Skip to main content
Top
Published in: Rare Metals 6/2021

14-11-2020 | Original Article

Micro-structured lepidocrocite-type H1.07Ti1.73O4 as anode for lithium-ion batteries with an ultrahigh rate and long-term cycling performance

Authors: Li-Juan Hou, Rui-Chao Liu, Hui-Yu Yuan, De-Zhi Kong, Wei-Xia Shen, Jin-Hao Zang, Juan Guo, Shu-Ge Dai, Ming-Lang Wang, Ting-Ting Xu, Xin-Jian Li, Ye Wang

Published in: Rare Metals | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The lepidocrocite-type H1.07Ti1.73O4 microsized structures with a tap density of 0.88 g·cm−3 were prepared through the ion exchange method with K0.8Li0.27Ti1.73O4 powder as the precursor, and they exhibited good rate performance and outstanding cycle stability as an anode material for lithium ion batteries (LIB). The ion exchange method provides favorable conditions for H1.07Ti1.73O4 as an anode electrode material for LIBs. X-ray photoelectron spectroscopy (XPS) result demonstrates the existence of defects in the nonstoichiometric H1.07Ti1.73O4, which have a beneficial effect on the LIB performance. The electrochemical performance test proves that the half-cell with microsized H1.07Ti1.73O4 as the anode electrode can maintain a specific capacity of 129.5 mAh·g−1 after 1100 cycles and 101 mAh·g−1 after 3000 long cycles at high current densities of 2.0 and 5.0 A·g−1, respectively. In addition, the small volume change rate of 3.6% in H1.07Ti1.73O4 during Li ion insertion was confirmed by real-time in situ transmission electron microscopy (TEM). The LiFePO4||H1.07Ti1.73O4 full battery exhibits a long-term cycling stability with a specific capacity of 73.8 mAh·g−1 at a current density of 500 mA·g−1 after 200 cycles.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
[1]
go back to reference Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359.
[2]
go back to reference Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Edit. 2008;47(16):2930. Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Edit. 2008;47(16):2930.
[3]
go back to reference Liang Y, Zhao J, Han Z, Yu H. Application of lithium rare metal in rechargeable batteries. Chin J Rare Met. 2019;43(11):1187. Liang Y, Zhao J, Han Z, Yu H. Application of lithium rare metal in rechargeable batteries. Chin J Rare Met. 2019;43(11):1187.
[4]
go back to reference Huang X, Chen X, Li A, Atinafu D, Gao H, Dong W, Wang G. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chem Eng J. 2019;356:641. Huang X, Chen X, Li A, Atinafu D, Gao H, Dong W, Wang G. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chem Eng J. 2019;356:641.
[5]
go back to reference Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(3):167. Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(3):167.
[6]
go back to reference Yi J, Li X, Hu S, Li W, Zeng R, Fu Z, Chen L. TiO2-coated SnO2 hollow spheres as anode materials for lithium ion batteries. Rare Met. 2011;30(6):589. Yi J, Li X, Hu S, Li W, Zeng R, Fu Z, Chen L. TiO2-coated SnO2 hollow spheres as anode materials for lithium ion batteries. Rare Met. 2011;30(6):589.
[7]
go back to reference Ji YR, Weng ST, Li XY, Zhang QH, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020;39(3):205. Ji YR, Weng ST, Li XY, Zhang QH, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020;39(3):205.
[8]
go back to reference An HF, Jiang L, Li F, Wu P, Zhu XS, Wei SH, Zhou YM. Hydrogel-derived three-dimensional porous Si-CNT@G nanocomposite with high-performance lithium storage. Acta Phys Chim Sin. 2020;36(7):7. An HF, Jiang L, Li F, Wu P, Zhu XS, Wei SH, Zhou YM. Hydrogel-derived three-dimensional porous Si-CNT@G nanocomposite with high-performance lithium storage. Acta Phys Chim Sin. 2020;36(7):7.
