Skip to main content
Top
Published in: Rare Metals 6/2021

22-10-2020 | Review

Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction

Authors: Chen-Huai Yang, Farhat Nosheen, Zhi-Cheng Zhang

Published in: Rare Metals | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The electrochemical CO2 reduction (ECR) into value-added products presents an appealing approach to mitigate CO2 emission caused by excess consumption of fossil fuels. To obtain high catalytic activity and selectivity toward target product in ECR, designing and developing a stable and efficient electrocatalyst is of significant importance. To date, metal nanomaterials have been widely applied as electrocatalysts for ECR due to their unique physicochemical properties. The structural modulation of metal nanomaterials is an attractive strategy to improve the catalytic performance. In this review, the recent progress of structural modulation, including size, facet, grain boundary, composition, interface, ligand modification, and crystal phase, is systematically summarized from both theoretical and experimental aspects. Finally, the opportunities and perspectives of structural modulation of metal nanomaterials for ECR are proposed.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Chen Y, Fan ZX, Zhang ZC, Niu WX, Li CL, Yang NL, Chen B, Zhang H. Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem Rev. 2018;118(13):6409. Chen Y, Fan ZX, Zhang ZC, Niu WX, Li CL, Yang NL, Chen B, Zhang H. Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem Rev. 2018;118(13):6409.
[2]
go back to reference Benson EE, Kubiak CP, Sathrum AJ, Smieja JM. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev. 2009;38(1):89. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev. 2009;38(1):89.
[3]
go back to reference Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev. 2013;113(8):6621. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev. 2013;113(8):6621.
[4]
go back to reference Costentin C, Robert M, Saveant JM. Catalysis of the electrochemical reduction of carbon dioxide. Chem Soc Rev. 2013;42(6):2423. Costentin C, Robert M, Saveant JM. Catalysis of the electrochemical reduction of carbon dioxide. Chem Soc Rev. 2013;42(6):2423.
[5]
go back to reference Qiao JL, Liu YY, Hong F, Zhang JJ. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev. 2014;43(2):631. Qiao JL, Liu YY, Hong F, Zhang JJ. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev. 2014;43(2):631.
[6]
go back to reference Zhang ZY, Chi MF, Veith GM, Zhang PF, Lutterman DA, Rosenthal J, Overbury SH, Dai S, Zhu H. Rational design of Bi nanoparticles for efficient electrochemical CO2 reduction: the elucidation of size and surface condition effects. ACS Catal. 2016;6(9):6255. Zhang ZY, Chi MF, Veith GM, Zhang PF, Lutterman DA, Rosenthal J, Overbury SH, Dai S, Zhu H. Rational design of Bi nanoparticles for efficient electrochemical CO2 reduction: the elucidation of size and surface condition effects. ACS Catal. 2016;6(9):6255.
[7]
go back to reference Zhu DD, Liu JL, Qiao SZ. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv Mater. 2016;28(18):3423. Zhu DD, Liu JL, Qiao SZ. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv Mater. 2016;28(18):3423.
[8]
go back to reference Jin HY, Guo CX, Liu X, Liu JL, Vasileff A, Jiao Y, Zheng Y, Qiao SZ. Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev. 2018;118(13):6337. Jin HY, Guo CX, Liu X, Liu JL, Vasileff A, Jiao Y, Zheng Y, Qiao SZ. Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev. 2018;118(13):6337.
[9]
go back to reference Raciti D, Wang C. Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Lett. 2018;3(7):1545. Raciti D, Wang C. Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Lett. 2018;3(7):1545.
[10]
go back to reference Tian ZQ, Priest C, Chen L. Recent progress in the theoretical investigation of electrocatalytic reduction of CO2. Adv Theory Simul. 2018;1(5):1800004. Tian ZQ, Priest C, Chen L. Recent progress in the theoretical investigation of electrocatalytic reduction of CO2. Adv Theory Simul. 2018;1(5):1800004.
[11]
go back to reference Zheng TT, Jiang K, Wang HT. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Adv Mater. 2018;30(48):1802066. Zheng TT, Jiang K, Wang HT. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Adv Mater. 2018;30(48):1802066.
[12]
go back to reference Zhong JW, Yang XF, Wu ZL, Liang BL, Huang YQ, Zhang T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem Soc Rev. 2020;49(5):1385. Zhong JW, Yang XF, Wu ZL, Liang BL, Huang YQ, Zhang T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem Soc Rev. 2020;49(5):1385.
[13]
go back to reference Jiang X, Nie XW, Guo XW, Song CS, Chen JGG. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem Rev. 2020;120(15):7984. Jiang X, Nie XW, Guo XW, Song CS, Chen JGG. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem Rev. 2020;120(15):7984.
[14]
go back to reference Chen GZ, Chen KJ, Fu JW, Liu M. Tracking dynamic evolution of catalytic active sites in photocatalytic CO2 reduction by in situ time-resolved spectroscopy. Rare Met. 2020;39(6):607. Chen GZ, Chen KJ, Fu JW, Liu M. Tracking dynamic evolution of catalytic active sites in photocatalytic CO2 reduction by in situ time-resolved spectroscopy. Rare Met. 2020;39(6):607.
[15]
go back to reference Nitopi S, Bertheussen E, Scott SB, Liu XY, Engstfeld AK, Horch S, Seger B, Stephens IEL, Chan K, Hahn C, Nørskov JK, Jaramillo TF, Chorkendorff I. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev. 2019;119(12):7610. Nitopi S, Bertheussen E, Scott SB, Liu XY, Engstfeld AK, Horch S, Seger B, Stephens IEL, Chan K, Hahn C, Nørskov JK, Jaramillo TF, Chorkendorff I. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev. 2019;119(12):7610.
[16]
go back to reference Xia ZH, Guo SJ. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem Soc Rev. 2019;48(12):3265. Xia ZH, Guo SJ. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem Soc Rev. 2019;48(12):3265.
[17]
go back to reference Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff IB, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science. 2017;355(6321):eaad4998. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff IB, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science. 2017;355(6321):eaad4998.
[18]
go back to reference Yang YL, Tang Y, Jiang HM, Chen YM, Wan PY, Fan MH, Zhang RR, Ullah S, Pan L, Zou JJ, Lao MM, Sun WP, Yang C, Zheng GF, Peng QL, Wang T, Luo YL, Sun XP, Konev AS, Levin OV, Lianos P, Hu ZF, Shen ZR, Zhao QL, Wang Y, Todorova N, Trapalis C, Sheridan MV, Wang HP, Zhang L, Sun SM, Wang WZ, Ma JM. 2020 roadmap on gas-involved photo- and electro—catalysis. Chin Chem Lett. 2019;30(12):2089. Yang YL, Tang Y, Jiang HM, Chen YM, Wan PY, Fan MH, Zhang RR, Ullah S, Pan L, Zou JJ, Lao MM, Sun WP, Yang C, Zheng GF, Peng QL, Wang T, Luo YL, Sun XP, Konev AS, Levin OV, Lianos P, Hu ZF, Shen ZR, Zhao QL, Wang Y, Todorova N, Trapalis C, Sheridan MV, Wang HP, Zhang L, Sun SM, Wang WZ, Ma JM. 2020 roadmap on gas-involved photo- and electro—catalysis. Chin Chem Lett. 2019;30(12):2089.
[19]
go back to reference Zhang N, Long R, Gao C, Xiong YJ. Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Sci China Mater. 2018;61(6):771. Zhang N, Long R, Gao C, Xiong YJ. Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Sci China Mater. 2018;61(6):771.
[20]
go back to reference Zhang L, Zhao ZJ, Gong JL. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew Chem Int Ed. 2017;56(38):11326. Zhang L, Zhao ZJ, Gong JL. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew Chem Int Ed. 2017;56(38):11326.
[21]
go back to reference Wang YH, Liu JL, Wang YF, Al-Enizi AM, Zheng GF. Tuning of CO2 reduction selectivity on metal electrocatalysts. Small. 2017;13(43):1701809. Wang YH, Liu JL, Wang YF, Al-Enizi AM, Zheng GF. Tuning of CO2 reduction selectivity on metal electrocatalysts. Small. 2017;13(43):1701809.
[22]
go back to reference Nam DH, De Luna P, Rosas-Hernández A, Thevenon A, Li FW, Agapie T, Peters JC, Shekhah O, Eddaoudi M, Sargent EH. Molecular enhancement of heterogeneous CO2 reduction. Nat Mater. 2020;19(3):266. Nam DH, De Luna P, Rosas-Hernández A, Thevenon A, Li FW, Agapie T, Peters JC, Shekhah O, Eddaoudi M, Sargent EH. Molecular enhancement of heterogeneous CO2 reduction. Nat Mater. 2020;19(3):266.
[23]
go back to reference Long C, Li X, Guo J, Shi YN, Liu SQ, Tang ZY. Electrochemical reduction of CO2 over heterogeneous catalysts in aqueous solution: recent progress and perspectives. Small Methods. 2019;3(3):1800369. Long C, Li X, Guo J, Shi YN, Liu SQ, Tang ZY. Electrochemical reduction of CO2 over heterogeneous catalysts in aqueous solution: recent progress and perspectives. Small Methods. 2019;3(3):1800369.
[24]
go back to reference Li FW, MacFarlane DR, Zhang J. Recent advances in the nanoengineering of electrocatalysts for CO2 reduction. Nanoscale. 2018;10(14):6235. Li FW, MacFarlane DR, Zhang J. Recent advances in the nanoengineering of electrocatalysts for CO2 reduction. Nanoscale. 2018;10(14):6235.
[25]
go back to reference Fan L, Xia C, Yang FQ, Wang J, Wang HT, Lu YY. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci Adv. 2020;6(8):eaay3111. Fan L, Xia C, Yang FQ, Wang J, Wang HT, Lu YY. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci Adv. 2020;6(8):eaay3111.
[26]
go back to reference Gao DF, Cai F, Wang GX, Bao XH. Nanostructured heterogeneous catalysts for electrochemical reduction of CO2. Curr Opin Green Sustain Chem. 2017;3:39. Gao DF, Cai F, Wang GX, Bao XH. Nanostructured heterogeneous catalysts for electrochemical reduction of CO2. Curr Opin Green Sustain Chem. 2017;3:39.
[27]
go back to reference Gao DF, Arán-Ais RM, Jeon HS, Roldan CB. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat Catal. 2019;2(3):198. Gao DF, Arán-Ais RM, Jeon HS, Roldan CB. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat Catal. 2019;2(3):198.
[28]
go back to reference Han N, Wang Y, Yang H, Deng J, Wu JH, Li YF, Li YG. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat Commun. 2018;9:1320. Han N, Wang Y, Yang H, Deng J, Wu JH, Li YF, Li YG. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat Commun. 2018;9:1320.
