Skip to main content
Top
Published in: Rare Metals 6/2021

07-01-2021 | Original Article

Plate-like carbon-supported Fe3C nanoparticles with superior electrochemical performance

Authors: Chuan Chen, Sen Qian, Tian-Hao Yao, Jing-Hong Guo, Hong-Kang Wang

Published in: Rare Metals | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Iron-based anodes for lithium-ion batteries (LIBs) with higher theoretical capacity, natural abundance and cheapness have received considerable attention, but they still suffer from the fast capacity fading. To address this issue, we report a facile synthesis of plate-like carbon-supported Fe3C nanoparticles through chemical blowing/carbonization under calcination. The ultrafine Fe3C nanoparticles are prone to be oxidized when exposing in air; thus, Fe3C/C with mild oxidization and the fully oxidized product of Fe2O3/C are successfully prepared by controlling the oxidization condition. When applied as an anode material in LIB, the Fe3C/C electrode demonstrates excellent cycle stability (826 mAh·g−1 after 120 cycles under 500 mA·g−1) and rate performance (410.6 mAh·g−1 under 2 A·g−1), compared with the Fe2O3/C counterpart. The enhanced electrochemical performance can be ascribed to the synergetic effect of the Fe3C with mild oxidation and the unique hierarchical structure of plate-like carbon decorated with Fe3C catalyst. More importantly, this work may offer new approaches to synthesize other transition metal (e.g., Co, Ni)-based anode material by replacing the precursor ingredient.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
[1]
go back to reference Wang J, Wang H, Li F, Xie S, Xu G, She Y, Leung MKH, Liu T. Oxidizing solid Co into hollow Co3O4 within electrospun (carbon) nanofibers towards enhanced lithium storage performance. J Mater Chem A. 2019;7(7):3024. Wang J, Wang H, Li F, Xie S, Xu G, She Y, Leung MKH, Liu T. Oxidizing solid Co into hollow Co3O4 within electrospun (carbon) nanofibers towards enhanced lithium storage performance. J Mater Chem A. 2019;7(7):3024.
[2]
go back to reference Wang H, Huang H, Niu C, Rogach AL. Ternary Sn-Ti-O based nanostructures as anodes for lithium ion batteries. Small. 2015;11(12):1364. Wang H, Huang H, Niu C, Rogach AL. Ternary Sn-Ti-O based nanostructures as anodes for lithium ion batteries. Small. 2015;11(12):1364.
[3]
go back to reference Armand M, Tarascon JM. Building better batteries. Nature. 2008;451(7179):652. Armand M, Tarascon JM. Building better batteries. Nature. 2008;451(7179):652.
[4]
go back to reference Li Z, Li A, Zhang H, Lin R, Jin T, Cheng Q, Xiao X, Lee WK, Ge M, Zhang H, Zangiabadi A, Waluyo I, Hunt A, Zhai H, Borovilas JJ, Wang P, Yang XQ, Chuan X, Yang Y. Interfacial engineering for stabilizing polymer electrolytes with 4V cathodes in lithium metal batteries at elevated temperature. Nano Energy. 2020;72:104655. Li Z, Li A, Zhang H, Lin R, Jin T, Cheng Q, Xiao X, Lee WK, Ge M, Zhang H, Zangiabadi A, Waluyo I, Hunt A, Zhai H, Borovilas JJ, Wang P, Yang XQ, Chuan X, Yang Y. Interfacial engineering for stabilizing polymer electrolytes with 4V cathodes in lithium metal batteries at elevated temperature. Nano Energy. 2020;72:104655.
[5]
go back to reference Qi SH, Deng JW, Zhang WC, Feng YZ, Ma JM. Recent advances in alloy-based anode materials for potassium ion batteries. Rare Met. 2020;39(9):970. Qi SH, Deng JW, Zhang WC, Feng YZ, Ma JM. Recent advances in alloy-based anode materials for potassium ion batteries. Rare Met. 2020;39(9):970.