[9]
go back to reference Lu HH, Shi CS, Zhao NQ, Liu EZ, He CN, He F. Carbon and few-layer MoS2 nanosheets co-modified TiO2 nanosheets with enhanced electrochemical properties for lithium storage. Rare Met. 2018;37(2):107. Lu HH, Shi CS, Zhao NQ, Liu EZ, He CN, He F. Carbon and few-layer MoS2 nanosheets co-modified TiO2 nanosheets with enhanced electrochemical properties for lithium storage. Rare Met. 2018;37(2):107.
[10]
go back to reference Ma C, Xu T, Wang Y. Advanced carbon nanostructures for future high performance sodium metal anodes. Energy Storage Mater. 2020;25:811. Ma C, Xu T, Wang Y. Advanced carbon nanostructures for future high performance sodium metal anodes. Energy Storage Mater. 2020;25:811.
[11]
go back to reference Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate-carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38(9):832. Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate-carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38(9):832.
[12]
go back to reference Xie J, Cao GS, Zhao XB. CoSb3-graphite composite anode material for lithium ion batteries. Rare Met. 2005;24(1):42. Xie J, Cao GS, Zhao XB. CoSb3-graphite composite anode material for lithium ion batteries. Rare Met. 2005;24(1):42.
[13]
go back to reference Yi TF, Wei TT, Li Y, He YB, Wang ZB. Efforts on enhancing the Li-ion diffusion coefficient and electronic conductivity of titanate-based anode materials for advanced Li-ion batteries. Energy Storage Mater. 2020;26:165. Yi TF, Wei TT, Li Y, He YB, Wang ZB. Efforts on enhancing the Li-ion diffusion coefficient and electronic conductivity of titanate-based anode materials for advanced Li-ion batteries. Energy Storage Mater. 2020;26:165.
[15]
go back to reference Zhu GN, Wang YG, Xia YY. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci. 2012;5(5):6652. Zhu GN, Wang YG, Xia YY. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci. 2012;5(5):6652.
[16]
go back to reference Guo J, Liu J. Topotactic conversion-derived Li4Ti5O12-rutile TiO2 hybrid nanowire array for high-performance lithium ion full cells. RSC Adv. 2014;4(25):12950. Guo J, Liu J. Topotactic conversion-derived Li4Ti5O12-rutile TiO2 hybrid nanowire array for high-performance lithium ion full cells. RSC Adv. 2014;4(25):12950.
[17]
go back to reference Guo J, Zuo W, Cai Y, Chen S, Zhang S, Liu J. A novel Li4Ti5O12-based high-performance lithium-ion electrode at elevated temperature. J Mater Chem A. 2015;3(9):4938. Guo J, Zuo W, Cai Y, Chen S, Zhang S, Liu J. A novel Li4Ti5O12-based high-performance lithium-ion electrode at elevated temperature. J Mater Chem A. 2015;3(9):4938.
[18]
go back to reference Shi XY, Yu SS, Deng T, Zhang W, Zheng WT. Unlock the potential of Li4Ti5O12 for high-voltage/long-cycling-life and high-safety batteries: dual-ion architecture superior to lithium-ion storage. J Energy Chem. 2020;44:13. Shi XY, Yu SS, Deng T, Zhang W, Zheng WT. Unlock the potential of Li4Ti5O12 for high-voltage/long-cycling-life and high-safety batteries: dual-ion architecture superior to lithium-ion storage. J Energy Chem. 2020;44:13.
[19]
go back to reference Yao NY, Liu HK, Liang X, Sun Y, Feng XY, Chen CH, Xiang HF. Li4Ti5O12 nanosheets embedded in three-dimensional amorphous carbon for superior-rate battery applications. J Alloy Compd. 2019;771:755. Yao NY, Liu HK, Liang X, Sun Y, Feng XY, Chen CH, Xiang HF. Li4Ti5O12 nanosheets embedded in three-dimensional amorphous carbon for superior-rate battery applications. J Alloy Compd. 2019;771:755.