[29]
go back to reference Aran-Ais RM, Gao DF, Roldan CB. Structure—and electrolyte-sensitivity in CO2 electroreduction. Acc Chem Res. 2018;51(11):2906. Aran-Ais RM, Gao DF, Roldan CB. Structure—and electrolyte-sensitivity in CO2 electroreduction. Acc Chem Res. 2018;51(11):2906.
[30]
go back to reference Kim C, Dionigi F, Beermann V, Wang XL, Moller T, Strasser P. Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR). Adv Mater. 2019;31(31):1806517. Kim C, Dionigi F, Beermann V, Wang XL, Moller T, Strasser P. Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR). Adv Mater. 2019;31(31):1806517.
[31]
go back to reference Ross MB, De Luna P, Li YF, Dinh CT, Kim D, Yang P, Sargent EH. Designing materials for electrochemical carbon dioxide recycling. Nat Catal. 2019;2(8):648. Ross MB, De Luna P, Li YF, Dinh CT, Kim D, Yang P, Sargent EH. Designing materials for electrochemical carbon dioxide recycling. Nat Catal. 2019;2(8):648.
[32]
go back to reference Xie H, Wang TY, Liang JS, Li Q, Sun SH. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today. 2018;21:41. Xie H, Wang TY, Liang JS, Li Q, Sun SH. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today. 2018;21:41.
[33]
go back to reference Li H, Chen C, Yan DF, Wang YY, Chen R, Zou YQ, Wang SY. Interfacial effects in supported catalysts for electrocatalysis. J Mater Chem A. 2019;7(41):23432. Li H, Chen C, Yan DF, Wang YY, Chen R, Zou YQ, Wang SY. Interfacial effects in supported catalysts for electrocatalysis. J Mater Chem A. 2019;7(41):23432.
[34]
go back to reference Han N, Ding P, He L, Li YY, Li YG. Promises of main group metal–based nanostructured materials for electrochemical CO2 reduction to formate. Adv Energy Mater. 2019;10(11):1902338. Han N, Ding P, He L, Li YY, Li YG. Promises of main group metal–based nanostructured materials for electrochemical CO2 reduction to formate. Adv Energy Mater. 2019;10(11):1902338.
[35]
go back to reference Chen ZS, Zhang GX, Prakash J, Zheng Y, Sun SH. Rational design of novel catalysts with atomic layer deposition for the reduction of carbon dioxide. Adv Energy Mater. 2019;9(37):1900889. Chen ZS, Zhang GX, Prakash J, Zheng Y, Sun SH. Rational design of novel catalysts with atomic layer deposition for the reduction of carbon dioxide. Adv Energy Mater. 2019;9(37):1900889.
[36]
go back to reference Birdja YY, Pérez-Gallent E, Figueiredo MC, Göttle AJ, Calle-Vallejo F, Koper MTM. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat Energy. 2019;4(9):732. Birdja YY, Pérez-Gallent E, Figueiredo MC, Göttle AJ, Calle-Vallejo F, Koper MTM. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat Energy. 2019;4(9):732.
[37]
go back to reference Zhang ZC, Xu B, Wang X. Engineering nanointerfaces for nanocatalysis. Chem Soc Rev. 2014;43(22):7870. Zhang ZC, Xu B, Wang X. Engineering nanointerfaces for nanocatalysis. Chem Soc Rev. 2014;43(22):7870.
[38]
go back to reference Nosheen F, Wasfi N, Aslam S, Anwar T, Hussain S, Hussain N, Shah SN, Shaheen N, Ashraf A, Zhu YT, Wang HQ, Ma JM, Zhang ZC, Hu WP. Ultrathin Pd-based nanosheets: syntheses, properties and applications. Nanoscale. 2020;12(7):4219. Nosheen F, Wasfi N, Aslam S, Anwar T, Hussain S, Hussain N, Shah SN, Shaheen N, Ashraf A, Zhu YT, Wang HQ, Ma JM, Zhang ZC, Hu WP. Ultrathin Pd-based nanosheets: syntheses, properties and applications. Nanoscale. 2020;12(7):4219.
[39]
go back to reference Yang CH, Li SY, Zhang ZC, Wang HQ, Liu HL, Jiao F, Guo ZG, Zhang XT, Hu WP. Organic–inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small. 2020;16(29):2001827. Yang CH, Li SY, Zhang ZC, Wang HQ, Liu HL, Jiao F, Guo ZG, Zhang XT, Hu WP. Organic–inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small. 2020;16(29):2001827.
[40]
go back to reference Nursanto EB, Jeon HS, Kim C, Jee MS, Koh JH, Hwang YJ, Min BK. Gold catalyst reactivity for CO2 electro-reduction: from nano particle to layer. Catal Today. 2016;260:107. Nursanto EB, Jeon HS, Kim C, Jee MS, Koh JH, Hwang YJ, Min BK. Gold catalyst reactivity for CO2 electro-reduction: from nano particle to layer. Catal Today. 2016;260:107.
[41]
go back to reference Ma M, Djanashvili K, Smith WA. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew Chem Int Ed. 2016;55(23):6680. Ma M, Djanashvili K, Smith WA. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew Chem Int Ed. 2016;55(23):6680.
[42]
go back to reference Loiudice A, Lobaccaro P, Kamali EA, Thao T, Huang BH, Ager JW, Buonsanti R. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew Chem Int Ed. 2016;55(19):5789. Loiudice A, Lobaccaro P, Kamali EA, Thao T, Huang BH, Ager JW, Buonsanti R. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew Chem Int Ed. 2016;55(19):5789.
[43]
go back to reference Reske R, Mistry H, Behafarid F, Roldan Cuenya B, Strasser P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J Am Chem Soc. 2014;136(19):6978. Reske R, Mistry H, Behafarid F, Roldan Cuenya B, Strasser P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J Am Chem Soc. 2014;136(19):6978.
[44]
go back to reference Zhu WL, Michalsky R, Metin O, Lv HF, Guo SJ, Wright C, Sun XL, Peterson AA, Sun SH. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J Am Chem Soc. 2013;135(45):16833. Zhu WL, Michalsky R, Metin O, Lv HF, Guo SJ, Wright C, Sun XL, Peterson AA, Sun SH. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J Am Chem Soc. 2013;135(45):16833.
[45]
go back to reference Mistry H, Reske R, Zeng ZH, Zhao ZJ, Greeley J, Strasser P, Roldan CB. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J Am Chem Soc. 2014;136(47):16473. Mistry H, Reske R, Zeng ZH, Zhao ZJ, Greeley J, Strasser P, Roldan CB. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J Am Chem Soc. 2014;136(47):16473.
[46]
go back to reference Salehi-Khojin A, Jhong HRM, Rosen BA, Zhu W, Ma SC, Kenis PJA, Masel RI. Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis. J Phys Chem C. 2013;117(4):1627. Salehi-Khojin A, Jhong HRM, Rosen BA, Zhu W, Ma SC, Kenis PJA, Masel RI. Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis. J Phys Chem C. 2013;117(4):1627.
[47]
go back to reference Kim C, Jeon HS, Eom T, Jee MS, Kim H, Friend CM, Min BK, Hwang YJ. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J Am Chem Soc. 2015;137(43):13844. Kim C, Jeon HS, Eom T, Jee MS, Kim H, Friend CM, Min BK, Hwang YJ. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J Am Chem Soc. 2015;137(43):13844.
[48]
go back to reference Gao DF, Zhou H, Wang J, Miao S, Yang F, Wang GX, Wang JG, Bao XH. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc. 2015;137(13):4288. Gao DF, Zhou H, Wang J, Miao S, Yang F, Wang GX, Wang JG, Bao XH. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc. 2015;137(13):4288.
[49]
go back to reference Manthiram K, Beberwyck BJ, Alivisatos AP. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J Am Chem Soc. 2014;136(38):13319. Manthiram K, Beberwyck BJ, Alivisatos AP. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J Am Chem Soc. 2014;136(38):13319.
[50]
go back to reference Kim D, Kley CS, Li YF, Yang PD. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc Natl Acad Sci USA. 2017;114(40):10560. Kim D, Kley CS, Li YF, Yang PD. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc Natl Acad Sci USA. 2017;114(40):10560.
[51]
go back to reference Del Castillo A, Alvarez-Guerra M, Solla-Gullón J, Sáez A, Montiel V, Irabien A. Electrocatalytic reduction of CO2 to formate using particulate Sn electrodes: effect of metal loading and particle size. Appl Energy. 2015;157:165. Del Castillo A, Alvarez-Guerra M, Solla-Gullón J, Sáez A, Montiel V, Irabien A. Electrocatalytic reduction of CO2 to formate using particulate Sn electrodes: effect of metal loading and particle size. Appl Energy. 2015;157:165.
[52]
go back to reference Mistry H, Behafarid F, Reske R, Varela AS, Strasser P, Roldan CB. Tuning catalytic selectivity at the mesoscale via interparticle interactions. ACS Catal. 2016;6(2):1075. Mistry H, Behafarid F, Reske R, Varela AS, Strasser P, Roldan CB. Tuning catalytic selectivity at the mesoscale via interparticle interactions. ACS Catal. 2016;6(2):1075.
[53]
go back to reference Liu HL, Zhu YT, Ma JM, Zhang ZC, Hu WP. Recent advances in atomic-level engineering of nanostructured catalysts for electrochemical CO2 reduction. Adv Funct Mater. 2020;30(17):1910534. Liu HL, Zhu YT, Ma JM, Zhang ZC, Hu WP. Recent advances in atomic-level engineering of nanostructured catalysts for electrochemical CO2 reduction. Adv Funct Mater. 2020;30(17):1910534.
[54]
go back to reference Qiao BT, Wang AQ, Yang XF, Allard LF, Jiang Z, Cui YT, Liu JY, Li J, Zhang T. Single-atom catalysis of CO oxidation using Pt-1/FeOx. Nat Chem. 2011;3(8):634. Qiao BT, Wang AQ, Yang XF, Allard LF, Jiang Z, Cui YT, Liu JY, Li J, Zhang T. Single-atom catalysis of CO oxidation using Pt-1/FeOx. Nat Chem. 2011;3(8):634.
[55]
go back to reference Jiao L, Jiang HL. Metal-organic-framework-based single-atom catalysts for energy applications. Chem. 2019;5(4):786. Jiao L, Jiang HL. Metal-organic-framework-based single-atom catalysts for energy applications. Chem. 2019;5(4):786.
[56]
go back to reference Cheng Y, Yang SZ, Jiang SP, Wang SY. Supported single atoms as new class of catalysts for electrochemical reduction of carbon dioxide. Small Methods. 2019;3(9):1800440. Cheng Y, Yang SZ, Jiang SP, Wang SY. Supported single atoms as new class of catalysts for electrochemical reduction of carbon dioxide. Small Methods. 2019;3(9):1800440.
