Skip to main content
Top
Published in: Rare Metals 6/2021

08-03-2021 | Original Article

Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation

Authors: Cheng-Zhi Ke, Fang Liu, Zhi-Ming Zheng, He-He Zhang, Meng-Ting Cai, Miao Li, Qi-Zhang Yan, Hui-Xin Chen, Qiao-Bao Zhang

Published in: Rare Metals | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Silicon (Si) is a promising anode candidate for next-generation lithium-ion batteries (LIBs), but it suffers from poor electronic conductivity and dramatic volume variation during cycling, which poses a critical challenge for stable battery operation. To mitigate these issues simultaneously, we propose a “double carbon synergistic encapsulation” strategy, namely thin carbon shell and nitrogen/phosphorus co-doped two-dimensional (2D) carbon sheet dual encapsulate Si nanoparticles (denoted as 2D NPC/C@Si). This double carbon structure can serve as a conductive medium and buffer matrix to accommodate the volume expansion of Si nanoparticles and enable fast electron/ion transport, which promotes the formation of a stable solid electrolyte interphase film during cycling. Through structural advantages, the resulting 2D NPC/C@Si electrode demonstrates a high reversible capacity of 592 mAh·g−1 at 0.2 A·g−1 with 90.5% excellent capacity retention after 100 cycles, outstanding rate capability (148 mAh·g−1 at 8 A·g−1), and superior long-term cycling stability (326 mAh·g−1 at 1 A·g−1 for 500 cycles, 86% capacity retention). Our findings elucidate the development of high-performance Si@C composite anodes for advanced LIBs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
[1]
go back to reference Schmuch R, Wagner R, Hörpel G, Placke T, Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy. 2018;3:267. Schmuch R, Wagner R, Hörpel G, Placke T, Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy. 2018;3:267.
[2]
go back to reference Zuo JH, Gong YJ. Applications of transition-metal sulfides in the cathodes of lithium-sulfur batteries. Tungsten. 2020;2(2):134. Zuo JH, Gong YJ. Applications of transition-metal sulfides in the cathodes of lithium-sulfur batteries. Tungsten. 2020;2(2):134.
[3]
go back to reference Guo F, Chen P, Kang T, Wang YL, Liu CH, Shen YB, Lu W, Chen LW. Silicon-loaded lithium-carbon composite microspheres as lithium secondary battery anodes. Acta Phys-Chim Sin. 2019;35(12):1365. Guo F, Chen P, Kang T, Wang YL, Liu CH, Shen YB, Lu W, Chen LW. Silicon-loaded lithium-carbon composite microspheres as lithium secondary battery anodes. Acta Phys-Chim Sin. 2019;35(12):1365.
[4]
go back to reference Wang HK, Qian RF, Cheng YH, Wu HH, Wu XW, Pan KM, Zhang QB. Micro/nanostructured TiNb2O7-related electrode materials for high-performance electrochemical energy storage: recent advances and future prospects. J Mater Chem A. 2020;8(36):18425. Wang HK, Qian RF, Cheng YH, Wu HH, Wu XW, Pan KM, Zhang QB. Micro/nanostructured TiNb2O7-related electrode materials for high-performance electrochemical energy storage: recent advances and future prospects. J Mater Chem A. 2020;8(36):18425.
[5]
go back to reference Zhang QB, Gong ZL, Yang Y. Advance in interface and characterizations of sulfide solid electrolyte materials. Acta Phys Sin. 2020;69(22):228803. Zhang QB, Gong ZL, Yang Y. Advance in interface and characterizations of sulfide solid electrolyte materials. Acta Phys Sin. 2020;69(22):228803.
[6]
go back to reference Zheng SQ, Wu ZH, Wang JT, Zhang XJ. Performance of high capacity silicon/carbon anodes with different pore structures. Chin J Rare Met. 2020;3(44):225. Zheng SQ, Wu ZH, Wang JT, Zhang XJ. Performance of high capacity silicon/carbon anodes with different pore structures. Chin J Rare Met. 2020;3(44):225.