[6]
go back to reference Zhou X, Liu Q, Jiang C, Ji B, Ji X, Tang Y, Cheng HM. Strategies towards low-cost dual-ion batteries with high performance. Angew Chem Int Ed Engl. 2020;59(10):3802. Zhou X, Liu Q, Jiang C, Ji B, Ji X, Tang Y, Cheng HM. Strategies towards low-cost dual-ion batteries with high performance. Angew Chem Int Ed Engl. 2020;59(10):3802.
[7]
go back to reference Zhu H, Zhang F, Li J, Tang Y. Penne-like MoS2/Carbon nanocomposite as anode for sodium-ion-based dual-ion battery. Small. 2018;14(13):1703951. Zhu H, Zhang F, Li J, Tang Y. Penne-like MoS2/Carbon nanocomposite as anode for sodium-ion-based dual-ion battery. Small. 2018;14(13):1703951.
[8]
go back to reference Zhao L, Wu H-H, Yang C, Zhang Q, Zhong G, Zheng Z, Chen H, Wang J, He K, Wang B, Zhu T, Zeng XC, Liu M, Wang MS. Mechanistic origin of the high performance of yolk@shell Bi2S3@N-doped carbon nanowire electrodes. ACS Nano. 2018;12(12):12597. Zhao L, Wu H-H, Yang C, Zhang Q, Zhong G, Zheng Z, Chen H, Wang J, He K, Wang B, Zhu T, Zeng XC, Liu M, Wang MS. Mechanistic origin of the high performance of yolk@shell Bi2S3@N-doped carbon nanowire electrodes. ACS Nano. 2018;12(12):12597.
[9]
go back to reference Liu T, Yao T, Li L, Zhu L, Wang J, Li F, Wang H. Embedding amorphous lithium vanadate into carbon nanofibers by electrospinning as a high-performance anode material for lithium-ion batteries. J Colloid Interface Sci. 2020;580:21. Liu T, Yao T, Li L, Zhu L, Wang J, Li F, Wang H. Embedding amorphous lithium vanadate into carbon nanofibers by electrospinning as a high-performance anode material for lithium-ion batteries. J Colloid Interface Sci. 2020;580:21.
[10]
go back to reference Wu M, Liao J, Yu L, Lv R, Li P, Sun W, Tan R, Duan X, Zhang L, Li F, Kim J, Shin KH, Seok PH, Zhang W, Guo Z, Wang H, Tang Y, Gorgolis G, Galiotis C, Ma J. Roadmap on carbon materials for energy storage and conversion. Chem-Asian J. 2020;15(7):995. Wu M, Liao J, Yu L, Lv R, Li P, Sun W, Tan R, Duan X, Zhang L, Li F, Kim J, Shin KH, Seok PH, Zhang W, Guo Z, Wang H, Tang Y, Gorgolis G, Galiotis C, Ma J. Roadmap on carbon materials for energy storage and conversion. Chem-Asian J. 2020;15(7):995.
[11]
go back to reference Ji YR, Weng ST, Li XY, Zhang QH, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020;39(3):205. Ji YR, Weng ST, Li XY, Zhang QH, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020;39(3):205.
[12]
go back to reference An H, Jiang L, Li F, Wu P, Zhu X, Wei S, Zhou Y. Hydrogel-derived three-dimensional porous Si-CNT@G nanocomposite with high-performance lithium storage. Acta Phys-Chim Sin. 2020;36(7):1905034. An H, Jiang L, Li F, Wu P, Zhu X, Wei S, Zhou Y. Hydrogel-derived three-dimensional porous Si-CNT@G nanocomposite with high-performance lithium storage. Acta Phys-Chim Sin. 2020;36(7):1905034.