[57]
go back to reference Yan CC, Li HB, Ye YF, Wu HH, Cai F, Si R, Xiao JP, Miao S, Xie SH, Yang F, Li YS, Wang GX, Bao XH. Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ Sci. 2018;11(5):1204. Yan CC, Li HB, Ye YF, Wu HH, Cai F, Si R, Xiao JP, Miao S, Xie SH, Yang F, Li YS, Wang GX, Bao XH. Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ Sci. 2018;11(5):1204.
[58]
go back to reference Jiao Y, Zheng Y, Chen P, Jaroniec M, Qiao SZ. Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J Am Chem Soc. 2017;139(49):18093. Jiao Y, Zheng Y, Chen P, Jaroniec M, Qiao SZ. Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J Am Chem Soc. 2017;139(49):18093.
[59]
go back to reference Vickers JW, Alfonso D, Kauffman DR. Electrochemical carbon dioxide reduction at nanostructured gold, copper, and alloy materials. Energy Technol. 2017;5(6):775. Vickers JW, Alfonso D, Kauffman DR. Electrochemical carbon dioxide reduction at nanostructured gold, copper, and alloy materials. Energy Technol. 2017;5(6):775.
[60]
go back to reference Reske R, Duca M, Oezaslan M, Schouten KJP, Koper MTM, Strasser P. Controlling catalytic selectivities during CO2 electroreduction on thin Cu metal overlayers. J Phys Chem Lett. 2013;4(15):2410. Reske R, Duca M, Oezaslan M, Schouten KJP, Koper MTM, Strasser P. Controlling catalytic selectivities during CO2 electroreduction on thin Cu metal overlayers. J Phys Chem Lett. 2013;4(15):2410.
[61]
go back to reference Tang W, Peterson AA, Varela AS, Jovanov ZP, Bech L, Durand WJ, Dahl S, Nørskov JK, Chorkendorff I. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys Chem Chem Phys. 2012;14(1):76. Tang W, Peterson AA, Varela AS, Jovanov ZP, Bech L, Durand WJ, Dahl S, Nørskov JK, Chorkendorff I. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys Chem Chem Phys. 2012;14(1):76.
[62]
go back to reference Yang DR, Liu L, Zhang Q, Shi Y, Zhou Y, Liu CG, Wang FB, Xia XH. Importance of Au nanostructures in CO2 electrochemical reduction reaction. Sci Bull. 2020;65(10):796. Yang DR, Liu L, Zhang Q, Shi Y, Zhou Y, Liu CG, Wang FB, Xia XH. Importance of Au nanostructures in CO2 electrochemical reduction reaction. Sci Bull. 2020;65(10):796.
[63]
go back to reference Schouten KJP, Qin ZS, Gallent EP, Koper MTM. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J Am Chem Soc. 2012;134(24):9864. Schouten KJP, Qin ZS, Gallent EP, Koper MTM. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J Am Chem Soc. 2012;134(24):9864.
[64]
go back to reference Luo WJ, Nie XW, Janik MJ, Asthagiri A. Facet dependence of CO2 reduction paths on Cu electrodes. ACS Catal. 2015;6(1):219. Luo WJ, Nie XW, Janik MJ, Asthagiri A. Facet dependence of CO2 reduction paths on Cu electrodes. ACS Catal. 2015;6(1):219.
[65]
go back to reference Huang Y, Handoko AD, Hirunsit P, Yeo BS. Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene. ACS Catal. 2017;7(3):1749. Huang Y, Handoko AD, Hirunsit P, Yeo BS. Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene. ACS Catal. 2017;7(3):1749.
[66]
go back to reference Roberts FS, Kuhl KP, Nilsson A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew Chem Int Ed. 2015;54(17):5179. Roberts FS, Kuhl KP, Nilsson A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew Chem Int Ed. 2015;54(17):5179.
[67]
go back to reference Hori Y, Takahashi I, Koga O, Hoshi N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J Phys Chem B. 2002;106(1):15. Hori Y, Takahashi I, Koga O, Hoshi N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J Phys Chem B. 2002;106(1):15.
[68]
go back to reference Wang ZN, Yang G, Zhang ZR, Jin MS, Yin YD. Selectivity on etching: creation of high-energy facets on copper nanocrystals for CO2 electrochemical reduction. ACS Nano. 2016;10(4):4559. Wang ZN, Yang G, Zhang ZR, Jin MS, Yin YD. Selectivity on etching: creation of high-energy facets on copper nanocrystals for CO2 electrochemical reduction. ACS Nano. 2016;10(4):4559.
[69]
go back to reference Montoya JH, Shi C, Chan K, Nørskov JK. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J Phys Chem Lett. 2015;6(11):2032. Montoya JH, Shi C, Chan K, Nørskov JK. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J Phys Chem Lett. 2015;6(11):2032.
[70]
go back to reference Calle-Vallejo F, Koper MTM. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew Chem Int Ed. 2013;52(28):7282. Calle-Vallejo F, Koper MTM. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew Chem Int Ed. 2013;52(28):7282.
[71]
go back to reference Nie XW, Luo WJ, Janik MJ, Asthagiri A. Reaction mechanisms of CO2 electrochemical reduction on Cu(111) determined with density functional theory. J Catal. 2014;312:108. Nie XW, Luo WJ, Janik MJ, Asthagiri A. Reaction mechanisms of CO2 electrochemical reduction on Cu(111) determined with density functional theory. J Catal. 2014;312:108.
[72]
go back to reference Durand WJ, Peterson AA, Studt F, Abild-Pedersen F, Nørskov JK. Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surf Sci. 2011;605(15–16):1354. Durand WJ, Peterson AA, Studt F, Abild-Pedersen F, Nørskov JK. Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surf Sci. 2011;605(15–16):1354.
[73]
go back to reference Ledezma-Yanez I, Gallent EP, Koper MTM, Calle-Vallejo F. Structure-sensitive electroreduction of acetaldehyde to ethanol on copper and its mechanistic implications for CO and CO2 reduction. Catal Today. 2016;262:90. Ledezma-Yanez I, Gallent EP, Koper MTM, Calle-Vallejo F. Structure-sensitive electroreduction of acetaldehyde to ethanol on copper and its mechanistic implications for CO and CO2 reduction. Catal Today. 2016;262:90.
[74]
go back to reference Varela AS, Kroschel M, Reier T, Strasser P. Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH. Catal Today. 2016;260:8. Varela AS, Kroschel M, Reier T, Strasser P. Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH. Catal Today. 2016;260:8.
[75]
go back to reference Ren D, Deng YL, Handoko AD, Chen CS, Malkhandi S, Yeo BS. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 2015;5(5):2814. Ren D, Deng YL, Handoko AD, Chen CS, Malkhandi S, Yeo BS. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 2015;5(5):2814.
[76]
go back to reference Li CW, Ciston J, Kanan MW. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature. 2014;508(7497):504. Li CW, Ciston J, Kanan MW. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature. 2014;508(7497):504.
[77]
go back to reference Chen CS, Handoko AD, Wan JH, Ma L, Ren D, Yeo BS. Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals. Catal Sci Technol. 2015;5(1):161. Chen CS, Handoko AD, Wan JH, Ma L, Ren D, Yeo BS. Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals. Catal Sci Technol. 2015;5(1):161.
[78]
go back to reference Gao DF, Zegkinoglou I, Divins NJ, Scholten F, Sinev I, Grosse P, Roldan CB. Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano. 2017;11(5):4825. Gao DF, Zegkinoglou I, Divins NJ, Scholten F, Sinev I, Grosse P, Roldan CB. Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano. 2017;11(5):4825.
[79]
go back to reference De Gregorio GL, Burdyny T, Loiudice A, Iyengar P, Smith WA, Buonsanti R. Facet-dependent selectivity of Cu catalysts in electrochemical CO2 reduction at commercially viable current densities. ACS Catal. 2020;10(9):4854. De Gregorio GL, Burdyny T, Loiudice A, Iyengar P, Smith WA, Buonsanti R. Facet-dependent selectivity of Cu catalysts in electrochemical CO2 reduction at commercially viable current densities. ACS Catal. 2020;10(9):4854.
[80]
go back to reference Wang YH, Wang ZY, Dinh CT, Li J, Ozden A, Kibria MG, Seifitokaldani A, Tan CS, Gabardo CM, Luo MC, Zhou H, Li FW, Lum Y, McCallum C, Xu Y, Liu MX, Proppe A, Johnston A, Todorovic P, Zhuang TT, Sinton D, Kelley SO, Sargent EH. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat Catal. 2019;3(2):98. Wang YH, Wang ZY, Dinh CT, Li J, Ozden A, Kibria MG, Seifitokaldani A, Tan CS, Gabardo CM, Luo MC, Zhou H, Li FW, Lum Y, McCallum C, Xu Y, Liu MX, Proppe A, Johnston A, Todorovic P, Zhuang TT, Sinton D, Kelley SO, Sargent EH. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat Catal. 2019;3(2):98.
[81]
go back to reference Sen S, Liu D, Palmore GTR. Electrochemical reduction of CO2 at copper nanofoams. ACS Catal. 2014;4(9):3091. Sen S, Liu D, Palmore GTR. Electrochemical reduction of CO2 at copper nanofoams. ACS Catal. 2014;4(9):3091.
[82]
go back to reference Hahn C, Hatsukade T, Kim YG, Vailionis A, Baricuatro JH, Higgins DC, Nitopi SA, Soriaga MP, Jaramillo TF. Engineering Cu surfaces for the electrocatalytic conversion of CO2: controlling selectivity toward oxygenates and hydrocarbons. Proc Natl Acad Sci USA. 2017;114(23):5918. Hahn C, Hatsukade T, Kim YG, Vailionis A, Baricuatro JH, Higgins DC, Nitopi SA, Soriaga MP, Jaramillo TF. Engineering Cu surfaces for the electrocatalytic conversion of CO2: controlling selectivity toward oxygenates and hydrocarbons. Proc Natl Acad Sci USA. 2017;114(23):5918.
[83]
go back to reference Hoshi N, Kato M, Hori Y. Electrochemical reduction of CO, on single crystal electrodes of silver Ag{111}, Ag{100} and Ag{110}. J Electroanal Chem. 1997;440:283. Hoshi N, Kato M, Hori Y. Electrochemical reduction of CO, on single crystal electrodes of silver Ag{111}, Ag{100} and Ag{110}. J Electroanal Chem. 1997;440:283.
[84]
go back to reference Liu SB, Tao HB, Zeng L, Liu Q, Xu ZG, Liu QX, Luo JL. Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. J Am Chem Soc. 2017;139(6):2160. Liu SB, Tao HB, Zeng L, Liu Q, Xu ZG, Liu QX, Luo JL. Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. J Am Chem Soc. 2017;139(6):2160.
[85]
go back to reference Zhang QF, Wang H. Facet-dependent catalytic activities of Au nanoparticles enclosed by high-index facets. ACS Catal. 2014;4(11):4027. Zhang QF, Wang H. Facet-dependent catalytic activities of Au nanoparticles enclosed by high-index facets. ACS Catal. 2014;4(11):4027.