[7]
go back to reference Li XL, Gu M, Hu SY, Kennard R, Yan PF, Chen XL, Wang CM, Sailor MJ, Zhang JG, Liu J. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat Commun. 2014;5:4105. Li XL, Gu M, Hu SY, Kennard R, Yan PF, Chen XL, Wang CM, Sailor MJ, Zhang JG, Liu J. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat Commun. 2014;5:4105.
[8]
go back to reference An WL, Gao B, Mei SX, Xiang B, Fu JJ, Wang L, Zhang QB, Chu PK, Huo KF. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat Commun. 2019;10:1447. An WL, Gao B, Mei SX, Xiang B, Fu JJ, Wang L, Zhang QB, Chu PK, Huo KF. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat Commun. 2019;10:1447.
[9]
go back to reference Ko M, Chae S, Cho J. Challenges in accommodating volume change of Si anodes for Li-ion batteries. Chem Electro Chem. 2015;2(11):1645. Ko M, Chae S, Cho J. Challenges in accommodating volume change of Si anodes for Li-ion batteries. Chem Electro Chem. 2015;2(11):1645.
[10]
go back to reference Ko M, Chae S, Ma J, Kim N, Lee HW, Cui Y, Cho J. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat Energy. 2016;1:16113. Ko M, Chae S, Ma J, Kim N, Lee HW, Cui Y, Cho J. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat Energy. 2016;1:16113.
[13]
go back to reference Lee JH, Yoon CS, Hwang JY, Kim SJ, Maglia F, Lamp P, Myung ST, Sun YK. High-energy-density lithium-ion battery using a carbon-nanotube–Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode. Energy Environ Sci. 2016;9(6):2152. Lee JH, Yoon CS, Hwang JY, Kim SJ, Maglia F, Lamp P, Myung ST, Sun YK. High-energy-density lithium-ion battery using a carbon-nanotube–Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode. Energy Environ Sci. 2016;9(6):2152.
[14]
go back to reference Chen DY, Mei X, Ji G, Lu MH, Xie JP, Lu JM, Lee JY. Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles. Angew Chem Int Ed Engl. 2012;124(10):2459. Chen DY, Mei X, Ji G, Lu MH, Xie JP, Lu JM, Lee JY. Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles. Angew Chem Int Ed Engl. 2012;124(10):2459.
[15]
go back to reference Liu N, Lu ZD, Zhao J, McDowell MT, Lee HW, Zhao WT, Cui Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol. 2014;9:187. Liu N, Lu ZD, Zhao J, McDowell MT, Lee HW, Zhao WT, Cui Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol. 2014;9:187.
[16]
go back to reference Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2017;38(3):199. Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2017;38(3):199.
[17]
go back to reference Liu JY, Zheng QY, Goodman MD, Zhu HY, Kim J, Krueger NA, Ning HL, Huang XJ, Liu JH, Terrones M, Braun PV. Graphene sandwiched mesostructured Li-ion battery electrodes. Adv Mater. 2016;28(35):7696. Liu JY, Zheng QY, Goodman MD, Zhu HY, Kim J, Krueger NA, Ning HL, Huang XJ, Liu JH, Terrones M, Braun PV. Graphene sandwiched mesostructured Li-ion battery electrodes. Adv Mater. 2016;28(35):7696.
[18]
go back to reference Son IH, Hwan Park J, Kwon S, Park S, Rummeli MH, Bachmatiuk A, Song HJ, Ku J, Choi JW, Choi JM, Doo SG, Chang H. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat Commun. 2015;6:7393. Son IH, Hwan Park J, Kwon S, Park S, Rummeli MH, Bachmatiuk A, Song HJ, Ku J, Choi JW, Choi JM, Doo SG, Chang H. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat Commun. 2015;6:7393.