[20]
go back to reference Liu Y, Zhao M, Xu H, Chen J. Fabrication of continuous conductive network for Li4Ti5O12 anode by Cu-doping and graphene wrapping to boost lithium storage. J Alloy Compd. 2019;780:1. Liu Y, Zhao M, Xu H, Chen J. Fabrication of continuous conductive network for Li4Ti5O12 anode by Cu-doping and graphene wrapping to boost lithium storage. J Alloy Compd. 2019;780:1.
[21]
go back to reference Zhang CC, Wu LP, Li XJ, Zhang LZ. Nanocubic Li4Ti5O12 derived from H-titanate nanotubes as anode material for lithium-ion batteries. J Electron Mater. 2020;49(6):3883. Zhang CC, Wu LP, Li XJ, Zhang LZ. Nanocubic Li4Ti5O12 derived from H-titanate nanotubes as anode material for lithium-ion batteries. J Electron Mater. 2020;49(6):3883.
[22]
go back to reference Guo Q, Chen L, Shan ZZ, Lee WSV, Xiao W, Liu ZF, Liang JJ, Yang GL, Xue JM. High lithium insertion voltage single-crystal H2Ti12O25 nanorods as a high-capacity and high-rate lithium-ion battery anode material. Chemsuschem. 2018;11(1):299. Guo Q, Chen L, Shan ZZ, Lee WSV, Xiao W, Liu ZF, Liang JJ, Yang GL, Xue JM. High lithium insertion voltage single-crystal H2Ti12O25 nanorods as a high-capacity and high-rate lithium-ion battery anode material. Chemsuschem. 2018;11(1):299.
[23]
go back to reference Nagai H, Kataoka K, Akimoto J. Synthesis of H2Ti12O25 containing fine carbon particles by impregnation method using porous titanium hydroxide. J Ceram Soc JPN. 2019;127(6):399. Nagai H, Kataoka K, Akimoto J. Synthesis of H2Ti12O25 containing fine carbon particles by impregnation method using porous titanium hydroxide. J Ceram Soc JPN. 2019;127(6):399.
[24]
go back to reference Leng J, Wang Z, Wang J, Wu HH, Yan G, Li X, Guo H, Liu Y, Zhang Q, Guo Z. Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chem Soc Rev. 2019;48(11):3015. Leng J, Wang Z, Wang J, Wu HH, Yan G, Li X, Guo H, Liu Y, Zhang Q, Guo Z. Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chem Soc Rev. 2019;48(11):3015.
[25]
go back to reference Liao JY, Xiao XC, Higgins D, Lui G, Chen ZW. Self-supported single crystalline H2Ti8O17 nanoarrays as integrated three-dimensional anodes for lithium-ion microbatteries. ACS Appl Mater Interfaces. 2014;6(1):568. Liao JY, Xiao XC, Higgins D, Lui G, Chen ZW. Self-supported single crystalline H2Ti8O17 nanoarrays as integrated three-dimensional anodes for lithium-ion microbatteries. ACS Appl Mater Interfaces. 2014;6(1):568.
[26]
go back to reference Wang CM, Chen L, Su YL, Yang GL, Zhang WL. The preparation of H2Ti12O25 via multi-method and their rate performance in lithium ions battery. Electrochim Acta. 2016;213:375. Wang CM, Chen L, Su YL, Yang GL, Zhang WL. The preparation of H2Ti12O25 via multi-method and their rate performance in lithium ions battery. Electrochim Acta. 2016;213:375.
[27]
go back to reference Griffith KJ, Wiaderek KM, Cibin G, Marbella LE, Grey CP. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature. 2018;559(7715):556. Griffith KJ, Wiaderek KM, Cibin G, Marbella LE, Grey CP. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature. 2018;559(7715):556.
[28]
go back to reference Yan H, Yao W, Fan R, Zhang Y, Luo J, Xu J. Mesoporous hierarchical structure of Li4Ti5O12/graphene with high electrochemical performance in lithium-ion batteries. ACS Sustain Chem Eng. 2018;6(9):11360. Yan H, Yao W, Fan R, Zhang Y, Luo J, Xu J. Mesoporous hierarchical structure of Li4Ti5O12/graphene with high electrochemical performance in lithium-ion batteries. ACS Sustain Chem Eng. 2018;6(9):11360.