[86]
go back to reference Liu M, Pang YJ, Zhang B, De Luna P, Voznyy O, Xu JX, Zheng XL, Dinh CT, Fan FJ, Cao CH, de Arquer FPG, Safaei TS, Mepham A, Klinkova A, Kumacheva E, Filleter T, Sinton D, Kelley SO, Sargent EH. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature. 2016;537(7620):382. Liu M, Pang YJ, Zhang B, De Luna P, Voznyy O, Xu JX, Zheng XL, Dinh CT, Fan FJ, Cao CH, de Arquer FPG, Safaei TS, Mepham A, Klinkova A, Kumacheva E, Filleter T, Sinton D, Kelley SO, Sargent EH. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature. 2016;537(7620):382.
[87]
go back to reference Lee HE, Yang KD, Yoon SM, Ahn HY, Lee YY, Chang HJ, Jeong DH, Lee YS, Kim MY, Nam KT. Concave rhombic dodecahedral Au nanocatalyst with multiple high-index facets for CO2 reduction. ACS Nano. 2015;9(8):8384. Lee HE, Yang KD, Yoon SM, Ahn HY, Lee YY, Chang HJ, Jeong DH, Lee YS, Kim MY, Nam KT. Concave rhombic dodecahedral Au nanocatalyst with multiple high-index facets for CO2 reduction. ACS Nano. 2015;9(8):8384.
[88]
go back to reference Zhu WL, Zhang YJ, Zhang HY, Lv HF, Li Q, Michalsky R, Peterson AA, Sun SH. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J Am Chem Soc. 2014;136(46):16132. Zhu WL, Zhang YJ, Zhang HY, Lv HF, Li Q, Michalsky R, Peterson AA, Sun SH. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J Am Chem Soc. 2014;136(46):16132.
[89]
go back to reference Li L, Ma DK, Qi FXY, Chen W, Huang SM. Bi nanoparticles/Bi2O3 nanosheets with abundant grain boundaries for efficient electrocatalytic CO2 reduction. Electrochim Acta. 2019;298:580. Li L, Ma DK, Qi FXY, Chen W, Huang SM. Bi nanoparticles/Bi2O3 nanosheets with abundant grain boundaries for efficient electrocatalytic CO2 reduction. Electrochim Acta. 2019;298:580.
[90]
go back to reference Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat Rev Mater. 2016;1(5):16019. Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat Rev Mater. 2016;1(5):16019.
[91]
go back to reference Feng XF, Jiang KL, Fan SS, Kanan MW. Grain-boundary-dependent CO2 electroreduction activity. J Am Chem Soc. 2015;137(14):4606. Feng XF, Jiang KL, Fan SS, Kanan MW. Grain-boundary-dependent CO2 electroreduction activity. J Am Chem Soc. 2015;137(14):4606.
[92]
go back to reference Mariano RG, McKelvey K, White HS, Kanan MW. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science. 2017;358(6367):1187. Mariano RG, McKelvey K, White HS, Kanan MW. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science. 2017;358(6367):1187.
[93]
go back to reference Kim KS, Kim WJ, Lim HK, Lee EK, Kim H. Tuned chemical bonding ability of Au at grain boundaries for enhanced electrochemical CO2 reduction. ACS Catal. 2016;6(7):4443. Kim KS, Kim WJ, Lim HK, Lee EK, Kim H. Tuned chemical bonding ability of Au at grain boundaries for enhanced electrochemical CO2 reduction. ACS Catal. 2016;6(7):4443.
[94]
go back to reference Dong CK, Fu JY, Liu H, Ling T, Yang J, Qiao SZ, Du XW. Tuning the selectivity and activity of Au catalysts for carbon dioxide electroreduction via grain boundary engineering: a DFT study. J Mater Chem A. 2017;5(15):7184. Dong CK, Fu JY, Liu H, Ling T, Yang J, Qiao SZ, Du XW. Tuning the selectivity and activity of Au catalysts for carbon dioxide electroreduction via grain boundary engineering: a DFT study. J Mater Chem A. 2017;5(15):7184.
[95]
go back to reference Verdaguer-Casadevall A, Li CW, Johansson TP, Scott SB, McKeown JT, Kumar M, Stephens IEL, Kanan MW, Chorkendorff I. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J Am Chem Soc. 2015;137(31):9808. Verdaguer-Casadevall A, Li CW, Johansson TP, Scott SB, McKeown JT, Kumar M, Stephens IEL, Kanan MW, Chorkendorff I. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J Am Chem Soc. 2015;137(31):9808.
[96]
go back to reference Raciti D, Livi KJ, Wang C. Highly dense Cu nanowires for low-overpotential CO2 reduction. Nano Lett. 2015;15(10):6829. Raciti D, Livi KJ, Wang C. Highly dense Cu nanowires for low-overpotential CO2 reduction. Nano Lett. 2015;15(10):6829.
[97]
go back to reference Li CW, Kanan MW. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc. 2012;134(17):7231. Li CW, Kanan MW. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc. 2012;134(17):7231.
[98]
go back to reference Feng XF, Jiang KL, Fan SS, Kanan MW. A direct grain-boundary-activity correlation for CO electroreduction on Cu nanoparticles. ACS Cent Sci. 2016;2(3):169. Feng XF, Jiang KL, Fan SS, Kanan MW. A direct grain-boundary-activity correlation for CO electroreduction on Cu nanoparticles. ACS Cent Sci. 2016;2(3):169.
[99]
go back to reference Mi YY, Shen SB, Peng XY, Bao HH, Liu XJ, Luo J. Selective electroreduction of CO2 to C2 products over Cu3N-derived Cu nanowires. ChemElectroChem. 2019;6(9):2393. Mi YY, Shen SB, Peng XY, Bao HH, Liu XJ, Luo J. Selective electroreduction of CO2 to C2 products over Cu3N-derived Cu nanowires. ChemElectroChem. 2019;6(9):2393.
[100]
go back to reference Chen CJ, Sun XF, Yan XP, Wu YH, Liu MY, Liu SS, Zhao ZJ, Han BX. A strategy to control the grain boundary density and Cu+/Cu0 ratio of Cu-based catalysts for efficient electroreduction of CO2 to C2 products. Green Chem. 2020;22(5):1572. Chen CJ, Sun XF, Yan XP, Wu YH, Liu MY, Liu SS, Zhao ZJ, Han BX. A strategy to control the grain boundary density and Cu+/Cu0 ratio of Cu-based catalysts for efficient electroreduction of CO2 to C2 products. Green Chem. 2020;22(5):1572.
[101]
go back to reference Chen ZQ, Wang T, Liu B, Cheng DF, Hu CL, Zhang G, Zhu WJ, Wang HY, Zhao ZJ, Gong JL. Grain-boundary-rich copper for efficient solar-driven electrochemical CO2 reduction to ethylene and ethanol. J Am Chem Soc. 2020;142(15):6878. Chen ZQ, Wang T, Liu B, Cheng DF, Hu CL, Zhang G, Zhu WJ, Wang HY, Zhao ZJ, Gong JL. Grain-boundary-rich copper for efficient solar-driven electrochemical CO2 reduction to ethylene and ethanol. J Am Chem Soc. 2020;142(15):6878.
[102]
go back to reference Torelli DA, Francis SA, Crompton JC, Javier A, Thompson JR, Brunschwig BS, Soriaga MP, Lewis NS. Nickel–gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal. 2016;6(3):2100. Torelli DA, Francis SA, Crompton JC, Javier A, Thompson JR, Brunschwig BS, Soriaga MP, Lewis NS. Nickel–gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal. 2016;6(3):2100.
[103]
go back to reference Hahn C, Abram DN, Hansen HA, Hatsukade T, Jackson A, Johnson NC, Hellstern TR, Kuhl KP, Cave ER, Feaster JT, Jaramillo TF. Synthesis of thin film AuPd alloys and their investigation for electrocatalytic CO2 reduction. J Mater Chem A. 2015;3(40):20185. Hahn C, Abram DN, Hansen HA, Hatsukade T, Jackson A, Johnson NC, Hellstern TR, Kuhl KP, Cave ER, Feaster JT, Jaramillo TF. Synthesis of thin film AuPd alloys and their investigation for electrocatalytic CO2 reduction. J Mater Chem A. 2015;3(40):20185.
[104]
go back to reference Bai XF, Chen W, Zhao CC, Li SG, Song YF, Ge RP, Wei W, Sun YH. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd–Sn alloy. Angew Chem Int Ed. 2017;56(40):12219. Bai XF, Chen W, Zhao CC, Li SG, Song YF, Ge RP, Wei W, Sun YH. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd–Sn alloy. Angew Chem Int Ed. 2017;56(40):12219.
[105]
go back to reference Rasul S, Anjum DH, Jedidi A, Minenkov Y, Cavallo L, Takanabe K. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew Chem Int Ed. 2015;54(7):2146. Rasul S, Anjum DH, Jedidi A, Minenkov Y, Cavallo L, Takanabe K. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew Chem Int Ed. 2015;54(7):2146.
[106]
go back to reference Xu ZC, Lai EC, Shao-Horn Y, Hamad-Schifferli K. Compositional dependence of the stability of AuCu alloy nanoparticles. Chem Commun. 2012;48(45):5626. Xu ZC, Lai EC, Shao-Horn Y, Hamad-Schifferli K. Compositional dependence of the stability of AuCu alloy nanoparticles. Chem Commun. 2012;48(45):5626.
[107]
go back to reference Hirunsit P. Electroreduction of carbon dioxide to methane on copper, copper–silver, and copper–gold catalysts: a DFT study. J Phys Chem C. 2013;117(16):8262. Hirunsit P. Electroreduction of carbon dioxide to methane on copper, copper–silver, and copper–gold catalysts: a DFT study. J Phys Chem C. 2013;117(16):8262.
[108]
go back to reference He R, Wang YC, Wang XY, Wang ZT, Liu G, Zhou W, Wen LP, Li QX, Wang XP, Chen XY, Zeng J, Hou JG. Facile synthesis of pentacle gold-copper alloy nanocrystals and their plasmonic and catalytic properties. Nat Commun. 2014;5:4327. He R, Wang YC, Wang XY, Wang ZT, Liu G, Zhou W, Wen LP, Li QX, Wang XP, Chen XY, Zeng J, Hou JG. Facile synthesis of pentacle gold-copper alloy nanocrystals and their plasmonic and catalytic properties. Nat Commun. 2014;5:4327.
[109]
go back to reference Jia FL, Yu XX, Zhang LZ. Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu–Au alloy as catalyst. J Power Sources. 2014;252:85. Jia FL, Yu XX, Zhang LZ. Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu–Au alloy as catalyst. J Power Sources. 2014;252:85.