[13]
go back to reference Zheng Z, Wu HH, Liu H, Zhang Q, He X, Yu S, Petrova V, Feng J, Kostecki R, Liu P, Peng DL, Liu M, Wang MS. Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS Nano. 2020;14(8):9545. Zheng Z, Wu HH, Liu H, Zhang Q, He X, Yu S, Petrova V, Feng J, Kostecki R, Liu P, Peng DL, Liu M, Wang MS. Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS Nano. 2020;14(8):9545.
[14]
go back to reference Shi Q, Heng S, Qu Q, Gao T, Liu W, Hang L, Zheng H. Constructing an elastic solid electrolyte interphase on graphite: a novel strategy suppressing lithium inventory loss in lithium-ion batteries. J Mater Chem A. 2017;5(22):10885. Shi Q, Heng S, Qu Q, Gao T, Liu W, Hang L, Zheng H. Constructing an elastic solid electrolyte interphase on graphite: a novel strategy suppressing lithium inventory loss in lithium-ion batteries. J Mater Chem A. 2017;5(22):10885.
[15]
go back to reference Agubra VA, Fergus JW. The formation and stability of the solid electrolyte interface on the graphite anode. J Power Sour. 2014;268:153. Agubra VA, Fergus JW. The formation and stability of the solid electrolyte interface on the graphite anode. J Power Sour. 2014;268:153.
[16]
go back to reference Wang H, Wu Q, Cao D, Lu X, Wang J, Leung MKH, Cheng S, Lu L, Niu C. Synthesis of SnSb-embedded carbon-silica fibers via electrospinning: effect of TEOS on structural evolutions and electrochemical properties. Mater Today Energy. 2016;1–2:24. Wang H, Wu Q, Cao D, Lu X, Wang J, Leung MKH, Cheng S, Lu L, Niu C. Synthesis of SnSb-embedded carbon-silica fibers via electrospinning: effect of TEOS on structural evolutions and electrochemical properties. Mater Today Energy. 2016;1–2:24.
[17]
go back to reference Wang J, Wang H, Cao D, Lu X, Han X, Niu C. epitaxial growth of urchin-like CoSe2 nanorods from electrospun Co-embedded porous carbon nanofibers and their superior lithium storage properties. Part Part Syst Charact. 2017;34(10):1700185. Wang J, Wang H, Cao D, Lu X, Han X, Niu C. epitaxial growth of urchin-like CoSe2 nanorods from electrospun Co-embedded porous carbon nanofibers and their superior lithium storage properties. Part Part Syst Charact. 2017;34(10):1700185.
[18]
go back to reference Lu X, Wang P, Liu K, Niu C, Wang H. Encapsulating nanoparticulate Sb/MoOx into porous carbon nanofibers via electrospinning for efficient lithium storage. Chem Eng J. 2018;336:701. Lu X, Wang P, Liu K, Niu C, Wang H. Encapsulating nanoparticulate Sb/MoOx into porous carbon nanofibers via electrospinning for efficient lithium storage. Chem Eng J. 2018;336:701.
[19]
go back to reference Liu Y, Li X, Haridas AK, Sun Y, Heo J, Ahn JH, Lee Y. Biomass-derived graphitic carbon encapsulated Fe/Fe3C composite as an anode material for high-performance lithium ion batteries. Energies. 2020;13(4):827. Liu Y, Li X, Haridas AK, Sun Y, Heo J, Ahn JH, Lee Y. Biomass-derived graphitic carbon encapsulated Fe/Fe3C composite as an anode material for high-performance lithium ion batteries. Energies. 2020;13(4):827.
[20]
go back to reference Li C, Sarapulova A, Pfeifer K, Dsoke S. Effect of continuous capacity rising performed by FeS/Fe3C/C composite electrodes for lithium-ion batteries. Chemsuschem. 2020;13(5):986. Li C, Sarapulova A, Pfeifer K, Dsoke S. Effect of continuous capacity rising performed by FeS/Fe3C/C composite electrodes for lithium-ion batteries. Chemsuschem. 2020;13(5):986.