[29]
go back to reference Reeves KG, Ma J, Fukunishi M, Salanne M, Komaba S, Dambournet D. Insights into Li+, Na+ and K+ intercalation in lepidocrocite-type layered TiO2 structures. ACS Appl Energy Mater. 2018;1(5):2078. Reeves KG, Ma J, Fukunishi M, Salanne M, Komaba S, Dambournet D. Insights into Li+, Na+ and K+ intercalation in lepidocrocite-type layered TiO2 structures. ACS Appl Energy Mater. 2018;1(5):2078.
[30]
go back to reference Yuan H, Lubbers R, Besselink R, Nijland M, ten Elshof JE. Improved Langmuir-Blodgett titanate films via in situ exfoliation study and optimization of deposition parameters. ACS Appl Mater Interfaces. 2014;6(11):8567. Yuan H, Lubbers R, Besselink R, Nijland M, ten Elshof JE. Improved Langmuir-Blodgett titanate films via in situ exfoliation study and optimization of deposition parameters. ACS Appl Mater Interfaces. 2014;6(11):8567.
[31]
go back to reference Xu J, Tang H, Xu T, Wu D, Shi Z, Tian Y, Li X. Porous NiO hollow quasi-nanospheres derived from a new metal-organic framework template as high-performance anode materials for lithium ion batteries. Ionics. 2017;23(12):3273. Xu J, Tang H, Xu T, Wu D, Shi Z, Tian Y, Li X. Porous NiO hollow quasi-nanospheres derived from a new metal-organic framework template as high-performance anode materials for lithium ion batteries. Ionics. 2017;23(12):3273.
[32]
go back to reference Wang Y, Lim YV, Huang S, Ding M, Kong D, Pei Y, Xu T, Shi Y, Li X, Yang HY. Enhanced sodium storage kinetics by volume regulation and surface engineering via rationally designed hierarchical porous FeP@C/rGO. Nanoscale. 2020;12(7):4341. Wang Y, Lim YV, Huang S, Ding M, Kong D, Pei Y, Xu T, Shi Y, Li X, Yang HY. Enhanced sodium storage kinetics by volume regulation and surface engineering via rationally designed hierarchical porous FeP@C/rGO. Nanoscale. 2020;12(7):4341.
[33]
go back to reference Jiang ZM, Xu TT, Yan CC, Ma CY, Dai SG. Urchin-like Ni2/3Co1/3(CO3)1/2(OH)·0.11H2O for high-performance supercapacitors. Front Chem. 2018;6:431. Jiang ZM, Xu TT, Yan CC, Ma CY, Dai SG. Urchin-like Ni2/3Co1/3(CO3)1/2(OH)·0.11H2O for high-performance supercapacitors. Front Chem. 2018;6:431.
[35]
go back to reference Kong D, Wang Y, Huang S, Zhang B, Lim YV, Sim GJ, Valdivia Y, Alvarado P, Ge Q, Yang HY. 3D printed compressible quasi-solid-state nickel-iron battery. ACS Nano. 2020;14(8):9675. Kong D, Wang Y, Huang S, Zhang B, Lim YV, Sim GJ, Valdivia Y, Alvarado P, Ge Q, Yang HY. 3D printed compressible quasi-solid-state nickel-iron battery. ACS Nano. 2020;14(8):9675.
[36]
go back to reference Jiang Z, Xu T, Dai S, Yan C, Ma C, Wang X, Xu J, Zhang S, Wang Y. 3D mesoporous Ni(OH)2/WS2 nanofibers with highly enhanced performances for hybrid supercapacitors. Energy Technol. 2019;7(3):1800476. Jiang Z, Xu T, Dai S, Yan C, Ma C, Wang X, Xu J, Zhang S, Wang Y. 3D mesoporous Ni(OH)2/WS2 nanofibers with highly enhanced performances for hybrid supercapacitors. Energy Technol. 2019;7(3):1800476.