[110]
go back to reference Zhao WG, Yang LN, Yin YD, Jin MS. Thermodynamic controlled synthesis of intermetallic Au3Cu alloy nanocrystals from Cu microparticles. J Mater Chem A. 2014;2(4):902. Zhao WG, Yang LN, Yin YD, Jin MS. Thermodynamic controlled synthesis of intermetallic Au3Cu alloy nanocrystals from Cu microparticles. J Mater Chem A. 2014;2(4):902.
[111]
go back to reference Hirunsit P, Soodsawang W, Limtrakul J. CO2 electrochemical reduction to methane and methanol on copper-based alloys: theoretical insight. J Phys Chem C. 2015;119(15):8238. Hirunsit P, Soodsawang W, Limtrakul J. CO2 electrochemical reduction to methane and methanol on copper-based alloys: theoretical insight. J Phys Chem C. 2015;119(15):8238.
[112]
go back to reference Mistry H, Reske R, Strasser P, Roldan CB. Size-dependent reactivity of gold-copper bimetallic nanoparticles during CO2 electroreduction. Catal Today. 2017;288:30. Mistry H, Reske R, Strasser P, Roldan CB. Size-dependent reactivity of gold-copper bimetallic nanoparticles during CO2 electroreduction. Catal Today. 2017;288:30.
[113]
go back to reference Ross MB, Dinh CT, Li Y, Kim D, De Luna P, Sargent EH, Yang PD. Tunable Cu enrichment enables designer syngas electrosynthesis from CO2. J Am Chem Soc. 2017;139(27):9359. Ross MB, Dinh CT, Li Y, Kim D, De Luna P, Sargent EH, Yang PD. Tunable Cu enrichment enables designer syngas electrosynthesis from CO2. J Am Chem Soc. 2017;139(27):9359.
[114]
go back to reference Liu K, Ma M, Wu LF, Valenti M, Cardenas-Morcoso D, Hofmann JP, Bisquert J, Gimenez S, Smith WA. Electronic effects determine the selectivity of planar Au–Cu bimetallic thin films for electrochemical CO2 reduction. ACS Appl Mater Interfaces. 2019;11(18):16546. Liu K, Ma M, Wu LF, Valenti M, Cardenas-Morcoso D, Hofmann JP, Bisquert J, Gimenez S, Smith WA. Electronic effects determine the selectivity of planar Au–Cu bimetallic thin films for electrochemical CO2 reduction. ACS Appl Mater Interfaces. 2019;11(18):16546.
[115]
go back to reference Kim D, Resasco J, Yu Y, Asiri AM, Yang PD. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat Commun. 2014;5:4948. Kim D, Resasco J, Yu Y, Asiri AM, Yang PD. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat Commun. 2014;5:4948.
[116]
go back to reference Kim D, Xie CL, Becknell N, Yu Y, Karamad M, Chan K, Crumlin EJ, Nørskov JK, Yang P. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J Am Chem Soc. 2017;139(24):8329. Kim D, Xie CL, Becknell N, Yu Y, Karamad M, Chan K, Crumlin EJ, Nørskov JK, Yang P. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J Am Chem Soc. 2017;139(24):8329.
[117]
go back to reference Ma S, Sadakiyo M, Heima M, Luo R, Haasch RT, Gold JI, Yamauchi M, Kenis PJ. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu–Pd catalysts with different mixing patterns. J Am Chem Soc. 2017;139(1):47. Ma S, Sadakiyo M, Heima M, Luo R, Haasch RT, Gold JI, Yamauchi M, Kenis PJ. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu–Pd catalysts with different mixing patterns. J Am Chem Soc. 2017;139(1):47.
[118]
go back to reference Yang Y, Luo MC, Zhang WY, Sun YJ, Chen X, Guo SJ. Metal surface and interface energy electrocatalysis: fundamentals, performance engineering, and opportunities. Chem. 2018;4(9):2054. Yang Y, Luo MC, Zhang WY, Sun YJ, Chen X, Guo SJ. Metal surface and interface energy electrocatalysis: fundamentals, performance engineering, and opportunities. Chem. 2018;4(9):2054.
[119]
go back to reference Wang YF, Han P, Lv XM, Zhang LJ, Zheng GF. Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule. 2018;2(12):2551. Wang YF, Han P, Lv XM, Zhang LJ, Zheng GF. Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule. 2018;2(12):2551.
[120]
go back to reference Vasileff A, Xu CC, Jiao Y, Zheng Y, Qiao SZ. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem. 2018;4(8):1809. Vasileff A, Xu CC, Jiao Y, Zheng Y, Qiao SZ. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem. 2018;4(8):1809.
[121]
go back to reference Shao Q, Wang PT, Huang XQ. Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Adv Funct Mater. 2019;29(3):1806419. Shao Q, Wang PT, Huang XQ. Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Adv Funct Mater. 2019;29(3):1806419.
[122]
go back to reference Kattel S, Liu P, Chen JGG. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J Am Chem Soc. 2017;139(29):9739. Kattel S, Liu P, Chen JGG. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J Am Chem Soc. 2017;139(29):9739.
[124]
go back to reference Wang HX, Tzeng YK, Ji YF, Li YB, Li J, Zheng XL, Yang AK, Liu YY, Gong YJ, Cai LL, Li YZ, Zhang XK, Chen W, Liu BF, Lu HY, Melosh NA, Shen ZX, Chan KR, Tan TW, Chu S, Cui Y. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat Nanotechnol. 2020;15(2):131. Wang HX, Tzeng YK, Ji YF, Li YB, Li J, Zheng XL, Yang AK, Liu YY, Gong YJ, Cai LL, Li YZ, Zhang XK, Chen W, Liu BF, Lu HY, Melosh NA, Shen ZX, Chan KR, Tan TW, Chu S, Cui Y. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat Nanotechnol. 2020;15(2):131.
[125]
go back to reference Tan DX, Cui CN, Shi JB, Luo ZX, Zhang BX, Tan XN, Han BX, Zheng LR, Zhang J, Zhang JL. Nitrogen-carbon layer coated nickel nanoparticles for efficient electrocatalytic reduction of carbon dioxide. Nano Res. 2019;12(5):1167. Tan DX, Cui CN, Shi JB, Luo ZX, Zhang BX, Tan XN, Han BX, Zheng LR, Zhang J, Zhang JL. Nitrogen-carbon layer coated nickel nanoparticles for efficient electrocatalytic reduction of carbon dioxide. Nano Res. 2019;12(5):1167.
[126]
go back to reference Kitchin JR, Nørskov JK, Barteau MA, Chen JG. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett. 2004;93(15):156801. Kitchin JR, Nørskov JK, Barteau MA, Chen JG. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett. 2004;93(15):156801.
[127]
go back to reference Plana D, Florez-Montano J, Celorrio V, Pastor E, Fermin DJ. Tuning CO2 electroreduction efficiency at Pd shells on Au nanocores. Chem Commun. 2013;49(93):10962. Plana D, Florez-Montano J, Celorrio V, Pastor E, Fermin DJ. Tuning CO2 electroreduction efficiency at Pd shells on Au nanocores. Chem Commun. 2013;49(93):10962.
[128]
go back to reference Sarfraz S, Garcia-Esparza AT, Jedidi A, Cavallo L, Takanabe K. Cu–Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal. 2016;6(5):2842. Sarfraz S, Garcia-Esparza AT, Jedidi A, Cavallo L, Takanabe K. Cu–Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal. 2016;6(5):2842.
[129]
go back to reference Zhao Y, Wang CY, Wallace GG. Tin nanoparticles decorated copper oxide nanowires for selective electrochemical reduction of aqueous CO2 to CO. J Mater Chem A. 2016;4(27):10710. Zhao Y, Wang CY, Wallace GG. Tin nanoparticles decorated copper oxide nanowires for selective electrochemical reduction of aqueous CO2 to CO. J Mater Chem A. 2016;4(27):10710.
[130]
go back to reference Maark TA, Nanda BRK. Enhancing CO2 electroreduction by tailoring strain and ligand effects in bimetallic copper–rhodium and copper–nickel heterostructures. J Phys Chem C. 2017;121(8):4496. Maark TA, Nanda BRK. Enhancing CO2 electroreduction by tailoring strain and ligand effects in bimetallic copper–rhodium and copper–nickel heterostructures. J Phys Chem C. 2017;121(8):4496.
[131]
go back to reference Varela AS, Schlaup C, Jovanov ZP, Malacrida P, Horch S, Stephens IEL, Chorkendorff I. CO2 electroreduction on well-defined bimetallic surfaces: Cu overlayers on Pt(111) and Pt(211). J Phys Chem C. 2013;117(40):20500. Varela AS, Schlaup C, Jovanov ZP, Malacrida P, Horch S, Stephens IEL, Chorkendorff I. CO2 electroreduction on well-defined bimetallic surfaces: Cu overlayers on Pt(111) and Pt(211). J Phys Chem C. 2013;117(40):20500.
[132]
go back to reference Low QH, Loo NWX, Calle-Vallejo F, Yeo BS. Enhanced electroreduction of carbon dioxide to methanol using zinc dendrites pulse-deposited on silver foam. Angew Chem Int Ed. 2019;58(8):2256. Low QH, Loo NWX, Calle-Vallejo F, Yeo BS. Enhanced electroreduction of carbon dioxide to methanol using zinc dendrites pulse-deposited on silver foam. Angew Chem Int Ed. 2019;58(8):2256.
[133]
go back to reference Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu CF, Liu ZC, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat Chem. 2010;2(6):454. Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu CF, Liu ZC, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat Chem. 2010;2(6):454.
[134]
go back to reference Lysgaard S, Myrdal JSG, Hansen HA, Vegge T. A DFT-based genetic algorithm search for AuCu nanoalloy electrocatalysts for CO2 reduction. Phys Chem Chem Phys. 2015;17(42):28270. Lysgaard S, Myrdal JSG, Hansen HA, Vegge T. A DFT-based genetic algorithm search for AuCu nanoalloy electrocatalysts for CO2 reduction. Phys Chem Chem Phys. 2015;17(42):28270.
[135]
go back to reference Li Q, Fu JJ, Zhu WL, Chen ZZ, Shen B, Wu LH, Xi Z, Wang TY, Lu G, Zhu JJ, Sun S. Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J Am Chem Soc. 2017;139(12):4290. Li Q, Fu JJ, Zhu WL, Chen ZZ, Shen B, Wu LH, Xi Z, Wang TY, Lu G, Zhu JJ, Sun S. Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J Am Chem Soc. 2017;139(12):4290.
[136]
go back to reference Zhu SQ, Qin XP, Wang Q, Li TH, Tao R, Gu M, Shao MH. Composition-dependent CO2 electrochemical reduction activity and selectivity on Au–Pd core–shell nanoparticles. J Mater Chem A. 2019;7(28):16954. Zhu SQ, Qin XP, Wang Q, Li TH, Tao R, Gu M, Shao MH. Composition-dependent CO2 electrochemical reduction activity and selectivity on Au–Pd core–shell nanoparticles. J Mater Chem A. 2019;7(28):16954.
