rate performance for lithium-ion batteries. Adv Sci. 2017;4(5):1600311.CrossRef Tang L, He YB, Wang C, Wang S, Wagemaker M, Li BH, Yang QH, Kang FY. High-density microporous Li4Ti5O12 microbars with superior rate performance for lithium-ion batteries. Adv Sci. 2017;4(5):1600311.CrossRef
[2]
go back to reference Armand M, Grugeon S, Vezin H, Laruelle S, Ribiere P, Poizot P, Tarascon JM. Conjugated dicarboxylate anodes for Li-ion batteries. Nat Mater. 2009;8:120.CrossRef Armand M, Grugeon S, Vezin H, Laruelle S, Ribiere P, Poizot P, Tarascon JM. Conjugated dicarboxylate anodes for Li-ion batteries. Nat Mater. 2009;8:120.CrossRef
[3]
go back to reference Guo Y, Qin GH, Liang EQ, Li MW, Wang CY. MOFs-derived MgFe2O4 microboxes as anode material for lithium-ion batteries with superior performance. Ceram Int. 2017;43(15):12519.CrossRef Guo Y, Qin GH, Liang EQ, Li MW, Wang CY. MOFs-derived MgFe2O4 microboxes as anode material for lithium-ion batteries with superior performance. Ceram Int. 2017;43(15):12519.CrossRef
[4]
go back to reference Li R, Wang LX, An HY, Zhang FQ. Study of lithium/polypyrrole secondary batteries with lithium as cathode and polypyrrole anode. Rare Met. 2007;26(6):591.CrossRef Li R, Wang LX, An HY, Zhang FQ. Study of lithium/polypyrrole secondary batteries with lithium as cathode and polypyrrole anode. Rare Met. 2007;26(6):591.CrossRef
[5]
go back to reference Li T, Liu H, Shi P, Zhang Q. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 2018;37(6):449.CrossRef Li T, Liu H, Shi P, Zhang Q. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 2018;37(6):449.CrossRef
[6]
go back to reference Ma Z, Zhuang YC, Deng YM, Song XN, Zuo XX, Xiao X, Nan JM. From spent graphite to amorphous sp2 + sp3 carbon-coated sp2 graphite for high-performance lithium ion batteries. J Power Sources. 2018;376:91.CrossRef Ma Z, Zhuang YC, Deng YM, Song XN, Zuo XX, Xiao X, Nan JM. From spent graphite to amorphous sp2 + sp3 carbon-coated sp2 graphite for high-performance lithium ion batteries. J Power Sources. 2018;376:91.CrossRef
[7]
go back to reference Jin YT, Kneusels NH, Magusin P, Kim GW, Castillo-Martinez E, Marbella LE, Kerber RN, Howe DJ, Paul S, Liu T, Grey CP. Identifying the structural basis for the increased stability of the solid electrolyte interphase formed on silicon with the additive fluoroethylene carbonate. J Am Chem Soc. 2017;139(42):14992.CrossRef Jin YT, Kneusels NH, Magusin P, Kim GW, Castillo-Martinez E, Marbella LE, Kerber RN, Howe DJ, Paul S, Liu T, Grey CP. Identifying the structural basis for the increased stability of the solid electrolyte interphase formed on silicon with the additive fluoroethylene carbonate. J Am Chem Soc. 2017;139(42):14992.CrossRef
[8]
go back to reference Jiang J, Zhang H, Zhu JH, Li LP, Liu YN, Meng T, Ma L, Xu MW, Liu JP, Li CM. Putting nanoarmors on yolk–shell Si@C nanoparticles: a reliable engineering way to build better Si-based anodes for Li-ion batteries. ACS Appl Mater Interfaces. 2018;10(28):24157.CrossRef Jiang J, Zhang H, Zhu JH, Li LP, Liu YN, Meng T, Ma L, Xu MW, Liu JP, Li CM. Putting nanoarmors on yolk–shell Si@C nanoparticles: a reliable engineering way to build better Si-based anodes for Li-ion batteries. ACS Appl Mater Interfaces. 2018;10(28):24157.CrossRef
[9]
go back to reference Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38(9):832.CrossRef Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38(9):832.CrossRef