[21]
go back to reference Chen L, Li Z, Li G, Zhou M, He B, Ouyang J, Xu W, Wang W, Hou Z. A facile self-catalyzed CVD method to synthesize Fe3C/N-doped carbon nanofibers as lithium storage anode with improved rate capability and cyclability. J Mater Sci Technol. 2020;44:229. Chen L, Li Z, Li G, Zhou M, He B, Ouyang J, Xu W, Wang W, Hou Z. A facile self-catalyzed CVD method to synthesize Fe3C/N-doped carbon nanofibers as lithium storage anode with improved rate capability and cyclability. J Mater Sci Technol. 2020;44:229.
[22]
go back to reference Zhang YJ, Qu J, Ji QY, Zhang TT, Chang W, Hao SM, Yu ZZ. Freestanding cellulose paper-derived carbon/Fe/Fe3C with enhanced electrochemical kinetics for high-performance lithium-sulfur batteries. Carbon. 2019;155:353. Zhang YJ, Qu J, Ji QY, Zhang TT, Chang W, Hao SM, Yu ZZ. Freestanding cellulose paper-derived carbon/Fe/Fe3C with enhanced electrochemical kinetics for high-performance lithium-sulfur batteries. Carbon. 2019;155:353.
[23]
go back to reference Liu X, Li X, Sun Y, Zhang S, Wu Y. Onion-like carbon coated Fe3C nanocapsules embedded in porous carbon for the stable lithium-ion battery anode. Appl Surf Sci. 2019;479:318. Liu X, Li X, Sun Y, Zhang S, Wu Y. Onion-like carbon coated Fe3C nanocapsules embedded in porous carbon for the stable lithium-ion battery anode. Appl Surf Sci. 2019;479:318.
[24]
go back to reference Su L, Zhou Z, Shen P. Core–shell Fe@Fe3C/C nanocomposites as anode materials for Li ion batteries. Electrochim Acta. 2013;87:180. Su L, Zhou Z, Shen P. Core–shell Fe@Fe3C/C nanocomposites as anode materials for Li ion batteries. Electrochim Acta. 2013;87:180.
[25]
go back to reference Tan Y, Zhu K, Li D, Bai F, Wei Y, Zhang P. N-doped graphene/Fe–Fe3C nano-composite synthesized by a Fe-based metal organic framework and its anode performance in lithium ion batteries. Chem Eng J. 2014;258:93. Tan Y, Zhu K, Li D, Bai F, Wei Y, Zhang P. N-doped graphene/Fe–Fe3C nano-composite synthesized by a Fe-based metal organic framework and its anode performance in lithium ion batteries. Chem Eng J. 2014;258:93.
[26]
go back to reference Zhao X, Xia D, Yue J, Liu S. In-situ generated nano-Fe3C embedded into nitrogen-doped carbon for high performance anode in lithium ion battery. Electrochim Acta. 2014;116:292. Zhao X, Xia D, Yue J, Liu S. In-situ generated nano-Fe3C embedded into nitrogen-doped carbon for high performance anode in lithium ion battery. Electrochim Acta. 2014;116:292.
[27]
go back to reference Li J, Wen W, Xu G, Zou M, Huang Z, Guan L. Fe-added Fe3C carbon nanofibers as anode for Li ion batteries with excellent low-temperature performance. Electrochim Acta. 2015;153:300. Li J, Wen W, Xu G, Zou M, Huang Z, Guan L. Fe-added Fe3C carbon nanofibers as anode for Li ion batteries with excellent low-temperature performance. Electrochim Acta. 2015;153:300.
[28]
go back to reference Zhang J, Wang K, Xu Q, Zhou Y, Cheng F, Guo S. Beyond yolk-shell nanoparticles: Fe3O4@Fe3C core@shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage. ACS Nano. 2015;9(3):3369. Zhang J, Wang K, Xu Q, Zhou Y, Cheng F, Guo S. Beyond yolk-shell nanoparticles: Fe3O4@Fe3C core@shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage. ACS Nano. 2015;9(3):3369.