[137]
go back to reference Ma XM, Shen YL, Yao S, An CH, Zhang WQ, Zhu JF, Si R, Guo CX, An CH. Core–shell nanoporous AuCu3@Au monolithic electrode for efficient electrochemical CO2 reduction. J Mater Chem A. 2020;8(6):3344. Ma XM, Shen YL, Yao S, An CH, Zhang WQ, Zhu JF, Si R, Guo CX, An CH. Core–shell nanoporous AuCu3@Au monolithic electrode for efficient electrochemical CO2 reduction. J Mater Chem A. 2020;8(6):3344.
[138]
go back to reference Monzó J, Malewski Y, Kortlever R, Vidal-Iglesias FJ, Solla-Gullón J, Koper MTM, Rodriguez P. Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO2 reduction. J Mater Chem A. 2015;3(47):23690. Monzó J, Malewski Y, Kortlever R, Vidal-Iglesias FJ, Solla-Gullón J, Koper MTM, Rodriguez P. Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO2 reduction. J Mater Chem A. 2015;3(47):23690.
[139]
go back to reference Sun K, Cheng T, Wu LN, Hu YF, Zhou JG, Maclennan A, Jiang ZH, Gao YZ, Goddard WA, Wang ZJ. Ultrahigh mass activity for carbon dioxide reduction enabled by gold-iron core-shell nanoparticles. J Am Chem Soc. 2017;139(44):15608. Sun K, Cheng T, Wu LN, Hu YF, Zhou JG, Maclennan A, Jiang ZH, Gao YZ, Goddard WA, Wang ZJ. Ultrahigh mass activity for carbon dioxide reduction enabled by gold-iron core-shell nanoparticles. J Am Chem Soc. 2017;139(44):15608.
[140]
go back to reference Chen YH, Kanan MW. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J Am Chem Soc. 2012;134(4):1986. Chen YH, Kanan MW. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J Am Chem Soc. 2012;134(4):1986.
[141]
go back to reference Gao S, Lin Y, Jiao XC, Sun YF, Luo QQ, Zhang WH, Li DQ, Yang JL, Xie Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature. 2016;529(7584):68. Gao S, Lin Y, Jiao XC, Sun YF, Luo QQ, Zhang WH, Li DQ, Yang JL, Xie Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature. 2016;529(7584):68.
[142]
go back to reference Kattel S, Ramirez PJ, Chen JG, Rodriguez JA, Liu P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science. 2017;355(6331):1296. Kattel S, Ramirez PJ, Chen JG, Rodriguez JA, Liu P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science. 2017;355(6331):1296.
[143]
go back to reference Matsubu JC, Zhang SY, DeRita L, Marinkovic NS, Chen JGG, Graham GW, Pan XQ, Christopher P. Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts. Nat Chem. 2017;9(2):120. Matsubu JC, Zhang SY, DeRita L, Marinkovic NS, Chen JGG, Graham GW, Pan XQ, Christopher P. Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts. Nat Chem. 2017;9(2):120.
[144]
go back to reference Gao DF, Zhang Y, Zhou ZW, Cai F, Zhao XF, Huang WG, Li YS, Zhu JF, Liu P, Yang F, Wang GX, Bao XH. Enhancing CO2 electroreduction with the metal-oxide interface. J Am Chem Soc. 2017;139(16):5652. Gao DF, Zhang Y, Zhou ZW, Cai F, Zhao XF, Huang WG, Li YS, Zhu JF, Liu P, Yang F, Wang GX, Bao XH. Enhancing CO2 electroreduction with the metal-oxide interface. J Am Chem Soc. 2017;139(16):5652.
[145]
go back to reference Zhang WY, Qin Q, Dai L, Qin RX, Zhao XJ, Chen XM, Ou DH, Chen J, Chuong TT, Wu BH, Zheng NF. Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces. Angew Chem Int Ed. 2018;57(30):9475. Zhang WY, Qin Q, Dai L, Qin RX, Zhao XJ, Chen XM, Ou DH, Chen J, Chuong TT, Wu BH, Zheng NF. Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces. Angew Chem Int Ed. 2018;57(30):9475.
[146]
go back to reference Luc W, Collins C, Wang SW, Xin HL, He K, Kang YJ, Jiao F. Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction. J Am Chem Soc. 2017;139(5):1885. Luc W, Collins C, Wang SW, Xin HL, He K, Kang YJ, Jiao F. Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction. J Am Chem Soc. 2017;139(5):1885.
[147]
go back to reference Gangeri M, Perathoner S, Caudo S, Centi G, Amadou J, Bégin D, Pham-Huu C, Ledoux MJ, Tessonnier JP, Su D, Schlogi R. Fe and Pt carbon nanotubes for the electrocatalytic conversion of carbon dioxide to oxygenates. Catal Today. 2009;143(1–2):57. Gangeri M, Perathoner S, Caudo S, Centi G, Amadou J, Bégin D, Pham-Huu C, Ledoux MJ, Tessonnier JP, Su D, Schlogi R. Fe and Pt carbon nanotubes for the electrocatalytic conversion of carbon dioxide to oxygenates. Catal Today. 2009;143(1–2):57.
[148]
go back to reference Hayden BE. Particle size and support effects in electrocatalysis. Acc Chem Res. 2013;46(8):1858. Hayden BE. Particle size and support effects in electrocatalysis. Acc Chem Res. 2013;46(8):1858.
[149]
go back to reference Xiao JP, Frauenheim T. Theoretical insights into CO2 activation and reduction on the Ag(111) monolayer supported on a ZnO(0001) substrate. J Phys Chem C. 2013;117(4):1804. Xiao JP, Frauenheim T. Theoretical insights into CO2 activation and reduction on the Ag(111) monolayer supported on a ZnO(0001) substrate. J Phys Chem C. 2013;117(4):1804.
[150]
go back to reference Min XQ, Kanan MW. Pd-catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway. J Am Chem Soc. 2015;137(14):4701. Min XQ, Kanan MW. Pd-catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway. J Am Chem Soc. 2015;137(14):4701.
[151]
go back to reference Larrazábal GO, Martín AJ, Mitchell S, Hauert R, Pérez-Ramírez J. Synergistic effects in silver–indium electrocatalysts for carbon dioxide reduction. J Catal. 2016;343:266. Larrazábal GO, Martín AJ, Mitchell S, Hauert R, Pérez-Ramírez J. Synergistic effects in silver–indium electrocatalysts for carbon dioxide reduction. J Catal. 2016;343:266.
[152]
go back to reference Larrazábal GO, Martín AJ, Mitchell S, Hauert R, Pérez-Ramírez J. Enhanced reduction of CO2 to CO over Cu–In electrocatalysts: catalyst evolution is the key. ACS Catal. 2016;6(9):6265. Larrazábal GO, Martín AJ, Mitchell S, Hauert R, Pérez-Ramírez J. Enhanced reduction of CO2 to CO over Cu–In electrocatalysts: catalyst evolution is the key. ACS Catal. 2016;6(9):6265.
[153]
go back to reference Baturina O, Lu Q, Xu F, Purdy A, Dyatkin B, Sang X, Unocic R, Brintlinger T, Gogotsi Y. Effect of nanostructured carbon support on copper electrocatalytic activity toward CO2 electroreduction to hydrocarbon fuels. Catal Today. 2017;288:2. Baturina O, Lu Q, Xu F, Purdy A, Dyatkin B, Sang X, Unocic R, Brintlinger T, Gogotsi Y. Effect of nanostructured carbon support on copper electrocatalytic activity toward CO2 electroreduction to hydrocarbon fuels. Catal Today. 2017;288:2.
[154]
go back to reference Cai F, Gao DF, Si R, Ye YF, He T, Miao S, Wang GX, Bao XH. Effect of metal deposition sequence in carbon-supported Pd–Pt catalysts on activity towards CO2 electroreduction to formate. Electrochem Commun. 2017;76:1. Cai F, Gao DF, Si R, Ye YF, He T, Miao S, Wang GX, Bao XH. Effect of metal deposition sequence in carbon-supported Pd–Pt catalysts on activity towards CO2 electroreduction to formate. Electrochem Commun. 2017;76:1.
[155]
go back to reference Larrazabal GO, Martin AJ, Perez-Ramirez J. Building blocks for high performance in electrocatalytic CO2 reduction: materials, optimization strategies, and device engineering. J Phys Chem Lett. 2017;8(16):3933. Larrazabal GO, Martin AJ, Perez-Ramirez J. Building blocks for high performance in electrocatalytic CO2 reduction: materials, optimization strategies, and device engineering. J Phys Chem Lett. 2017;8(16):3933.
[156]
go back to reference Grosse P, Gao DF, Scholten F, Sinev I, Mistry H, Roldan CB. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: size and support effects. Angew Chem Int Ed. 2018;57(21):6192. Grosse P, Gao DF, Scholten F, Sinev I, Mistry H, Roldan CB. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: size and support effects. Angew Chem Int Ed. 2018;57(21):6192.
[157]
go back to reference Huo YJ, Peng XY, Liu XJ, Li HY, Luo J. High selectivity toward C2H4 production over Cu particles supported by butterfly-wing-derived carbon frameworks. ACS Appl Mater Interfaces. 2018;10(15):12618. Huo YJ, Peng XY, Liu XJ, Li HY, Luo J. High selectivity toward C2H4 production over Cu particles supported by butterfly-wing-derived carbon frameworks. ACS Appl Mater Interfaces. 2018;10(15):12618.
[158]
go back to reference Jin L, Liu B, Wang P, Yao HQ, Achola LA, Kerns P, Lopes A, Yang Y, Ho JS, Moewes A, Pei Y, He J. Ultrasmall Au nanocatalysts supported on nitrided carbon for electrocatalytic CO2 reduction: the role of the carbon support in high selectivity. Nanoscale. 2018;10(30):14678. Jin L, Liu B, Wang P, Yao HQ, Achola LA, Kerns P, Lopes A, Yang Y, Ho JS, Moewes A, Pei Y, He J. Ultrasmall Au nanocatalysts supported on nitrided carbon for electrocatalytic CO2 reduction: the role of the carbon support in high selectivity. Nanoscale. 2018;10(30):14678.
[159]
go back to reference Melchionna M, Bracamonte MV, Giuliani A, Nasi L, Montini T, Tavagnacco C, Bonchio M, Fornasiero P, Prato M. Pd@TiO2/carbon nanohorn electrocatalysts: reversible CO2 hydrogenation to formic acid. Energy Environ Sci. 2018;11(6):1571. Melchionna M, Bracamonte MV, Giuliani A, Nasi L, Montini T, Tavagnacco C, Bonchio M, Fornasiero P, Prato M. Pd@TiO2/carbon nanohorn electrocatalysts: reversible CO2 hydrogenation to formic acid. Energy Environ Sci. 2018;11(6):1571.