[10]
go back to reference Yuan TZ, Jiang YZ, Sun WP, Xiang B, Li Y, Yan M, Xu B, Dou SX. Ever-increasing pseudocapacitance in RGO-MnO-RGO sandwich nanostructures for ultrahigh-rate lithium storage. Adv Funct Mater. 2016;26(13):2198.CrossRef Yuan TZ, Jiang YZ, Sun WP, Xiang B, Li Y, Yan M, Xu B, Dou SX. Ever-increasing pseudocapacitance in RGO-MnO-RGO sandwich nanostructures for ultrahigh-rate lithium storage. Adv Funct Mater. 2016;26(13):2198.CrossRef
[11]
go back to reference Zhang WY, Zhang BY, Jin HX, Li P, Zhang YJ, Ma SY, Zhang JX. Waste eggshell as bio-template to synthesize high capacity δ-MnO2 nanoplatelets anode for lithium ion battery. Ceram Int. 2018;44(16):20441.CrossRef Zhang WY, Zhang BY, Jin HX, Li P, Zhang YJ, Ma SY, Zhang JX. Waste eggshell as bio-template to synthesize high capacity δ-MnO2 nanoplatelets anode for lithium ion battery. Ceram Int. 2018;44(16):20441.CrossRef
[12]
go back to reference Padhy H, Chen YQ, Lüder J, Gajella SR, Manzhos S, Balaya P. Charge and discharge processes and sodium storage in disodium pyridine-2,5-dicarboxylate anode-insights from experiments and theory. Adv Energy Mater. 2018;8(7):1701572.CrossRef Padhy H, Chen YQ, Lüder J, Gajella SR, Manzhos S, Balaya P. Charge and discharge processes and sodium storage in disodium pyridine-2,5-dicarboxylate anode-insights from experiments and theory. Adv Energy Mater. 2018;8(7):1701572.CrossRef
[13]
go back to reference Wu YW, Zeng RH, Nan JM, Shu D, Qiu YC, Chou SL. Quinone electrode materials for rechargeable lithium/sodium ion batteries. Adv Energy Mater. 2017;7(24):1700278.CrossRef Wu YW, Zeng RH, Nan JM, Shu D, Qiu YC, Chou SL. Quinone electrode materials for rechargeable lithium/sodium ion batteries. Adv Energy Mater. 2017;7(24):1700278.CrossRef
[14]
go back to reference Zhao Q, Zhu ZQ, Chen J. Molecular engineering with organic carbonyl electrode materials for advanced stationary and redox flow rechargeable batteries. Adv Mater. 2017;29(48):1607007.CrossRef Zhao Q, Zhu ZQ, Chen J. Molecular engineering with organic carbonyl electrode materials for advanced stationary and redox flow rechargeable batteries. Adv Mater. 2017;29(48):1607007.CrossRef
[15]
go back to reference Häupler B, Wild A, Schubert US. Carbonyls: powerful organic materials for secondary batteries. Adv Energy Mater. 2015;5(11):1402034.CrossRef Häupler B, Wild A, Schubert US. Carbonyls: powerful organic materials for secondary batteries. Adv Energy Mater. 2015;5(11):1402034.CrossRef
[16]
go back to reference Peng CX, Ning GH, Su J, Zhong GM, Tang W, Tian BB, Su CL, Yu DY, Zu LH, Yang JH, Ng MF, Hu YS, Yang Y, Armand M, Loh KP. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nat Energy. 2017;2:17074.CrossRef Peng CX, Ning GH, Su J, Zhong GM, Tang W, Tian BB, Su CL, Yu DY, Zu LH, Yang JH, Ng MF, Hu YS, Yang Y, Armand M, Loh KP. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nat Energy. 2017;2:17074.CrossRef
[17]
go back to reference Zhu ZQ, Chen J. Review-advanced carbon-supported organic electrode materials for lithium (sodium)-ion batteries. J Electrochem Soc. 2015;162(14):A2393.CrossRef Zhu ZQ, Chen J. Review-advanced carbon-supported organic electrode materials for lithium (sodium)-ion batteries. J Electrochem Soc. 2015;162(14):A2393.CrossRef
[18]