[19]
go back to reference An HF, Jiang L, Li F, Wu P, Zhu XS, Wei SH, Zhou YM. Hydrogel-derived three-dimensional porous Si-CNT@G nanocomposite with high-performance lithium storage. Acta Phys-Chim Sin. 2020;36(7):1905034. An HF, Jiang L, Li F, Wu P, Zhu XS, Wei SH, Zhou YM. Hydrogel-derived three-dimensional porous Si-CNT@G nanocomposite with high-performance lithium storage. Acta Phys-Chim Sin. 2020;36(7):1905034.
[22]
go back to reference Zhang QB, Chen HX, Luo LL, Zhao B, Luo H, Han X, Wang JW, Wang CM, Yang Y, Zhu T, Liu ML. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries. Energy Environ Sci. 2018;11(3):669. Zhang QB, Chen HX, Luo LL, Zhao B, Luo H, Han X, Wang JW, Wang CM, Yang Y, Zhu T, Liu ML. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries. Energy Environ Sci. 2018;11(3):669.
[23]
go back to reference Xu Q, Sun JK, Yu ZL, Yin YX, Xin S, Yu SH, Guo YG. SiOx encapsulated in graphene bubble film: an ultrastable Li-ion battery anode. Adv Mater. 2018;30(25):1707430. Xu Q, Sun JK, Yu ZL, Yin YX, Xin S, Yu SH, Guo YG. SiOx encapsulated in graphene bubble film: an ultrastable Li-ion battery anode. Adv Mater. 2018;30(25):1707430.
[24]
go back to reference Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu LB, Nix WD, Cui Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011;11(7):2949. Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu LB, Nix WD, Cui Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011;11(7):2949.
[25]
go back to reference Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol. 2012;7(5):310. Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol. 2012;7(5):310.
[26]
go back to reference Xia F, Kim SB, Cheng HY, Lee JM, Song T, Huang YG, Rogers JA, Paik U, Park WI. Facile synthesis of free-standing silicon membranes with three-dimensional nanoarchitecture for anodes of lithium ion batteries. Nano Lett. 2013;13(7):3340. Xia F, Kim SB, Cheng HY, Lee JM, Song T, Huang YG, Rogers JA, Paik U, Park WI. Facile synthesis of free-standing silicon membranes with three-dimensional nanoarchitecture for anodes of lithium ion batteries. Nano Lett. 2013;13(7):3340.
[27]
go back to reference Zheng ZM, Wu HH, Liu HL, Zhang QB, He X, Yu SC, Petrova V, Feng J, Kostecki R, Liu P, Peng DL, Liu M, Wang MS. Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS Nano. 2020;14(8):9545. Zheng ZM, Wu HH, Liu HL, Zhang QB, He X, Yu SC, Petrova V, Feng J, Kostecki R, Liu P, Peng DL, Liu M, Wang MS. Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS Nano. 2020;14(8):9545.
[28]
go back to reference Chen SQ, Shen LF, van Aken PA, Maier J, Yu Y. Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Adv Mater. 2017;29(21):1605650. Chen SQ, Shen LF, van Aken PA, Maier J, Yu Y. Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Adv Mater. 2017;29(21):1605650.
[29]
go back to reference Chen QH, Cheng Y, Liu HD, Zhang QB, Petrova V, Chen HX, Liu P, Peng DL, Liu ML, Wang MS. Hierarchical design of Mn2P nanoparticles embedded in N, P-codoped porous carbon nanosheets enables highly durable lithium storage. ACS Appl Mater Interfaces. 2020;12(32):36247. Chen QH, Cheng Y, Liu HD, Zhang QB, Petrova V, Chen HX, Liu P, Peng DL, Liu ML, Wang MS. Hierarchical design of Mn2P nanoparticles embedded in N, P-codoped porous carbon nanosheets enables highly durable lithium storage. ACS Appl Mater Interfaces. 2020;12(32):36247.