[37]
go back to reference Yan C, Xu T, Ma C, Zang J, Xu J, Shi Y, Kong D, Ke C, Li X, Wang Y. Dendrite-free Li metal plating/stripping onto three-dimensional vertical-graphene@carbon-cloth host. Front Chem. 2019;7:714. Yan C, Xu T, Ma C, Zang J, Xu J, Shi Y, Kong D, Ke C, Li X, Wang Y. Dendrite-free Li metal plating/stripping onto three-dimensional vertical-graphene@carbon-cloth host. Front Chem. 2019;7:714.
[38]
go back to reference Wang L, Yan J, Xu Z, Wang W, Wen J, Bai X. Rate mechanism of vanadium oxide coated tin dioxide nanowire electrode for lithium ion battery. Nano Energy. 2017;42:294. Wang L, Yan J, Xu Z, Wang W, Wen J, Bai X. Rate mechanism of vanadium oxide coated tin dioxide nanowire electrode for lithium ion battery. Nano Energy. 2017;42:294.
[39]
go back to reference Li J, Liu WW, Zhou HM, Liu ZZ, Chen BR, Sun WJ. Anode material NbO for Li-ion battery and its electrochemical properties. Rare Met. 2018;37(2):118. Li J, Liu WW, Zhou HM, Liu ZZ, Chen BR, Sun WJ. Anode material NbO for Li-ion battery and its electrochemical properties. Rare Met. 2018;37(2):118.
[40]
go back to reference Tanaka T, Ebina Y, Takada K, Kurashima K, Sasaki T. Oversized titania nanosheet crystallites derived from flux-grown layered titanate single crystals. Chem Mater. 2003;15(18):3564. Tanaka T, Ebina Y, Takada K, Kurashima K, Sasaki T. Oversized titania nanosheet crystallites derived from flux-grown layered titanate single crystals. Chem Mater. 2003;15(18):3564.
[41]
go back to reference Wang Y, Kong D, Shi W, Liu B, Sim GJ, Ge Q, Yang HY. Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries. Adv Energy Mater. 2016;6(21):1601057. Wang Y, Kong D, Shi W, Liu B, Sim GJ, Ge Q, Yang HY. Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries. Adv Energy Mater. 2016;6(21):1601057.
[42]
go back to reference Wang Y, Kong D, Huang S, Shi Y, Ding M, Lim YV, Xu T, Chen F, Li X, Yang HY. 3D carbon foam-supported WS2 nanosheets for cable-shaped flexible sodium ion batteries. J Mater Chem A. 2018;6(23):10813. Wang Y, Kong D, Huang S, Shi Y, Ding M, Lim YV, Xu T, Chen F, Li X, Yang HY. 3D carbon foam-supported WS2 nanosheets for cable-shaped flexible sodium ion batteries. J Mater Chem A. 2018;6(23):10813.
[43]
go back to reference Wang Y, Chen B, Seo DH, Han ZJ, Wong JI, Ostrikov K, Zhang H, Yang HY. MoS2-coated vertical graphene nanosheet for high-performance rechargeable lithium-ion batteries and hydrogen production. NPG Asia Mater. 2016;8:e268. Wang Y, Chen B, Seo DH, Han ZJ, Wong JI, Ostrikov K, Zhang H, Yang HY. MoS2-coated vertical graphene nanosheet for high-performance rechargeable lithium-ion batteries and hydrogen production. NPG Asia Mater. 2016;8:e268.
[44]
go back to reference Song Y, Wang H, Xiong J, Guo B, Liang S, Wu L. Photocatalytic hydrogen evolution over monolayer H1.07Ti1.73O4 center dot H2O nanosheets: roles of metal defects and greatly enhanced performances. Appl Catal B-Environ. 2018;221:473. Song Y, Wang H, Xiong J, Guo B, Liang S, Wu L. Photocatalytic hydrogen evolution over monolayer H1.07Ti1.73O4 center dot H2O nanosheets: roles of metal defects and greatly enhanced performances. Appl Catal B-Environ. 2018;221:473.