[29]
go back to reference Chen S, Wu J, Zhou R, Zuo L, Li P, Song Y, Wang L. Porous carbon spheres doped with Fe3C as an anode for high-rate lithium-ion batteries. Electrochim Acta. 2015;180:78. Chen S, Wu J, Zhou R, Zuo L, Li P, Song Y, Wang L. Porous carbon spheres doped with Fe3C as an anode for high-rate lithium-ion batteries. Electrochim Acta. 2015;180:78.
[30]
go back to reference Yang Y, Fan X, Casillas G, Peng Z, Ruan G, Wang G, Yacaman MJ, Tour JM. Three-dimensional nanoporous Fe2O3/Fe3C-graphene heterogeneous thin films for lithium-ion batteries. ACS Nano. 2014;8(4):3939. Yang Y, Fan X, Casillas G, Peng Z, Ruan G, Wang G, Yacaman MJ, Tour JM. Three-dimensional nanoporous Fe2O3/Fe3C-graphene heterogeneous thin films for lithium-ion batteries. ACS Nano. 2014;8(4):3939.
[31]
go back to reference Liu E, Wang J, Shi C, Zhao N, He C, Li J, Jiang JZ. Anomalous interfacial lithium storage in graphene/TiO2 for lithium ion batteries. ACS Appl Mater Interfaces. 2014;6(20):18147. Liu E, Wang J, Shi C, Zhao N, He C, Li J, Jiang JZ. Anomalous interfacial lithium storage in graphene/TiO2 for lithium ion batteries. ACS Appl Mater Interfaces. 2014;6(20):18147.
[32]
go back to reference Shin JY, Samuelis D, Maier J. Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: emphasis on interfacial storage phenomena. Adv Funct Mater. 2011;21(18):3464. Shin JY, Samuelis D, Maier J. Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: emphasis on interfacial storage phenomena. Adv Funct Mater. 2011;21(18):3464.
[33]
go back to reference Wang H, Yao T, Li C, Meng L, Cheng Y. Constructing three-dimensional ordered porous MoS2/C hierarchies for excellent high-rate long-life pseudocapacitive sodium storage. Chem Eng J. 2020;397:125385. Wang H, Yao T, Li C, Meng L, Cheng Y. Constructing three-dimensional ordered porous MoS2/C hierarchies for excellent high-rate long-life pseudocapacitive sodium storage. Chem Eng J. 2020;397:125385.
[34]
go back to reference Patel P, Kim IS, Kumta PN. Nanocomposites of silicon/titanium carbide synthesized using high-energy mechanical milling for use as anodes in lithium-ion batteries. Mater Sci Eng B. 2005;116(3):347. Patel P, Kim IS, Kumta PN. Nanocomposites of silicon/titanium carbide synthesized using high-energy mechanical milling for use as anodes in lithium-ion batteries. Mater Sci Eng B. 2005;116(3):347.
[35]
go back to reference Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2016;38(9):832. Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2016;38(9):832.
[36]
go back to reference Yan Z, Yang QW, Wang Q, Ma J. Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chin Chem Lett. 2020;31(2):583. Yan Z, Yang QW, Wang Q, Ma J. Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chin Chem Lett. 2020;31(2):583.
[37]
go back to reference Li H, Wang S, Feng M, Yang J, Zhang B. MOF-derived ZnCo2O4/C wrapped on carbon fiber as anode materials for structural lithium-ion batteries. Chin Chem Lett. 2019;30(2):529. Li H, Wang S, Feng M, Yang J, Zhang B. MOF-derived ZnCo2O4/C wrapped on carbon fiber as anode materials for structural lithium-ion batteries. Chin Chem Lett. 2019;30(2):529.
