Skip to main content
Top
Published in: Rare Metals 6/2021

01-09-2020 | Original Article

ZnSe/NiO heterostructure-based chemiresistive-type sensors for low-concentration NO2 detection

Authors: Wei Liu, Ding Gu, Jian-Wei Zhang, Xiao-Gan Li, Marina N. Rumyantseva, Alexander M. Gaskov

Published in: Rare Metals | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Novel ZnSe/NiO heterostructure nanocomposites were successfully prepared by one-step hydrothermal method. The ZnSe/NiO-based sensor exhibits a response of ~ 96.47% to 8 × 10−6 NO2 at 140 °C, which is significantly higher than those of intrinsic ZnSe-based (no response) and NiO-based (~ 19.65%) sensors. The theoretical detection limit (LOD) of the sensor is calculated to be 8.91 × 10−9, indicating that the sensor can be applied to detect the ultralow concentrations of NO2. The effect of NiO content on the gas-sensing performance of the nanocomposites was investigated in detail. The optimal NiO content in the nanocomposite is determined to be 15.16% to achieve the highest response. The as-fabricated sensor also presents an excellent selectivity to several possible interferents such as methanol, ethanol, acetone, benzene, ammonia and formaldehyde. The enhanced sensing performance can be attributed to the formation of p–p heterostructures between ZnSe and NiO, which induces the charge transfer across the interfaces and yields more active sites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Saboor FH, Ueda T, Kamada K, Hyodo T, Mortazavi Y, Khodadadi AA, Shimizu Y. Enhanced NO2 gas sensing performance of bare and Pd-loaded SnO2 thick film sensors under UV-light irradiation at room temperature. Sens Actuators B Chem. 2016;223:429.CrossRef Saboor FH, Ueda T, Kamada K, Hyodo T, Mortazavi Y, Khodadadi AA, Shimizu Y. Enhanced NO2 gas sensing performance of bare and Pd-loaded SnO2 thick film sensors under UV-light irradiation at room temperature. Sens Actuators B Chem. 2016;223:429.CrossRef
[2]
go back to reference Ou JZ, Ge W, Carey B, Daeneke T, Rotbart A, Shan W, Wang Y, Fu Z, Chrimes AF, Wlodarski W, Russo SP, Li YX, Kalantar-Zadeh K. Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano. 2015;9(10):10313.CrossRef Ou JZ, Ge W, Carey B, Daeneke T, Rotbart A, Shan W, Wang Y, Fu Z, Chrimes AF, Wlodarski W, Russo SP, Li YX, Kalantar-Zadeh K. Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano. 2015;9(10):10313.CrossRef
[3]
go back to reference Kumar R, Al-Dossary O, Kumar G, Umar A. Zinc oxide nanostructures for NO2 gas–sensor applications: a review. Nano-Micro Lett. 2015;7(2):97.CrossRef Kumar R, Al-Dossary O, Kumar G, Umar A. Zinc oxide nanostructures for NO2 gas–sensor applications: a review. Nano-Micro Lett. 2015;7(2):97.CrossRef
[4]
go back to reference Loftus C, Yost M, Sampson P, Arias G, Torres E, Vasquez VB, Bhatti P, Karr C. Regional PM2.5 and asthma morbidity in an agricultural community: a panel study. Environ Res. 2015;136:505.CrossRef Loftus C, Yost M, Sampson P, Arias G, Torres E, Vasquez VB, Bhatti P, Karr C. Regional PM2.5 and asthma morbidity in an agricultural community: a panel study. Environ Res. 2015;136:505.CrossRef
[5]