[45]
go back to reference Shirpour M, Cabana J, Doeff M. Lepidocrocite-type layered titanate structures: new lithium and sodium ion intercalation anode materials. Chem Mater. 2014;26(8):2502. Shirpour M, Cabana J, Doeff M. Lepidocrocite-type layered titanate structures: new lithium and sodium ion intercalation anode materials. Chem Mater. 2014;26(8):2502.
[46]
go back to reference Kong D, Wang Y, Von Lim Y, Huang S, Zhang J, Liu B, Chen T, Yang HY. 3D hierarchical defect-rich NiMo3S4 nanosheet arrays grown on carbon textiles for high-performance sodium-ion batteries and hydrogen evolution reaction. Nano Energy. 2018;49:460. Kong D, Wang Y, Von Lim Y, Huang S, Zhang J, Liu B, Chen T, Yang HY. 3D hierarchical defect-rich NiMo3S4 nanosheet arrays grown on carbon textiles for high-performance sodium-ion batteries and hydrogen evolution reaction. Nano Energy. 2018;49:460.
[47]
go back to reference Markus IM, Engelke S, Shirpour M, Asta M, Doeff M. Experimental and computational investigation of lepidocrocite anodes for sodium-ion batteries. Chem Mater. 2016;28(12):4284. Markus IM, Engelke S, Shirpour M, Asta M, Doeff M. Experimental and computational investigation of lepidocrocite anodes for sodium-ion batteries. Chem Mater. 2016;28(12):4284.
[48]
go back to reference Jin Y, Li S, Kushima A, Zheng X, Sun Y, Xie J, Sun J, Xue W, Zhou G, Wu J, Shi F, Zhang R, Zhu Z, So K, Cui Y, Li J. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy Environ Sci. 2017;10(2):580. Jin Y, Li S, Kushima A, Zheng X, Sun Y, Xie J, Sun J, Xue W, Zhou G, Wu J, Shi F, Zhang R, Zhu Z, So K, Cui Y, Li J. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy Environ Sci. 2017;10(2):580.
[49]
go back to reference Ou X, Yang C, Xiong X, Zheng F, Pan Q, Jin C, Liu M, Huang K. A new rGO-overcoated Sb2Se3 nanorods anode for Na+ battery: in situ X-ray diffraction study on a live sodiation/desodiation process. Adv Funct Mater. 2017;27(13):1606242. Ou X, Yang C, Xiong X, Zheng F, Pan Q, Jin C, Liu M, Huang K. A new rGO-overcoated Sb2Se3 nanorods anode for Na+ battery: in situ X-ray diffraction study on a live sodiation/desodiation process. Adv Funct Mater. 2017;27(13):1606242.
[50]
[51]
go back to reference Zhang Q, Wang J, Dong J, Ding F, Li X, Zhang B, Yang S, Zhang K. Facile general strategy toward hierarchical mesoporous transition metal oxides arrays on three-dimensional macroporous foam with superior lithium storage properties. Nano Energy. 2015;13:77. Zhang Q, Wang J, Dong J, Ding F, Li X, Zhang B, Yang S, Zhang K. Facile general strategy toward hierarchical mesoporous transition metal oxides arrays on three-dimensional macroporous foam with superior lithium storage properties. Nano Energy. 2015;13:77.
[52]
go back to reference Sun H, Xin G, Hu T, Yu M, Shao D, Sun X, Lian J. High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat Commun. 2014;5:4526. Sun H, Xin G, Hu T, Yu M, Shao D, Sun X, Lian J. High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat Commun. 2014;5:4526.
[53]
go back to reference Odziomek M, Chaput F, Rutkowska A, Swierczek K, Olszewska D, Sitarz M, Lerouge F, Parola S. Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries. Nat Commun. 2017;8:1. Odziomek M, Chaput F, Rutkowska A, Swierczek K, Olszewska D, Sitarz M, Lerouge F, Parola S. Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries. Nat Commun. 2017;8:1.