[160]
go back to reference Miola M, Hu XM, Brandiele R, Bjerglund ET, Grønseth DK, Durante C, Pedersen SU, Lock N, Skrydstrup T, Daasbjerg K. Ligand-free gold nanoparticles supported on mesoporous carbon as electrocatalysts for CO2 reduction. J CO2 Util. 2018;28:50. Miola M, Hu XM, Brandiele R, Bjerglund ET, Grønseth DK, Durante C, Pedersen SU, Lock N, Skrydstrup T, Daasbjerg K. Ligand-free gold nanoparticles supported on mesoporous carbon as electrocatalysts for CO2 reduction. J CO2 Util. 2018;28:50.
[161]
go back to reference Zhang Y, Hu L, Han W. Insights into in situ one-step synthesis of carbon-supported nano-particulate gold-based catalysts for efficient electrocatalytic CO2 reduction. J Mater Chem A. 2018;6(46):23610. Zhang Y, Hu L, Han W. Insights into in situ one-step synthesis of carbon-supported nano-particulate gold-based catalysts for efficient electrocatalytic CO2 reduction. J Mater Chem A. 2018;6(46):23610.
[162]
go back to reference Daiyan R, Lu X, Tan X, Zhu X, Chen R, Smith SC, Amal R. Antipoisoning nickel–carbon electrocatalyst for practical electrochemical CO2 reduction to CO. ACS Appl Energy Materials. 2019;2(11):8002. Daiyan R, Lu X, Tan X, Zhu X, Chen R, Smith SC, Amal R. Antipoisoning nickel–carbon electrocatalyst for practical electrochemical CO2 reduction to CO. ACS Appl Energy Materials. 2019;2(11):8002.
[163]
go back to reference Mavrokefalos CK, Kaeffer N, Liu HJ, Krumeich F, Copéret C. Small and narrowly distributed copper nanoparticles supported on carbon prepared by surface organometallic chemistry for selective hydrogenation and CO2 electroconversion processes. ChemCatChem. 2019;12(1):305. Mavrokefalos CK, Kaeffer N, Liu HJ, Krumeich F, Copéret C. Small and narrowly distributed copper nanoparticles supported on carbon prepared by surface organometallic chemistry for selective hydrogenation and CO2 electroconversion processes. ChemCatChem. 2019;12(1):305.
[164]
go back to reference Wu SY, Chen HT. CO2 electrochemical reduction catalyzed by graphene supported palladium cluster: a computational guideline. ACS Appl Energy Mater. 2019;2(2):1544. Wu SY, Chen HT. CO2 electrochemical reduction catalyzed by graphene supported palladium cluster: a computational guideline. ACS Appl Energy Mater. 2019;2(2):1544.
[165]
go back to reference Choukroun D, Daems N, Kenis T, Van Everbroeck T, Hereijgers J, Altantzis T, Bals S, Cool P, Breugelmans T. Bifunctional nickel–nitrogen-doped-carbon-supported copper electrocatalyst for CO2 reduction. J Phys Chem C. 2020;124(2):1369. Choukroun D, Daems N, Kenis T, Van Everbroeck T, Hereijgers J, Altantzis T, Bals S, Cool P, Breugelmans T. Bifunctional nickel–nitrogen-doped-carbon-supported copper electrocatalyst for CO2 reduction. J Phys Chem C. 2020;124(2):1369.
[166]
go back to reference Daiyan R, Chen R, Kumar P, Bedford NM, Qu JT, Cairney JM, Lu XY, Amal R. Tunable syngas production through CO2 electroreduction on cobalt-carbon composite electrocatalyst. ACS Appl Mater Interfaces. 2020;12(8):9307. Daiyan R, Chen R, Kumar P, Bedford NM, Qu JT, Cairney JM, Lu XY, Amal R. Tunable syngas production through CO2 electroreduction on cobalt-carbon composite electrocatalyst. ACS Appl Mater Interfaces. 2020;12(8):9307.
[167]
go back to reference Duan YX, Liu KH, Zhang Q, Yan JM, Jiang Q. Efficient CO2 reduction to HCOOH with high selectivity and energy efficiency over Bi/rGO catalyst. Small Methods. 2020;4(5):1900846. Duan YX, Liu KH, Zhang Q, Yan JM, Jiang Q. Efficient CO2 reduction to HCOOH with high selectivity and energy efficiency over Bi/rGO catalyst. Small Methods. 2020;4(5):1900846.
[168]
go back to reference Han H, Noh Y, Kim Y, Park S, Yoon W, Jang D, Choi SM, Kim WB. Selective electrochemical CO2 conversion to multicarbon alcohols on highly efficient N-doped porous carbon-supported Cu catalysts. Green Chem. 2020;22(1):71. Han H, Noh Y, Kim Y, Park S, Yoon W, Jang D, Choi SM, Kim WB. Selective electrochemical CO2 conversion to multicarbon alcohols on highly efficient N-doped porous carbon-supported Cu catalysts. Green Chem. 2020;22(1):71.
[169]
go back to reference Payra S, Shenoy S, Chakraborty C, Tarafder K, Roy S. Structure-sensitive electrocatalytic reduction of CO2 to methanol over carbon-supported intermetallic PtZn nano-alloys. ACS Appl Mater Interfaces. 2020;12(17):19402. Payra S, Shenoy S, Chakraborty C, Tarafder K, Roy S. Structure-sensitive electrocatalytic reduction of CO2 to methanol over carbon-supported intermetallic PtZn nano-alloys. ACS Appl Mater Interfaces. 2020;12(17):19402.
[170]
go back to reference Baturina OA, Lu Q, Padilla MA, Xin L, Li WZ, Serov A, Artyushkova K, Atanassov P, Xu F, Epshteyn A, Brintlinger T, Schuette M, Collins GE. CO2 electroreduction to hydrocarbons on carbon-supported Cu nanoparticles. ACS Catal. 2014;4(10):3682. Baturina OA, Lu Q, Padilla MA, Xin L, Li WZ, Serov A, Artyushkova K, Atanassov P, Xu F, Epshteyn A, Brintlinger T, Schuette M, Collins GE. CO2 electroreduction to hydrocarbons on carbon-supported Cu nanoparticles. ACS Catal. 2014;4(10):3682.
[171]
go back to reference Ma SC, Lan YC, Perez GMJ, Moniri S, Kenis PJA. Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction. Chemsuschem. 2014;7(3):866. Ma SC, Lan YC, Perez GMJ, Moniri S, Kenis PJA. Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction. Chemsuschem. 2014;7(3):866.
[172]
go back to reference Rogers C, Perkins WS, Veber G, Williams TE, Cloke RR, Fischer FR. Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes. J Am Chem Soc. 2017;139(11):4052. Rogers C, Perkins WS, Veber G, Williams TE, Cloke RR, Fischer FR. Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes. J Am Chem Soc. 2017;139(11):4052.
[173]
go back to reference Wang JJ, Kattel S, Hawxhurst CJ, Lee JH, Tackett BM, Chang K, Rui N, Liu CJ, Chen JGG. Enhancing activity and reducing cost for electrochemical reduction of CO2 by supporting palladium on metal carbides. Angew Chem Int Ed. 2019;58(19):6271. Wang JJ, Kattel S, Hawxhurst CJ, Lee JH, Tackett BM, Chang K, Rui N, Liu CJ, Chen JGG. Enhancing activity and reducing cost for electrochemical reduction of CO2 by supporting palladium on metal carbides. Angew Chem Int Ed. 2019;58(19):6271.
[174]
go back to reference Zhang YY, Li K, Chen MM, Wang J, Liu JD, Zhang YT. Cu/Cu2O nanoparticles supported on vertically ZIF-L-coated nitrogen-doped graphene nanosheets for electroreduction of CO2 to ethanol. ACS Appl Nano Mater. 2019;3(1):257. Zhang YY, Li K, Chen MM, Wang J, Liu JD, Zhang YT. Cu/Cu2O nanoparticles supported on vertically ZIF-L-coated nitrogen-doped graphene nanosheets for electroreduction of CO2 to ethanol. ACS Appl Nano Mater. 2019;3(1):257.
[175]
go back to reference Pankhurst JR, Guntern YT, Mensi M, Buonsanti R. Molecular tunability of surface-functionalized metal nanocrystals for selective electrochemical CO2 reduction. Chem Sci. 2019;10(44):10356. Pankhurst JR, Guntern YT, Mensi M, Buonsanti R. Molecular tunability of surface-functionalized metal nanocrystals for selective electrochemical CO2 reduction. Chem Sci. 2019;10(44):10356.
[176]
go back to reference Lau GPS, Schreier M, Vasilyev D, Scopelliti R, Gratzel M, Dyson PJ. New insights into the role of imidazolium-based promoters for the electroreduction of CO2 on a silver electrode. J Am Chem Soc. 2016;138(25):7820. Lau GPS, Schreier M, Vasilyev D, Scopelliti R, Gratzel M, Dyson PJ. New insights into the role of imidazolium-based promoters for the electroreduction of CO2 on a silver electrode. J Am Chem Soc. 2016;138(25):7820.
[177]
go back to reference Kim C, Eom T, Jee MS, Jung H, Kim H, Min BK, Hwang YJ. Insight into electrochemical CO2 reduction on surface-molecule mediated Ag nanoparticles. ACS Catal. 2017;7(1):779. Kim C, Eom T, Jee MS, Jung H, Kim H, Min BK, Hwang YJ. Insight into electrochemical CO2 reduction on surface-molecule mediated Ag nanoparticles. ACS Catal. 2017;7(1):779.
[178]
go back to reference Wu YS, Yuan XL, Tao ZX, Wang HL. Bifunctional electrocatalysis for CO2 reduction via surface capping-dependent metal-oxide interactions. Chem Commun. 2019;55(60):8864. Wu YS, Yuan XL, Tao ZX, Wang HL. Bifunctional electrocatalysis for CO2 reduction via surface capping-dependent metal-oxide interactions. Chem Commun. 2019;55(60):8864.
[179]
go back to reference Chung MW, Cha IY, Ha MG, Na Y, Hwang J, Ham HC, Kim HJ, Henkensmeier D, Yoo SJ, Kim JY, Lee SY, Park HS, Jang JH. Enhanced CO2 reduction activity of polyethylene glycol-modified Au nanoparticles prepared via liquid medium sputtering. Appl Catal B. 2018;237:673. Chung MW, Cha IY, Ha MG, Na Y, Hwang J, Ham HC, Kim HJ, Henkensmeier D, Yoo SJ, Kim JY, Lee SY, Park HS, Jang JH. Enhanced CO2 reduction activity of polyethylene glycol-modified Au nanoparticles prepared via liquid medium sputtering. Appl Catal B. 2018;237:673.