go back to reference Dai Z, Lee CS, Tian Y, Kim ID, Lee JH. Highly reversible switching from P- to N-type NO2 sensing in a monolayer Fe2O3 inverse opal film and the associated P–N transition phase diagram. J Mater Chem A. 2015;3(7):3372.CrossRef Dai Z, Lee CS, Tian Y, Kim ID, Lee JH. Highly reversible switching from P- to N-type NO2 sensing in a monolayer Fe2O3 inverse opal film and the associated P–N transition phase diagram. J Mater Chem A. 2015;3(7):3372.CrossRef
[6]
go back to reference Macagnano A, Bearzotti A, De Cesare F, Zampetti E. Sensing asthma with portable devices equipped with ultrasensitive sensors based on electrospun nanomaterials. Electroanalysis. 2014;26(6):1419.CrossRef Macagnano A, Bearzotti A, De Cesare F, Zampetti E. Sensing asthma with portable devices equipped with ultrasensitive sensors based on electrospun nanomaterials. Electroanalysis. 2014;26(6):1419.CrossRef
[7]
go back to reference Gu D, Wang X, Liu W, Li X, Lin S, Wang J, Rumyantseva MN, Gaskov AM, Akbar SA. Visible-light activated room temperature NO2 sensing of SnS2 nanosheets based chemiresistive sensors. Sens Actuators B Chem. 2020;305:127455.CrossRef Gu D, Wang X, Liu W, Li X, Lin S, Wang J, Rumyantseva MN, Gaskov AM, Akbar SA. Visible-light activated room temperature NO2 sensing of SnS2 nanosheets based chemiresistive sensors. Sens Actuators B Chem. 2020;305:127455.CrossRef
[8]
go back to reference Miki H, Matsubara F, Nakashima S, Ochi S, Nakagawa K, Matsuguchi M, Sadaoka Y. A fractional exhaled nitric oxide sensor based on optical absorption of cobalt tetraphenylporphyrin derivatives. Sens Actuators B Chem. 2016;231:458.CrossRef Miki H, Matsubara F, Nakashima S, Ochi S, Nakagawa K, Matsuguchi M, Sadaoka Y. A fractional exhaled nitric oxide sensor based on optical absorption of cobalt tetraphenylporphyrin derivatives. Sens Actuators B Chem. 2016;231:458.CrossRef
[9]
go back to reference Tai H, Wang S, Duan Z, Jiang Y. Evolution of breath analysis based on humidity and gas sensors: potential and challenges. Sens Actuators B Chem. 2020;318:128104.CrossRef Tai H, Wang S, Duan Z, Jiang Y. Evolution of breath analysis based on humidity and gas sensors: potential and challenges. Sens Actuators B Chem. 2020;318:128104.CrossRef
[10]
go back to reference Li HY, Yoon JW, Lee CS, Lim K, Yoon JW, Lee JH. Visible light assisted NO2 sensing at room temperature by CdS nanoflake array. Sens Actuators B Chem. 2018;255:2963.CrossRef Li HY, Yoon JW, Lee CS, Lim K, Yoon JW, Lee JH. Visible light assisted NO2 sensing at room temperature by CdS nanoflake array. Sens Actuators B Chem. 2018;255:2963.CrossRef
[11]
go back to reference Zhang Q, Xie G, Xu M, Su Y, Tai H, Du H, Jiang Y. Visible light-assisted room temperature gas sensing with ZnO–Ag heterostructure nanoparticles. Sens Actuators B Chem. 2018;259:269.CrossRef Zhang Q, Xie G, Xu M, Su Y, Tai H, Du H, Jiang Y. Visible light-assisted room temperature gas sensing with ZnO–Ag heterostructure nanoparticles. Sens Actuators B Chem. 2018;259:269.CrossRef
[12]
go back to reference Chen Y, Zhang X, Liu Z, Zeng Z, Zhao H, Wang X, Xu J. Light enhanced room temperature resistive NO2 sensor based on a gold-loaded organic–inorganic hybrid perovskite incorporating tin dioxide. Microchim Acta. 2019;186(1):47.CrossRef Chen Y, Zhang X, Liu Z, Zeng Z, Zhao H, Wang X, Xu J. Light enhanced room temperature resistive NO2 sensor based on a gold-loaded organic–inorganic hybrid perovskite incorporating tin dioxide. Microchim Acta. 2019;186(1):47.CrossRef