[30]
go back to reference Wu HL, Xia L, Ren J, Zheng QJ, Xu CG, Lin DM. A high-efficiency N/P co-doped graphene/CNT@porous carbon hybrid matrix as a cathode host for high performance lithium–sulfur batteries. J Mater Chem A. 2017;5(38):20458. Wu HL, Xia L, Ren J, Zheng QJ, Xu CG, Lin DM. A high-efficiency N/P co-doped graphene/CNT@porous carbon hybrid matrix as a cathode host for high performance lithium–sulfur batteries. J Mater Chem A. 2017;5(38):20458.
[31]
go back to reference Lyu FC, Zeng SS, Sun ZF, Qin N, Cao LJ, Wang ZY, Jia Z, Wu SF, Ma FX, Li MC, Wang WX, Li YY, Lu J, Lu Z. Lamellarly stacking porous N, P co-doped Mo2C/C nanosheets as high performance anode for lithium-ion batteries. Small. 2019;15(8):1805022. Lyu FC, Zeng SS, Sun ZF, Qin N, Cao LJ, Wang ZY, Jia Z, Wu SF, Ma FX, Li MC, Wang WX, Li YY, Lu J, Lu Z. Lamellarly stacking porous N, P co-doped Mo2C/C nanosheets as high performance anode for lithium-ion batteries. Small. 2019;15(8):1805022.
[32]
go back to reference Gan CH, Zhang CK, Wen WD, Liu YK, Chen J, Xie QS, Luo XT. Enhancing delithiation reversibility of Li15Si4 alloy of silicon nanoparticles-carbon/graphite anode materials for stable-cycling lithium ion batteries by restricting the silicon particle size. ACS Appl Mater Interfaces. 2019;11(39):35809. Gan CH, Zhang CK, Wen WD, Liu YK, Chen J, Xie QS, Luo XT. Enhancing delithiation reversibility of Li15Si4 alloy of silicon nanoparticles-carbon/graphite anode materials for stable-cycling lithium ion batteries by restricting the silicon particle size. ACS Appl Mater Interfaces. 2019;11(39):35809.
[33]
go back to reference Wang MS, Wang GL, Wang S, Zhang J, Wang J, Zhong W, Tang F, Yang ZL, Zheng JM, Li X. In situ catalytic growth 3D multi-layers graphene sheets coated nano-silicon anode for high performance lithium-ion batteries. Chem Eng J. 2019;356:895. Wang MS, Wang GL, Wang S, Zhang J, Wang J, Zhong W, Tang F, Yang ZL, Zheng JM, Li X. In situ catalytic growth 3D multi-layers graphene sheets coated nano-silicon anode for high performance lithium-ion batteries. Chem Eng J. 2019;356:895.
[34]
go back to reference Yao CL, Xu JL, Zhu YP, Zhang RL, Shen YH, Xie AJ. Porous CoP@N/P co-doped carbon/CNTs nanocubes: in-situ autocatalytic synthesis and excellent performance as the anode for lithium-ion batteries. Appl Surf Sci. 2020;513:145777. Yao CL, Xu JL, Zhu YP, Zhang RL, Shen YH, Xie AJ. Porous CoP@N/P co-doped carbon/CNTs nanocubes: in-situ autocatalytic synthesis and excellent performance as the anode for lithium-ion batteries. Appl Surf Sci. 2020;513:145777.
[35]
go back to reference Zuo XX, Wang XY, Xia YG, Yin SS, Ji Q, Yang ZH, Wang MM, Zheng XF, Qiu B, Liu ZP, Zhu J, Müller-Buschbaum P, Cheng YJ. Silicon/carbon lithium-ion battery anode with 3D hierarchical macro-/mesoporous silicon network: self-templating synthesis via magnesiothermic reduction of silica/carbon composite. J Power Sour. 2019;412:93. Zuo XX, Wang XY, Xia YG, Yin SS, Ji Q, Yang ZH, Wang MM, Zheng XF, Qiu B, Liu ZP, Zhu J, Müller-Buschbaum P, Cheng YJ. Silicon/carbon lithium-ion battery anode with 3D hierarchical macro-/mesoporous silicon network: self-templating synthesis via magnesiothermic reduction of silica/carbon composite. J Power Sour. 2019;412:93.