[38]
go back to reference Chen W, Zhang X, Mi L, Liu C, Zhang J, Cui S, Feng X, Cao Y, Shen C. High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8 /Graphene for applicable sodium-ion batteries. Adv Mater. 2019;31(8):1806664. Chen W, Zhang X, Mi L, Liu C, Zhang J, Cui S, Feng X, Cao Y, Shen C. High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8 /Graphene for applicable sodium-ion batteries. Adv Mater. 2019;31(8):1806664.
[39]
go back to reference Gu ZY, Guo JZ, Sun ZH, Zhao XX, Li WH, Yang X, Liang HJ, Zhao CD, Wu XL. Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries. Sci Bull. 2020;65(9):702. Gu ZY, Guo JZ, Sun ZH, Zhao XX, Li WH, Yang X, Liang HJ, Zhao CD, Wu XL. Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries. Sci Bull. 2020;65(9):702.
[40]
go back to reference Liu DH, Li WH, Zheng YP, Cui Z, Yan X, Liu DS, Wang J, Zhang Y, Lu HY, Bai FY, Guo JZ, Wu XL. In situ encapsulating alpha-MnS into N, S-codoped nanotube-like carbon as advanced anode material: alpha –> beta phase transition promoted cycling stability and superior Li/Na-storage performance in half/full cells. Adv Mater. 2018;30(21):1706317. Liu DH, Li WH, Zheng YP, Cui Z, Yan X, Liu DS, Wang J, Zhang Y, Lu HY, Bai FY, Guo JZ, Wu XL. In situ encapsulating alpha-MnS into N, S-codoped nanotube-like carbon as advanced anode material: alpha –> beta phase transition promoted cycling stability and superior Li/Na-storage performance in half/full cells. Adv Mater. 2018;30(21):1706317.
[41]
go back to reference Wang BP, Lv R, Lan DS. Preparation and electrochemical properties of Sn/C composites. Rare Met. 2019;38(10):996. Wang BP, Lv R, Lan DS. Preparation and electrochemical properties of Sn/C composites. Rare Met. 2019;38(10):996.
[42]
go back to reference Xie Q, Zhang Y, Xie D, Zhao P. Nitrogen-enriched graphitic carbon encapsulated Fe3O4/Fe3C/Fe composite derived from EDTA-Fe(III) sodium complex as LiBs anodes with boosted performance. J Electroanal Chem. 2020;857:113749. Xie Q, Zhang Y, Xie D, Zhao P. Nitrogen-enriched graphitic carbon encapsulated Fe3O4/Fe3C/Fe composite derived from EDTA-Fe(III) sodium complex as LiBs anodes with boosted performance. J Electroanal Chem. 2020;857:113749.
[43]
go back to reference Tan Q, Chen X, Wan H, Zhang B, Liu X, Li L, Wang C, Gan Y, Liang P, Wang Y, Zhang J, Wang H, Miao L, Jiang J, van Aken PA, Wang H. Metal–organic framework-derived high conductivity Fe3C with porous carbon on graphene as advanced anode materials for aqueous battery-supercapacitor hybrid devices. J Power Sour. 2020;448:227403. Tan Q, Chen X, Wan H, Zhang B, Liu X, Li L, Wang C, Gan Y, Liang P, Wang Y, Zhang J, Wang H, Miao L, Jiang J, van Aken PA, Wang H. Metal–organic framework-derived high conductivity Fe3C with porous carbon on graphene as advanced anode materials for aqueous battery-supercapacitor hybrid devices. J Power Sour. 2020;448:227403.
[44]
go back to reference Ao X, Zhang W, Li Z, Li JG, Soule L, Huang X, Chiang WH, Chen HM, Wang C, Liu M, Zeng XC. Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano. 2019;13(10):11853. Ao X, Zhang W, Li Z, Li JG, Soule L, Huang X, Chiang WH, Chen HM, Wang C, Liu M, Zeng XC. Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano. 2019;13(10):11853.
