Skip to main content
Top
Published in: Rare Metals 6/2021

20-07-2020 | Original Article

Enhancing cycle stability of Li metal anode by using polymer separators coated with Ti-containing solid electrolytes

Authors: Zhao Yan, Hong-Yi Pan, Jun-Yang Wang, Ru-Song Chen, Quan Li, Fei Luo, Xi-Qian Yu, Hong Li

Published in: Rare Metals | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The employment of lithium metal anode in rechargeable lithium batteries has been hindered by the safety concerns which are associated with the uncontrolled lithium dendrite growth and the unceasing side reactions with liquid electrolytes. In this work, we report that the use of Ti-containing solid electrolyte-coated separators can greatly enhance the cycle performances of lithium metal anode in cells using liquid electrolytes. The detailed morphologic studies indicate that more uniform lithium deposition is achieved in cells using Ti-containing solid electrolyte-coated separators than that using Al2O3-coated separators, which is likely due to the modified anode and electrolyte interfacial properties induced by the reactive nature of Ti-containing solid electrolytes with metallic lithium. This work demonstrates an effective strategy to enhance the homogeneity of lithium deposition, which leads to the stable cycling of lithium metal anode in rechargeable lithium-ion batteries.

Graphic abstract

Texture intensity decreases by the increase in the amount of alloying elements

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Liang Y, Zhao CZ, Yuan H, Chen Y, Zhang W, Huang JQ, Yu D, Liu Y, Titirici MM, Chueh YL, Yu H, Zhang Q. A review of rechargeable batteries for portable electronic devices. Inf Mater. 2019;1(1):6. Liang Y, Zhao CZ, Yuan H, Chen Y, Zhang W, Huang JQ, Yu D, Liu Y, Titirici MM, Chueh YL, Yu H, Zhang Q. A review of rechargeable batteries for portable electronic devices. Inf Mater. 2019;1(1):6.
[2]
go back to reference Wu J, Liu P, Hu Y, Li H. Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries. Energy Storage Sci and Technol. 2016;5(4):443. Wu J, Liu P, Hu Y, Li H. Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries. Energy Storage Sci and Technol. 2016;5(4):443.
[3]
go back to reference Ma L, Cui J, Yao S, Liu X, Luo Y, Shen X, Kim JK. Dendrite-free lithium metal and sodium metal batteries. Energy Storage Mater. 2020;27:522.CrossRef Ma L, Cui J, Yao S, Liu X, Luo Y, Shen X, Kim JK. Dendrite-free lithium metal and sodium metal batteries. Energy Storage Mater. 2020;27:522.CrossRef
[4]
go back to reference Aurbach D, Zinigard E, Yaron C, Teller H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 2002;148(3):405.CrossRef Aurbach D, Zinigard E, Yaron C, Teller H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 2002;148(3):405.CrossRef
[5]
go back to reference Wu X, Pan K, Jia M, Ren Y, He H, Zhang L, Zhang S. Electrolyte for lithium protection: from liquid to solid. Green Energy Environ. 2019;4(4):360.CrossRef Wu X, Pan K, Jia M, Ren Y, He H, Zhang L, Zhang S. Electrolyte for lithium protection: from liquid to solid. Green Energy Environ. 2019;4(4):360.CrossRef
[6]
go back to reference Liang Y, Zhao J, Han Z, Yu H. Application of lithium rare metal in rechargeable batteries. Chin J Rare Met. 2019;43(11):1187. Liang Y, Zhao J, Han Z, Yu H. Application of lithium rare metal in rechargeable batteries. Chin J Rare Met. 2019;43(11):1187.
[7]
go back to reference Li T, Liu H, Shi P, Zhang Q. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 2018;37(6):449.CrossRef Li T, Liu H, Shi P, Zhang Q. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 2018;37(6):449.CrossRef
[8]
go back to reference Liu H, Cheng XB, Jin Z, Zhang R, Wang G, Chen LQ, Liu QB, Huang JQ, Zhang Q. Recent advances in understanding dendrite growth on alkali metal anodes. Energy Chem. 2019;1(1):10003. Liu H, Cheng XB, Jin Z, Zhang R, Wang G, Chen LQ, Liu QB, Huang JQ, Zhang Q. Recent advances in understanding dendrite growth on alkali metal anodes. Energy Chem. 2019;1(1):10003.
[9]