[54]
go back to reference Yang J, Gao H, Men S, Shi Z, Lin Z, Kang X, Chen S. CoSe2 nanoparticles encapsulated by N-doped carbon framework intertwined with carbon nanotubes: high-performance dual-role anode materials for both Li- and Na-ion batteries. Adv Sci. 2018;5(12):1800763. Yang J, Gao H, Men S, Shi Z, Lin Z, Kang X, Chen S. CoSe2 nanoparticles encapsulated by N-doped carbon framework intertwined with carbon nanotubes: high-performance dual-role anode materials for both Li- and Na-ion batteries. Adv Sci. 2018;5(12):1800763.
[55]
go back to reference Xu T, Chen Q, Zhang C, Ran K, Wang J, Rosentsveig R, Tenne R. Self-healing of bended WS2 nanotubes and its effect on the nanotube’s properties. Nanoscale. 2012;4(24):7825. Xu T, Chen Q, Zhang C, Ran K, Wang J, Rosentsveig R, Tenne R. Self-healing of bended WS2 nanotubes and its effect on the nanotube’s properties. Nanoscale. 2012;4(24):7825.
[56]
go back to reference Li X, Xiao D, Zheng H, Wei X, Wang X, Gu L, Hu Y-S, Yang T, Chen Q. Ultrafast and reversible electrochemical lithiation of InAs nanowires observed by in situ transmission electron microscopy. Nano Energy. 2016;20:194. Li X, Xiao D, Zheng H, Wei X, Wang X, Gu L, Hu Y-S, Yang T, Chen Q. Ultrafast and reversible electrochemical lithiation of InAs nanowires observed by in situ transmission electron microscopy. Nano Energy. 2016;20:194.
[57]
go back to reference Zhao L, Wu HH, Yang C, Zhang Q, Zhong G, Zheng Z, Chen H, Wang J, He K, Wang B, Zhu T, Zeng XC, Liu M, Wang MS. Mechanistic origin of the high performance of yolk@shell Bi2S3@N-doped carbon nanowire electrodes. ACS Nano. 2018;12(12):12597. Zhao L, Wu HH, Yang C, Zhang Q, Zhong G, Zheng Z, Chen H, Wang J, He K, Wang B, Zhu T, Zeng XC, Liu M, Wang MS. Mechanistic origin of the high performance of yolk@shell Bi2S3@N-doped carbon nanowire electrodes. ACS Nano. 2018;12(12):12597.
[58]
go back to reference Leenheer AJ, Jungjohann KL, Zavadil KR, Sullivan JP, Harris CT. Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano. 2015;9(4):4379. Leenheer AJ, Jungjohann KL, Zavadil KR, Sullivan JP, Harris CT. Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano. 2015;9(4):4379.
[59]
go back to reference Li X, Zhao L, Li P, Zhang Q, Wang MS. In situ electron microscopy observation of electrochemical sodium plating and stripping dynamics on carbon nanofiber current collectors. Nano Energy. 2017;42:122. Li X, Zhao L, Li P, Zhang Q, Wang MS. In situ electron microscopy observation of electrochemical sodium plating and stripping dynamics on carbon nanofiber current collectors. Nano Energy. 2017;42:122.
Metadata
Title
Micro-structured lepidocrocite-type H1.07Ti1.73O4 as anode for lithium-ion batteries with an ultrahigh rate and long-term cycling performance
Authors
Li-Juan Hou
Rui-Chao Liu
Hui-Yu Yuan
De-Zhi Kong
Wei-Xia Shen
Jin-Hao Zang
Juan Guo
Shu-Ge Dai
Ming-Lang Wang
Ting-Ting Xu
Xin-Jian Li
Ye Wang
Publication date
14-11-2020
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 6/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01618-8

Other articles of this Issue 6/2021

Rare Metals 6/2021 Go to the issue

Premium Partners