[45]
go back to reference Yang X, Tang YB, Huang X, Xue HT, Kang WP, Li WY, Ng TW, Lee CS. Lithium ion battery application of porous composite oxide microcubes prepared via metal-organic frameworks. J Power Sour. 2015;284:109. Yang X, Tang YB, Huang X, Xue HT, Kang WP, Li WY, Ng TW, Lee CS. Lithium ion battery application of porous composite oxide microcubes prepared via metal-organic frameworks. J Power Sour. 2015;284:109.
[46]
go back to reference Zhou P, Sheng JZ, Gao CW, Dong J, An QY, Mai LQ. Synthesis of V2O5/Fe2V4O13 nanocomposite materials using in situ phase separation and the electrochemical performance for sodium storage. Acta Phys-Chim Sin. 2020;36(5):1906046. Zhou P, Sheng JZ, Gao CW, Dong J, An QY, Mai LQ. Synthesis of V2O5/Fe2V4O13 nanocomposite materials using in situ phase separation and the electrochemical performance for sodium storage. Acta Phys-Chim Sin. 2020;36(5):1906046.
[47]
go back to reference Xiao F, Li W, Fang L, Wang D. Synthesis of akageneite (beta-FeOOH)/reduced graphene oxide nanocomposites for oxidative decomposition of 2-chlorophenol by Fenton-like reaction. J Hazard Mater. 2016;308:11. Xiao F, Li W, Fang L, Wang D. Synthesis of akageneite (beta-FeOOH)/reduced graphene oxide nanocomposites for oxidative decomposition of 2-chlorophenol by Fenton-like reaction. J Hazard Mater. 2016;308:11.
[48]
go back to reference Xiao F, Yang X, Wang H, Xu J, Liu Y, Yu DYW, Rogach AL. Covalent encapsulation of sulfur in a MOF—derived S, N-doped porous carbon host realized via the vapor—infiltration method results in enhanced sodium-sulfur battery performance. Adv Energy Mater. 2020. https://doi.org/10.1002/aenm.202000931.CrossRef Xiao F, Yang X, Wang H, Xu J, Liu Y, Yu DYW, Rogach AL. Covalent encapsulation of sulfur in a MOF—derived S, N-doped porous carbon host realized via the vapor—infiltration method results in enhanced sodium-sulfur battery performance. Adv Energy Mater. 2020. https://​doi.​org/​10.​1002/​aenm.​202000931.CrossRef
[49]
go back to reference Zheng Z, Li P, Huang J, Liu H, Zao Y, Hu Z, Zhang L, Chen H, Wang MS, Peng DL, Zhang Q. High performance columnar-like Fe2O3@carbon composite anode via yolk@shell structural design. J Energy Chem. 2020;41:126. Zheng Z, Li P, Huang J, Liu H, Zao Y, Hu Z, Zhang L, Chen H, Wang MS, Peng DL, Zhang Q. High performance columnar-like Fe2O3@carbon composite anode via yolk@shell structural design. J Energy Chem. 2020;41:126.
[50]
go back to reference Zhao Y, Feng Z, Xu ZJ. Yolk-shell Fe2O3 middle dot in circle C composites anchored on MWNTs with enhanced lithium and sodium storage. Nanoscale. 2015;7(21):9520. Zhao Y, Feng Z, Xu ZJ. Yolk-shell Fe2O3 middle dot in circle C composites anchored on MWNTs with enhanced lithium and sodium storage. Nanoscale. 2015;7(21):9520.
[51]
go back to reference Zhang J, Qi L, Zhu X, Yan X, Jia Y, Xu L, Sun D, Tang Y. Proline-derived in situ synthesis of nitrogen-doped porous carbon nanosheets with encaged Fe2O3@Fe3C nanoparticles for lithium-ion battery anodes. Nano Res. 2017;10(9):3164. Zhang J, Qi L, Zhu X, Yan X, Jia Y, Xu L, Sun D, Tang Y. Proline-derived in situ synthesis of nitrogen-doped porous carbon nanosheets with encaged Fe2O3@Fe3C nanoparticles for lithium-ion battery anodes. Nano Res. 2017;10(9):3164.