go back to reference Zhang X, Wang A, Liu X, Luo J. Dendrites in lithium metal anodes: suppression, regulation, and elimination. Acc Chem Res. 2019;52(11):3223.CrossRef Zhang X, Wang A, Liu X, Luo J. Dendrites in lithium metal anodes: suppression, regulation, and elimination. Acc Chem Res. 2019;52(11):3223.CrossRef
[10]
go back to reference Zhang X-Q, Cheng X-B, Chen X, Yan C, Zhang Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater. 2017;27(10):1605989.CrossRef Zhang X-Q, Cheng X-B, Chen X, Yan C, Zhang Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater. 2017;27(10):1605989.CrossRef
[11]
go back to reference Ma Y, Zhou Z, Li C, Wang L, Wang Y, Cheng X, Zuo P, Du C, Huo H, Gao Y, Yin G. Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive. Energy Storage Mater. 2018;11:197.CrossRef Ma Y, Zhou Z, Li C, Wang L, Wang Y, Cheng X, Zuo P, Du C, Huo H, Gao Y, Yin G. Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive. Energy Storage Mater. 2018;11:197.CrossRef
[12]
go back to reference Chen D, Tan H, Rui X, Zhang Q, Feng Y, Geng H, Li C, Huang S, Yu Y. Oxyvanite V3O5: a new intercalation-type anode for lithium-ion battery. Informat. 2019;1(2):251. Chen D, Tan H, Rui X, Zhang Q, Feng Y, Geng H, Li C, Huang S, Yu Y. Oxyvanite V3O5: a new intercalation-type anode for lithium-ion battery. Informat. 2019;1(2):251.
[13]
go back to reference Lei M, You Z, Ren L, Liu X, Wang J. Construction of copper oxynitride nanoarrays with enhanced lithiophilicity toward stable lithium metal anodes. J Power Sources. 2020;463:228191.CrossRef Lei M, You Z, Ren L, Liu X, Wang J. Construction of copper oxynitride nanoarrays with enhanced lithiophilicity toward stable lithium metal anodes. J Power Sources. 2020;463:228191.CrossRef
[14]
go back to reference Lei M, Wang J, Ren L, Nan D, Shen C, Xie K, Liu X. Highly lithiophilic cobalt nitride nanobrush as a stable host for high-performance lithium metal anodes. ACS Appl Mater Interfaces. 2019;11(34):30992.CrossRef Lei M, Wang J, Ren L, Nan D, Shen C, Xie K, Liu X. Highly lithiophilic cobalt nitride nanobrush as a stable host for high-performance lithium metal anodes. ACS Appl Mater Interfaces. 2019;11(34):30992.CrossRef
[15]
go back to reference Wang B, Lv R, Lan D. Preparation and electrochemical properties of Sn/C composites. Rare Met. 2019;38(10):996.CrossRef Wang B, Lv R, Lan D. Preparation and electrochemical properties of Sn/C composites. Rare Met. 2019;38(10):996.CrossRef
[16]
go back to reference Hou Z, Zhang J, Wang W, Chen Q, Li B, Li C. Towards high-performance lithium metal anodes via the modification of solid electrolyte interphases. J Energy Chem. 2020;45:7.CrossRef Hou Z, Zhang J, Wang W, Chen Q, Li B, Li C. Towards high-performance lithium metal anodes via the modification of solid electrolyte interphases. J Energy Chem. 2020;45:7.CrossRef
[17]
go back to reference Zhao CZ, Zhao BC, Yan C, Zhang XQ, Huang JQ, Mo Y, Xu X, Li H, Zhang Q. Liquid phase therapy to solid electrolyte–electrode interface in solid-state Li metal batteries: a review. Energy Storage Mater. 2020;24:75.CrossRef Zhao CZ, Zhao BC, Yan C, Zhang XQ, Huang JQ, Mo Y, Xu X, Li H, Zhang Q. Liquid phase therapy to solid electrolyte–electrode interface in solid-state Li metal batteries: a review. Energy Storage Mater. 2020;24:75.CrossRef
[18]
go back to reference Wang P, Qu W, Song WL, Chen H, Chen R, Fang D. Electro-chemo-mechanical issues at the interfaces in solid-state lithium metal batteries. Adv Func Mater. 2019;29(27):1900950.CrossRef Wang P, Qu W, Song WL, Chen H, Chen R, Fang D. Electro-chemo-mechanical issues at the interfaces in solid-state lithium metal batteries. Adv Func Mater. 2019;29(27):1900950.CrossRef
[19]
go back to reference Shen Y, Zhang Y, Han S, Wang J, Peng Z, Chen L. Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes. Joule. 2018;2(9):1674.CrossRef Shen Y, Zhang Y, Han S, Wang J, Peng Z, Chen L. Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes. Joule. 2018;2(9):1674.CrossRef
[20]
go back to reference Liu Y, Liu Q, Xin L, Liu Y, Yang F, Stach E, Xie J. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nat Energy. 2017;2:17083.CrossRef Liu Y, Liu Q, Xin L, Liu Y, Yang F, Stach E, Xie J. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nat Energy. 2017;2:17083.CrossRef