[36]
go back to reference Bai J, Xi BJ, Mao HZ, Lin Y, Ma XJ, Feng JK, Xiong SL. One-step construction of N, P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv Mater. 2018;30(35):1802310. Bai J, Xi BJ, Mao HZ, Lin Y, Ma XJ, Feng JK, Xiong SL. One-step construction of N, P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv Mater. 2018;30(35):1802310.
[37]
go back to reference Pu ZH, Amiinu IS, Zhang CT, Wang M, Kou ZK, Mu SC. Phytic acid-derivative transition metal phosphides encapsulated in N, P-codoped carbon: an efficient and durable hydrogen evolution electrocatalyst in a wide pH range. Nanoscale. 2017;9(10):3555. Pu ZH, Amiinu IS, Zhang CT, Wang M, Kou ZK, Mu SC. Phytic acid-derivative transition metal phosphides encapsulated in N, P-codoped carbon: an efficient and durable hydrogen evolution electrocatalyst in a wide pH range. Nanoscale. 2017;9(10):3555.
[38]
go back to reference Zeng YF, Huang YD, Liu NT, Wang XC, Zhang Y, Guo Y, Wu HH, Chen HX, Tang XC, Zhang QB. N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries. J Energy Chem. 2021;54:727. Zeng YF, Huang YD, Liu NT, Wang XC, Zhang Y, Guo Y, Wu HH, Chen HX, Tang XC, Zhang QB. N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries. J Energy Chem. 2021;54:727.
[39]
go back to reference Pan DY, Wang S, Zhao B, Wu MH, Zhang HJ, Wang Y, Jiao Z. Li storage properties of disordered graphene nanosheets. Chem Mater. 2009;21(14):3136. Pan DY, Wang S, Zhao B, Wu MH, Zhang HJ, Wang Y, Jiao Z. Li storage properties of disordered graphene nanosheets. Chem Mater. 2009;21(14):3136.
[40]
go back to reference Kwon HJ, Hwang JY, Shin HJ, Jeong MG, Chung KY, Sun YK, Jung HG. Nano/microstructured silicon-carbon hybrid composite particles fabricated with corn starch biowaste as anode materials for Li-ion batteries. Nano Lett. 2019;20(1):625. Kwon HJ, Hwang JY, Shin HJ, Jeong MG, Chung KY, Sun YK, Jung HG. Nano/microstructured silicon-carbon hybrid composite particles fabricated with corn starch biowaste as anode materials for Li-ion batteries. Nano Lett. 2019;20(1):625.
[41]
go back to reference Xu Q, Li JY, Sun JK, Yin YX, Wan LJ, Guo YG. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv Energy Mater. 2017;7(3):1601481. Xu Q, Li JY, Sun JK, Yin YX, Wan LJ, Guo YG. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv Energy Mater. 2017;7(3):1601481.
[42]
go back to reference Zhang HR, Qin XY, Wu JX, He YB, Du HD, Li BH, Kang FY. Electrospun core–shell silicon/carbon fibers with an internal honeycomb-like conductive carbon framework as an anode for lithium ion batteries. J Mater Chem A. 2015;3(13):7112. Zhang HR, Qin XY, Wu JX, He YB, Du HD, Li BH, Kang FY. Electrospun core–shell silicon/carbon fibers with an internal honeycomb-like conductive carbon framework as an anode for lithium ion batteries. J Mater Chem A. 2015;3(13):7112.
[43]
go back to reference Kim WS, Choi J, Hong SH. Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery. Nano Res. 2016;9(7):2174. Kim WS, Choi J, Hong SH. Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery. Nano Res. 2016;9(7):2174.