[52]
go back to reference Huang YG, Lin XL, Zhang XH, Pan QC, Yan ZX, Wang HQ, Chen JJ, Li QY. Fe3C@carbon nanocapsules/expanded graphite as anode materials for lithium ion batteries. Electrochim Acta. 2015;178:468. Huang YG, Lin XL, Zhang XH, Pan QC, Yan ZX, Wang HQ, Chen JJ, Li QY. Fe3C@carbon nanocapsules/expanded graphite as anode materials for lithium ion batteries. Electrochim Acta. 2015;178:468.
[53]
go back to reference Guo B, Sun XG, Veith GM, Bi Z, Mahurin SM, Liao C, Bridges C, Paranthaman MP, Dai S. Nitrogen-enriched carbons from alkali salts with high coulombic efficiency for energy storage applications. Adv Energy Mater. 2013;3(6):708. Guo B, Sun XG, Veith GM, Bi Z, Mahurin SM, Liao C, Bridges C, Paranthaman MP, Dai S. Nitrogen-enriched carbons from alkali salts with high coulombic efficiency for energy storage applications. Adv Energy Mater. 2013;3(6):708.
[54]
go back to reference Zou M, Wang L, Li J, Guan L, Huang Z. Enhanced Li-ion battery performances of yolk-shell Fe3O4@C anodes with Fe3C catalyst. Electrochim Acta. 2017;233:85. Zou M, Wang L, Li J, Guan L, Huang Z. Enhanced Li-ion battery performances of yolk-shell Fe3O4@C anodes with Fe3C catalyst. Electrochim Acta. 2017;233:85.
[55]
go back to reference Wang H, Wang J, Xie S, Liu W, Niu C. Template synthesis of graphitic hollow carbon nanoballs as supports for SnOx nanoparticles towards enhanced lithium storage performance. Nanoscale. 2018;10(13):6159. Wang H, Wang J, Xie S, Liu W, Niu C. Template synthesis of graphitic hollow carbon nanoballs as supports for SnOx nanoparticles towards enhanced lithium storage performance. Nanoscale. 2018;10(13):6159.
[56]
go back to reference Dong Y, Hu M, Zhang Z, Zapien JA, Wang X, Lee JM, Zhang W. Nitrogen-doped carbon-encapsulated antimony sulfide nanowires enable high rate capability and cyclic stability for sodium-ion batteries. ACS Appl Nano Mater. 2019;2(3):1457. Dong Y, Hu M, Zhang Z, Zapien JA, Wang X, Lee JM, Zhang W. Nitrogen-doped carbon-encapsulated antimony sulfide nanowires enable high rate capability and cyclic stability for sodium-ion batteries. ACS Appl Nano Mater. 2019;2(3):1457.
[58]
go back to reference Hou L, Yang W, Xu X, Deng B, Chen Z, Wang S, Tian J, Yang F, Li Y. In-situ activation endows the integrated Fe3C/Fe@nitrogen-doped carbon hybrids with enhanced pseudocapacitance for electrochemical energy storage. Chem Eng J. 2019;375:122061. Hou L, Yang W, Xu X, Deng B, Chen Z, Wang S, Tian J, Yang F, Li Y. In-situ activation endows the integrated Fe3C/Fe@nitrogen-doped carbon hybrids with enhanced pseudocapacitance for electrochemical energy storage. Chem Eng J. 2019;375:122061.
Metadata
Title
Plate-like carbon-supported Fe3C nanoparticles with superior electrochemical performance
Authors
Chuan Chen
Sen Qian
Tian-Hao Yao
Jing-Hong Guo
Hong-Kang Wang
Publication date
07-01-2021
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 6/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01653-5

Other articles of this Issue 6/2021

Rare Metals 6/2021 Go to the issue

Premium Partners