[180]
go back to reference Cao Z, Zacate SB, Sun XD, Liu JJ, Hale EM, Carson WP, Tyndall SB, Xu J, Liu XW, Liu XC, Song C, Luo JH, Cheng MJ, Wen XD, Liu W. Tuning gold nanoparticles with chelating ligands for highly efficient electrocatalytic CO2 reduction. Angew Chem Int Ed. 2018;57(39):12675. Cao Z, Zacate SB, Sun XD, Liu JJ, Hale EM, Carson WP, Tyndall SB, Xu J, Liu XW, Liu XC, Song C, Luo JH, Cheng MJ, Wen XD, Liu W. Tuning gold nanoparticles with chelating ligands for highly efficient electrocatalytic CO2 reduction. Angew Chem Int Ed. 2018;57(39):12675.
[181]
go back to reference Wagner A, Ly KH, Heidary N, Szabo I, Foldes T, Assaf KI, Barrow SJ, Sokolowski K, Al-Hada M, Kornienko N, Kuehnel MF, Rosta E, Zebger I, Nau WM, Scherman OA, Reisner E. Host−guest chemistry meets electrocatalysis: cucurbit[6]uril on a Au surface as a hybrid system in CO2 reduction. ACS Catal. 2020;10(1):751. Wagner A, Ly KH, Heidary N, Szabo I, Foldes T, Assaf KI, Barrow SJ, Sokolowski K, Al-Hada M, Kornienko N, Kuehnel MF, Rosta E, Zebger I, Nau WM, Scherman OA, Reisner E. Host−guest chemistry meets electrocatalysis: cucurbit[6]uril on a Au surface as a hybrid system in CO2 reduction. ACS Catal. 2020;10(1):751.
[182]
go back to reference Tamura J, Ono A, Sugano Y, Huang CC, Nishizawa H, Mikoshiba S. Electrochemical reduction of CO2 to ethylene glycol on imidazolium ion-terminated self-assembly monolayer-modified Au electrodes in an aqueous solution. Phys Chem Chem Phys. 2015;17(39):26072. Tamura J, Ono A, Sugano Y, Huang CC, Nishizawa H, Mikoshiba S. Electrochemical reduction of CO2 to ethylene glycol on imidazolium ion-terminated self-assembly monolayer-modified Au electrodes in an aqueous solution. Phys Chem Chem Phys. 2015;17(39):26072.
[183]
go back to reference Fang YX, Flake JC. Electrochemical reduction of CO2 at functionalized Au electrodes. J Am Chem Soc. 2017;139(9):3399. Fang YX, Flake JC. Electrochemical reduction of CO2 at functionalized Au electrodes. J Am Chem Soc. 2017;139(9):3399.
[184]
go back to reference Li FW, Li YGC, Wang ZY, Li J, Nam DH, Lum Y, Luo MC, Wang X, Ozden A, Hung SF, Chen B, Wang YH, Wicks J, Xu Y, Li YL, Gabardo CM, Dinh CT, Wang Y, Zhuang TT, Sinton D, Sargent EH. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat Catal. 2019;3(1):75. Li FW, Li YGC, Wang ZY, Li J, Nam DH, Lum Y, Luo MC, Wang X, Ozden A, Hung SF, Chen B, Wang YH, Wicks J, Xu Y, Li YL, Gabardo CM, Dinh CT, Wang Y, Zhuang TT, Sinton D, Sargent EH. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat Catal. 2019;3(1):75.
[185]
go back to reference Li FW, Thevenon A, Rosas-Hernandez A, Wang ZY, Li YL, Gabardo CM, Ozden A, Dinh CT, Li J, Wang YH, Edwards JP, Xu Y, McCallum C, Tao LZ, Liang ZQ, Luo MC, Wang X, Li HH, O'Brien CP, Tan CS, Nam DH, Quintero-Bermudez R, Zhuang TT, Li YGC, Han ZJ, Britt RD, Sinton D, Agapie T, Peters JC, Sargent EH. Molecular tuning of CO2-to-ethylene conversion. Nature. 2019;577(7791):509. Li FW, Thevenon A, Rosas-Hernandez A, Wang ZY, Li YL, Gabardo CM, Ozden A, Dinh CT, Li J, Wang YH, Edwards JP, Xu Y, McCallum C, Tao LZ, Liang ZQ, Luo MC, Wang X, Li HH, O'Brien CP, Tan CS, Nam DH, Quintero-Bermudez R, Zhuang TT, Li YGC, Han ZJ, Britt RD, Sinton D, Agapie T, Peters JC, Sargent EH. Molecular tuning of CO2-to-ethylene conversion. Nature. 2019;577(7791):509.
[186]
go back to reference Han ZJ, Kortlever R, Chen HY, Peters JC, Agapie T. CO2 reduction selective for C≥2 products on polycrystalline copper with N-substituted pyridinium additives. ACS Cent Sci. 2017;3(8):853. Han ZJ, Kortlever R, Chen HY, Peters JC, Agapie T. CO2 reduction selective for C≥2 products on polycrystalline copper with N-substituted pyridinium additives. ACS Cent Sci. 2017;3(8):853.
[187]
go back to reference Thevenon A, Rosas-Hernandez A, Peters JC, Agapie T. In-situ nanostructuring and stabilization of polycrystalline copper by an organic salt additivepromotes electrocatalytic CO2 reduction to ethylene. Angew Chem Int Ed. 2019;58(47):16952. Thevenon A, Rosas-Hernandez A, Peters JC, Agapie T. In-situ nanostructuring and stabilization of polycrystalline copper by an organic salt additivepromotes electrocatalytic CO2 reduction to ethylene. Angew Chem Int Ed. 2019;58(47):16952.
[188]
go back to reference Buckley AK, Lee M, Cheng T, Kazantsev RV, Larson DM, Goddard WA, Toste FD, Toma FM. Electrocatalysis at organic-metal interfaces: identification of structure-reactivity relationships for CO2 reduction at modified Cu surfaces. J Am Chem Soc. 2019;141(18):7355. Buckley AK, Lee M, Cheng T, Kazantsev RV, Larson DM, Goddard WA, Toste FD, Toma FM. Electrocatalysis at organic-metal interfaces: identification of structure-reactivity relationships for CO2 reduction at modified Cu surfaces. J Am Chem Soc. 2019;141(18):7355.
[189]
go back to reference Wang ZJ, Wu LN, Sun K, Chen T, Jiang ZH, Cheng T, Goddard WA. Surface ligand promotion of carbon dioxide reduction through stabilizing chemisorbed reactive intermediates. J Phys Chem Lett. 2018;9(11):3057. Wang ZJ, Wu LN, Sun K, Chen T, Jiang ZH, Cheng T, Goddard WA. Surface ligand promotion of carbon dioxide reduction through stabilizing chemisorbed reactive intermediates. J Phys Chem Lett. 2018;9(11):3057.
[190]
go back to reference Xie MS, Xia BY, Li YW, Yan Y, Yang YH, Sun Q, Chan SH, Fisher A, Wang X. Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ Sci. 2016;9(5):1687. Xie MS, Xia BY, Li YW, Yan Y, Yang YH, Sun Q, Chan SH, Fisher A, Wang X. Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ Sci. 2016;9(5):1687.
[191]
go back to reference Zhao Y, Wang CY, Liu YQ, MacFarlane DR, Wallace GG. Engineering surface amine modifiers of ultrasmall gold nanoparticles supported on reduced graphene oxide for improved electrochemical CO2 reduction. Adv Energy Mater. 2018;8(25):1801400. Zhao Y, Wang CY, Liu YQ, MacFarlane DR, Wallace GG. Engineering surface amine modifiers of ultrasmall gold nanoparticles supported on reduced graphene oxide for improved electrochemical CO2 reduction. Adv Energy Mater. 2018;8(25):1801400.
[192]
go back to reference Cao Z, Kim D, Hong DC, Yu Y, Xu J, Lin S, Wen XD, Nichols EM, Jeong K, Reimer JA, Yang PD, Chang CJ. A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction. J Am Chem Soc. 2016;138(26):8120. Cao Z, Kim D, Hong DC, Yu Y, Xu J, Lin S, Wen XD, Nichols EM, Jeong K, Reimer JA, Yang PD, Chang CJ. A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction. J Am Chem Soc. 2016;138(26):8120.
[193]
go back to reference Fan ZX, Zhang H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chem Soc Rev. 2016;45(1):63. Fan ZX, Zhang H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chem Soc Rev. 2016;45(1):63.
[194]
go back to reference Cheng HF, Yang NL, Lu QP, Zhang ZC, Zhang H. Syntheses and properties of metal nanomaterials with novel crystal phases. Adv Mater. 2018;30(26):1707189. Cheng HF, Yang NL, Lu QP, Zhang ZC, Zhang H. Syntheses and properties of metal nanomaterials with novel crystal phases. Adv Mater. 2018;30(26):1707189.
[195]
go back to reference Chen Y, Lai ZC, Zhang X, Fan ZX, He QY, Tan CL, Zhang H. Phase engineering of nanomaterials. Nat Rev Chem. 2020;4(5):243. Chen Y, Lai ZC, Zhang X, Fan ZX, He QY, Tan CL, Zhang H. Phase engineering of nanomaterials. Nat Rev Chem. 2020;4(5):243.
[196]
go back to reference Chen Y, Fan ZX, Wang J, Ling CY, Niu WX, Huang ZQ, Liu GG, Chen B, Lai ZC, Liu XZ, Li B, Zong Y, Gu L, Wang JL, Wang X, Zhang H. Ethylene selectivity in electrocatalytic CO2 reduction on Cu nanomaterials: a crystal phase-dependent study. J Am Chem Soc. 2020;142(29):12760. Chen Y, Fan ZX, Wang J, Ling CY, Niu WX, Huang ZQ, Liu GG, Chen B, Lai ZC, Liu XZ, Li B, Zong Y, Gu L, Wang JL, Wang X, Zhang H. Ethylene selectivity in electrocatalytic CO2 reduction on Cu nanomaterials: a crystal phase-dependent study. J Am Chem Soc. 2020;142(29):12760.
[197]
go back to reference Fan ZX, Bosman M, Huang ZQ, Chen Y, Ling CY, Wu L, Akimov YA, Laskowski R, Chen B, Ercius P, Zhang J, Qi XY, Goh MH, Ge YY, Zhang ZC, Niu WX, Wang JL, Zheng HM, Zhang H. Heterophase fcc-2H-fcc gold nanorods. Nat Commun. 2020;11(1):3293. Fan ZX, Bosman M, Huang ZQ, Chen Y, Ling CY, Wu L, Akimov YA, Laskowski R, Chen B, Ercius P, Zhang J, Qi XY, Goh MH, Ge YY, Zhang ZC, Niu WX, Wang JL, Zheng HM, Zhang H. Heterophase fcc-2H-fcc gold nanorods. Nat Commun. 2020;11(1):3293.
Metadata
Title
Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction
Authors
Chen-Huai Yang
Farhat Nosheen
Zhi-Cheng Zhang
Publication date
22-10-2020
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 6/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01600-4

Other articles of this Issue 6/2021

Rare Metals 6/2021 Go to the issue

Premium Partners