[44]
go back to reference Zheng ZM, Wu HH, Chen HX, Cheng Y, Zhang QB, Xie QS, Wang LS, Zhang KL, Wang MS, Peng DL, Zeng XC. Fabrication and understanding of Cu3Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries. Nanoscale. 2018;10(47):22203. Zheng ZM, Wu HH, Chen HX, Cheng Y, Zhang QB, Xie QS, Wang LS, Zhang KL, Wang MS, Peng DL, Zeng XC. Fabrication and understanding of Cu3Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries. Nanoscale. 2018;10(47):22203.
[45]
go back to reference Chen SQ, Bao PT, Huang XD, Sun B, Wang GX. Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance. Nano Res. 2014;7(1):85. Chen SQ, Bao PT, Huang XD, Sun B, Wang GX. Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance. Nano Res. 2014;7(1):85.
[46]
go back to reference Zhou XY, Tang JJ, Yang J, Xie J, Ma LL. Silicon@carbon hollow core–shell heterostructures novel anode materials for lithium ion batteries. Electrochim Acta. 2013;87:663. Zhou XY, Tang JJ, Yang J, Xie J, Ma LL. Silicon@carbon hollow core–shell heterostructures novel anode materials for lithium ion batteries. Electrochim Acta. 2013;87:663.
[47]
go back to reference Wang MS, Fan LZ. Silicon/carbon nanocomposite pyrolyzed from phenolic resin as anode materials for lithium-ion batteries. J Power Sour. 2013;244:570. Wang MS, Fan LZ. Silicon/carbon nanocomposite pyrolyzed from phenolic resin as anode materials for lithium-ion batteries. J Power Sour. 2013;244:570.
[48]
go back to reference Zheng ZM, Li P, Huang J, Liu HD, Zao Y, Hu ZL, Zhang L, Chen HX, Wang MS, Peng DL, Zhang QB. High performance columnar-like Fe2O3@carbon composite anode via yolk@shell structural design. J Energy Chem. 2020;41:126. Zheng ZM, Li P, Huang J, Liu HD, Zao Y, Hu ZL, Zhang L, Chen HX, Wang MS, Peng DL, Zhang QB. High performance columnar-like Fe2O3@carbon composite anode via yolk@shell structural design. J Energy Chem. 2020;41:126.
[49]
go back to reference Su LW, Zhou Z, Ren MM. Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries. Chem Commun. 2010;46(15):2590. Su LW, Zhou Z, Ren MM. Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries. Chem Commun. 2010;46(15):2590.
[50]
go back to reference Wang JY, Liao L, Li YZ, Zhao J, Shi FF, Yan K, Pei A, Chen GX, Li GD, Lu ZY, Cui Y. Shell-protective secondary silicon nanostructures as pressure-resistant high-volumetric-capacity anodes for lithium-ion batteries. Nano Lett. 2018;18(11):7060. Wang JY, Liao L, Li YZ, Zhao J, Shi FF, Yan K, Pei A, Chen GX, Li GD, Lu ZY, Cui Y. Shell-protective secondary silicon nanostructures as pressure-resistant high-volumetric-capacity anodes for lithium-ion batteries. Nano Lett. 2018;18(11):7060.
[51]
go back to reference Zhou H, Zhu S, Hibino M, Honma I, Ichihara M. Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv Mater. 2003;15(24):2107. Zhou H, Zhu S, Hibino M, Honma I, Ichihara M. Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv Mater. 2003;15(24):2107.
Metadata
Title
Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation
Authors
Cheng-Zhi Ke
Fang Liu
Zhi-Ming Zheng
He-He Zhang
Meng-Ting Cai
Miao Li
Qi-Zhang Yan
Hui-Xin Chen
Qiao-Bao Zhang
Publication date
08-03-2021
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 6/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01716-1

Other articles of this Issue 6/2021

Rare Metals 6/2021 Go to the issue

Premium Partners