[13]
go back to reference Gao L, Cheng Z, Xiang Q, Zhang Y, Xu J. Porous corundum-type In2O3 nanosheets: synthesis and NO2 sensing properties. Sens Actuators B Chem. 2015;208:436.CrossRef Gao L, Cheng Z, Xiang Q, Zhang Y, Xu J. Porous corundum-type In2O3 nanosheets: synthesis and NO2 sensing properties. Sens Actuators B Chem. 2015;208:436.CrossRef
[14]
go back to reference Kou X, Xie N, Chen F, Wang T, Guo L, Wang C, Wang Q, Ma J, Sun Y, Zhang H, Lu G. Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping. Sens Actuators B Chem. 2018;256:861.CrossRef Kou X, Xie N, Chen F, Wang T, Guo L, Wang C, Wang Q, Ma J, Sun Y, Zhang H, Lu G. Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping. Sens Actuators B Chem. 2018;256:861.CrossRef
[15]
go back to reference Xu K, Li N, Zeng D, Tian S, Zhang S, Hu D, Xie C. Interface bonds determined gas-sensing of SnO2–SnS2 hybrids to ammonia at room temperature. ACS Appl Mater Interfaces. 2015;7(21):11359.CrossRef Xu K, Li N, Zeng D, Tian S, Zhang S, Hu D, Xie C. Interface bonds determined gas-sensing of SnO2–SnS2 hybrids to ammonia at room temperature. ACS Appl Mater Interfaces. 2015;7(21):11359.CrossRef
[16]
go back to reference Wang F, Liu H, Hu K, Li Y, Zeng W, Zeng L. Hierarchical composites of MoS2 nanoflower anchored on SnO2 nanofiber for methane sensing. Ceram Int. 2019;45(17):22981.CrossRef Wang F, Liu H, Hu K, Li Y, Zeng W, Zeng L. Hierarchical composites of MoS2 nanoflower anchored on SnO2 nanofiber for methane sensing. Ceram Int. 2019;45(17):22981.CrossRef
[17]
go back to reference Tai H, Duan Z, He Z, Li X, Xu J, Liu B, Jiang Y. Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature. Sens Actuators B Chem. 2019;298:126874.CrossRef Tai H, Duan Z, He Z, Li X, Xu J, Liu B, Jiang Y. Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature. Sens Actuators B Chem. 2019;298:126874.CrossRef
[18]
go back to reference Yan H, Song P, Zhang S, Yang Z, Wang Q. Facile synthesis, characterization and gas sensing performance of ZnO nanoparticles-coated MoS2 nanosheets. J Alloys Compd. 2016;662:118.CrossRef Yan H, Song P, Zhang S, Yang Z, Wang Q. Facile synthesis, characterization and gas sensing performance of ZnO nanoparticles-coated MoS2 nanosheets. J Alloys Compd. 2016;662:118.CrossRef
[19]
go back to reference Medina H, Li JG, Su TY, Lan YW, Lee SH, Chen CW, Chen YZ, Manikandan A, Tsai SH, Navabi A, Zhu X, Shih YC, Lin WS, Yang JH, Thomas SR, Wu BW, Shen CH, Shieh JM, Lin HN, Javey A, Wang KL, Chueh YL. Wafer-scale growth of WSe2 monolayers toward phase-engineered hybrid WOx/WSe2 films with sub-ppb NOx gas sensing by a low-temperature plasma-assisted selenization process. Chem Mater. 2017;29(4):1587.CrossRef Medina H, Li JG, Su TY, Lan YW, Lee SH, Chen CW, Chen YZ, Manikandan A, Tsai SH, Navabi A, Zhu X, Shih YC, Lin WS, Yang JH, Thomas SR, Wu BW, Shen CH, Shieh JM, Lin HN, Javey A, Wang KL, Chueh YL. Wafer-scale growth of WSe2 monolayers toward phase-engineered hybrid WOx/WSe2 films with sub-ppb NOx gas sensing by a low-temperature plasma-assisted selenization process. Chem Mater. 2017;29(4):1587.CrossRef