go back to reference Jing Y, Liang YL, Gheytani S, Yao S. Cross-conjugated oligomeric quinones for high performance organic batteries. Nano Energy. 2017;37:46.CrossRef Jing Y, Liang YL, Gheytani S, Yao S. Cross-conjugated oligomeric quinones for high performance organic batteries. Nano Energy. 2017;37:46.CrossRef
[19]
go back to reference Ma T, Zhao Q, Wang JB, Pan Z, Chen J. A sulfur heterocyclic quinone cathode and a multifunctional binder for a high-performance rechargeable lithium-ion battery. Angew Chem Int Ed. 2016;55(22):6428.CrossRef Ma T, Zhao Q, Wang JB, Pan Z, Chen J. A sulfur heterocyclic quinone cathode and a multifunctional binder for a high-performance rechargeable lithium-ion battery. Angew Chem Int Ed. 2016;55(22):6428.CrossRef
[20]
go back to reference Schon TB, McAllister BT, Li PF, Seferos DS. The rise of organic electrode materials for energy storage. Chem Soc Rev. 2016;45(22):6345.CrossRef Schon TB, McAllister BT, Li PF, Seferos DS. The rise of organic electrode materials for energy storage. Chem Soc Rev. 2016;45(22):6345.CrossRef
[21]
go back to reference Zhao Q, Guo CY, Lu Y, Liu LJ, Liang J, Chen J. Rechargeable lithium batteries with electrodes of small organic carbonyl salts and advanced electrolytes. Ind Eng Chem Res. 2016;55(20):5795.CrossRef Zhao Q, Guo CY, Lu Y, Liu LJ, Liang J, Chen J. Rechargeable lithium batteries with electrodes of small organic carbonyl salts and advanced electrolytes. Ind Eng Chem Res. 2016;55(20):5795.CrossRef
[22]
go back to reference Wang SQ, Wang LJ, Zhang K, Zhu ZQ, Tao ZL, Chen J. Organic Li4C8H2O6 nanosheets for lithium-ion batteries. Nano Lett. 2013;13(9):4404.CrossRef Wang SQ, Wang LJ, Zhang K, Zhu ZQ, Tao ZL, Chen J. Organic Li4C8H2O6 nanosheets for lithium-ion batteries. Nano Lett. 2013;13(9):4404.CrossRef
[23]
go back to reference Lei ZS, Yang QS, Xu Y, Guo SY, Sun WW, Liu H, Lv LP, Zhang Y, Wang Y. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nat Commun. 2018;9:576.CrossRef Lei ZS, Yang QS, Xu Y, Guo SY, Sun WW, Liu H, Lv LP, Zhang Y, Wang Y. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nat Commun. 2018;9:576.CrossRef
[24]
go back to reference Man ZM, Li P, Zhou D, Zang R, Wang SJ, Li PX, Liu SS, Li XM, Wu YH, Liang XH, Wang GX. High-performance lithium–organic batteries by achieving 16 lithium storage in poly(imine-anthraquinone). J Mater Chem A. 2019;7(5):2368.CrossRef Man ZM, Li P, Zhou D, Zang R, Wang SJ, Li PX, Liu SS, Li XM, Wu YH, Liang XH, Wang GX. High-performance lithium–organic batteries by achieving 16 lithium storage in poly(imine-anthraquinone). J Mater Chem A. 2019;7(5):2368.CrossRef
[25]
go back to reference Liu GY, Zhao LF, Sun RX, Chen WH, Hu M, Liu M, Duan XY, Zhang TM. Mesoporous TiNb2O7 microspheres as high performance anode materials for lithium-ion batteries with high-rate capability and long cycle-life. Electrochim Acta. 2018;259:20.CrossRef Liu GY, Zhao LF, Sun RX, Chen WH, Hu M, Liu M, Duan XY, Zhang TM. Mesoporous TiNb2O7 microspheres as high performance anode materials for lithium-ion batteries with high-rate capability and long cycle-life. Electrochim Acta. 2018;259:20.CrossRef
[26]
go back to reference Zhan C, Lian C, Zhang Y, Thompson MW, Xie Y, Wu JZ, Kent PR, Cummings PT, Jiang DE, Wesolowski DJ. Computational insights into materials and interfaces for capacitive energy storage. Adv Sci. 2017;4(7):1700059.CrossRef Zhan C, Lian C, Zhang Y, Thompson MW, Xie Y, Wu JZ, Kent PR, Cummings PT, Jiang DE, Wesolowski DJ. Computational insights into materials and interfaces for capacitive energy storage. Adv Sci. 2017;4(7):1700059.CrossRef