[21]
go back to reference Na W, Lee AS, Lee JH, Hwang SS, Kim E, Hong SM, Koo CM. Lithium dendrite suppression with UV-curable polysilsesquioxane separator binders. ACS Appl Mater Interfaces. 2016;8(20):12852.CrossRef Na W, Lee AS, Lee JH, Hwang SS, Kim E, Hong SM, Koo CM. Lithium dendrite suppression with UV-curable polysilsesquioxane separator binders. ACS Appl Mater Interfaces. 2016;8(20):12852.CrossRef
[22]
go back to reference Zhang F, Shen F, Fan Z, Ji X, Zhao B, Sun Z, Xuan Y, Han X. Ultrathin Al2O3-coated reduced graphene oxide membrane for stable lithium metal anode. Rare Metals. 2018;37(6):510.CrossRef Zhang F, Shen F, Fan Z, Ji X, Zhao B, Sun Z, Xuan Y, Han X. Ultrathin Al2O3-coated reduced graphene oxide membrane for stable lithium metal anode. Rare Metals. 2018;37(6):510.CrossRef
[24]
go back to reference Liu Q, Yu Q, Li S, Wang S, Zhang L, Cai B, Zhou D, Li B. Safe LAGP-based all solid-state Li metal batteries with plastic super-conductive interlayer enabled by in situ solidification. Energy Storage Mater. 2020;25:613.CrossRef Liu Q, Yu Q, Li S, Wang S, Zhang L, Cai B, Zhou D, Li B. Safe LAGP-based all solid-state Li metal batteries with plastic super-conductive interlayer enabled by in situ solidification. Energy Storage Mater. 2020;25:613.CrossRef
[25]
go back to reference Zhao CZ, Chen PY, Zhang R, Chen X, Li BQ, Zhang XQ, Cheng XB, Zhang Q. An ion redistributor for dendrite-free lithium metal anodes. Sci Adv. 2018;4(11):3446.CrossRef Zhao CZ, Chen PY, Zhang R, Chen X, Li BQ, Zhang XQ, Cheng XB, Zhang Q. An ion redistributor for dendrite-free lithium metal anodes. Sci Adv. 2018;4(11):3446.CrossRef
[26]
go back to reference Shi J, Xia Y, Han S, Fang L, Pan M, Xu X, Liu Z. Lithium ion conductive Li1.5Al0.5Ge1.5(PO4)3 based inorganic-organic composite separator with enhanced thermal stability and excellent electrochemical performances in 5 V lithium ion batteries. J Power Sources. 2015;273:389.CrossRef Shi J, Xia Y, Han S, Fang L, Pan M, Xu X, Liu Z. Lithium ion conductive Li1.5Al0.5Ge1.5(PO4)3 based inorganic-organic composite separator with enhanced thermal stability and excellent electrochemical performances in 5 V lithium ion batteries. J Power Sources. 2015;273:389.CrossRef
[27]
go back to reference Liang T, Cao JH, Liang WH, Li Q, He L, Wu DY. Asymmetrically coated LAGP/PP/PVDF-HFP composite separator film and its effect on the improvement of NCM battery performance. R Soc Chem Adv. 2019;9(70):41151. Liang T, Cao JH, Liang WH, Li Q, He L, Wu DY. Asymmetrically coated LAGP/PP/PVDF-HFP composite separator film and its effect on the improvement of NCM battery performance. R Soc Chem Adv. 2019;9(70):41151.
[28]
go back to reference Zhu Y, He X, Mo Y. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A. 2016;4(9):3253.CrossRef Zhu Y, He X, Mo Y. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A. 2016;4(9):3253.CrossRef
[29]
go back to reference Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J. Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ion. 2015;278:98.CrossRef Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J. Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ion. 2015;278:98.CrossRef
[31]
go back to reference Wu J, Ling S, Yang Q, Li H, Xu X, Chen L. Forming solid electrolyte interphase in situ in an ionic conducting Li1.5Al0.5Ge1.5(PO4)3-polypropylene (PP) based separator for Li-ion batteries. Chin Phys B. 2016;25(7):078204.CrossRef Wu J, Ling S, Yang Q, Li H, Xu X, Chen L. Forming solid electrolyte interphase in situ in an ionic conducting Li1.5Al0.5Ge1.5(PO4)3-polypropylene (PP) based separator for Li-ion batteries. Chin Phys B. 2016;25(7):078204.CrossRef
Metadata
Title
Enhancing cycle stability of Li metal anode by using polymer separators coated with Ti-containing solid electrolytes
Authors
Zhao Yan
Hong-Yi Pan
Jun-Yang Wang
Ru-Song Chen
Quan Li
Fei Luo
Xi-Qian Yu
Hong Li
Publication date
20-07-2020
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 6/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01494-2

Other articles of this Issue 6/2021

Rare Metals 6/2021 Go to the issue

Premium Partners