[27]
go back to reference Luo JM, Zhang WK, Yuan HD, Jin CB, Zhang LY, Huang H, Liang C, Xia Y, Zhang J, Gan YP, Tao XY. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano. 2017;11(3):2459.CrossRef Luo JM, Zhang WK, Yuan HD, Jin CB, Zhang LY, Huang H, Liang C, Xia Y, Zhang J, Gan YP, Tao XY. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano. 2017;11(3):2459.CrossRef
[28]
go back to reference Wang XF, Shen GZ. Intercalation pseudo-capacitive TiNb2O7@carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density. Nano Energy. 2015;15:104.CrossRef Wang XF, Shen GZ. Intercalation pseudo-capacitive TiNb2O7@carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density. Nano Energy. 2015;15:104.CrossRef
[29]
go back to reference Li HX, Lang JW, Lei SL, Chen JT, Wang KJ, Liu LY, Zhang TY, Liu WS, Yan XB. A High-performance sodium-ion hybrid capacitor constructed by metal-organic framework-derived anode and cathode materials. Adv Funct Mater. 2018;28(30):1800757.CrossRef Li HX, Lang JW, Lei SL, Chen JT, Wang KJ, Liu LY, Zhang TY, Liu WS, Yan XB. A High-performance sodium-ion hybrid capacitor constructed by metal-organic framework-derived anode and cathode materials. Adv Funct Mater. 2018;28(30):1800757.CrossRef
[30]
go back to reference Chen D, Tan HT, Rui XH, Zhang Q, Feng YZ, Geng HB, Li CC, Huang SM, Yu Y. Oxyvanite V3O5: a new intercalation-type anode for lithium-ion battery. InfoMat. 2019;1(2):251. Chen D, Tan HT, Rui XH, Zhang Q, Feng YZ, Geng HB, Li CC, Huang SM, Yu Y. Oxyvanite V3O5: a new intercalation-type anode for lithium-ion battery. InfoMat. 2019;1(2):251.
[31]
go back to reference Hu ZL, Sayed S, Jiang T, Zhu XY, Lu C, Wang GL, Sun JY, Rashid A, Yan CL, Zhang L, Liu ZF. Self-assembled binary organic granules with multiple lithium uptake mechanisms toward high-energy flexible lithium-ion hybrid supercapacitors. Adv Energy Mater. 2018;8(30):1802273.CrossRef Hu ZL, Sayed S, Jiang T, Zhu XY, Lu C, Wang GL, Sun JY, Rashid A, Yan CL, Zhang L, Liu ZF. Self-assembled binary organic granules with multiple lithium uptake mechanisms toward high-energy flexible lithium-ion hybrid supercapacitors. Adv Energy Mater. 2018;8(30):1802273.CrossRef
[32]
go back to reference Luo C, Huang RM, Kevorkyants R, Pavanello M, He HX, Wang CS. Self-assembled organic nanowires for high power density lithium ion batteries. Nano Lett. 2014;14(3):1596.CrossRef Luo C, Huang RM, Kevorkyants R, Pavanello M, He HX, Wang CS. Self-assembled organic nanowires for high power density lithium ion batteries. Nano Lett. 2014;14(3):1596.CrossRef
[33]
go back to reference Li BQ, Kong L, Zhao CX, Jin Q, Chen X, Peng HJ, Qin JL, Chen JX, Yuan H, Zhang Q, Huang JQ. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium-sulfur batteries. InfoMat. 2019;1(4):533.CrossRef Li BQ, Kong L, Zhao CX, Jin Q, Chen X, Peng HJ, Qin JL, Chen JX, Yuan H, Zhang Q, Huang JQ. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium-sulfur batteries. InfoMat. 2019;1(4):533.CrossRef
Metadata
Title
Gradually activated lithium uptake in sodium citrate toward high-capacity organic anode for lithium-ion batteries
Authors
Rong Long
Gu-Lian Wang
Zhong-Li Hu
Peng-Fei Sun
Li Zhang
Publication date
20-08-2020
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 6/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01502-5

Other articles of this Issue 6/2021

Rare Metals 6/2021 Go to the issue

Premium Partners