[20]
go back to reference Han Y, Ma Y, Liu Y, Xu S, Chen X, Zeng M, Hu N, Su Y, Zhou Z, Yang Z. Construction of MoS2/SnO2 heterostructures for sensitive NO2 detection at room temperature. Appl Surf Sci. 2019;493:613.CrossRef Han Y, Ma Y, Liu Y, Xu S, Chen X, Zeng M, Hu N, Su Y, Zhou Z, Yang Z. Construction of MoS2/SnO2 heterostructures for sensitive NO2 detection at room temperature. Appl Surf Sci. 2019;493:613.CrossRef
[21]
go back to reference Perrozzi F, Emamjomeh SM, Paolucci V, Taglieri G, Ottaviano L, Cantalini C. Thermal stability of WS2 flakes and gas sensing properties of WS2/WO3 composite to H2, NH3 and NO2. Sens Actuators B Chem. 2017;243:812.CrossRef Perrozzi F, Emamjomeh SM, Paolucci V, Taglieri G, Ottaviano L, Cantalini C. Thermal stability of WS2 flakes and gas sensing properties of WS2/WO3 composite to H2, NH3 and NO2. Sens Actuators B Chem. 2017;243:812.CrossRef
[22]
go back to reference Kumar R, Goel N, Mishra M, Gupta G, Fanetti M, Valant M, Kumar M. Growth of MoS2–MoO3 hybrid microflowers via controlled vapor transport process for efficient gas sensing at room temperature. Adv Mater Interfaces. 2018;5(10):1800071.CrossRef Kumar R, Goel N, Mishra M, Gupta G, Fanetti M, Valant M, Kumar M. Growth of MoS2–MoO3 hybrid microflowers via controlled vapor transport process for efficient gas sensing at room temperature. Adv Mater Interfaces. 2018;5(10):1800071.CrossRef
[23]
go back to reference Chen P, Xiao TY, Li HH, Yang JJ, Wang Z, Bin Yao H, Yu SH. Nitrogen-doped graphene/ZnSe nanocomposites: hydrothermal synthesis and their enhanced electrochemical and photocatalytic activities. ACS Nano. 2012;6(1):712.CrossRef Chen P, Xiao TY, Li HH, Yang JJ, Wang Z, Bin Yao H, Yu SH. Nitrogen-doped graphene/ZnSe nanocomposites: hydrothermal synthesis and their enhanced electrochemical and photocatalytic activities. ACS Nano. 2012;6(1):712.CrossRef
[24]
go back to reference ThanhThuy TT, Feng H, Cai Q. Photocatalytic degradation of pentachlorophenol on ZnSe/TiO2 supported by photo-Fenton system. Chem Eng J. 2013;223:379.CrossRef ThanhThuy TT, Feng H, Cai Q. Photocatalytic degradation of pentachlorophenol on ZnSe/TiO2 supported by photo-Fenton system. Chem Eng J. 2013;223:379.CrossRef
[25]
go back to reference Chen W, Zhang N, Zhang MY, Zhang XT, Gao H, Wen J. Controllable growth of ZnO–ZnSe heterostructures for visible-light photocatalysis. CrystEngComm. 2014;16(6):1201.CrossRef Chen W, Zhang N, Zhang MY, Zhang XT, Gao H, Wen J. Controllable growth of ZnO–ZnSe heterostructures for visible-light photocatalysis. CrystEngComm. 2014;16(6):1201.CrossRef
[26]
go back to reference New E, Hancox I, Rochford LA, Walker M, Dearden CA, McConville CF, Jones TS. Organic photovoltaic cells utilising ZnO electron extraction layers produced through thermal conversion of ZnSe. J Mater Chem A. 2014;2(45):19201.CrossRef New E, Hancox I, Rochford LA, Walker M, Dearden CA, McConville CF, Jones TS. Organic photovoltaic cells utilising ZnO electron extraction layers produced through thermal conversion of ZnSe. J Mater Chem A. 2014;2(45):19201.CrossRef
[27]
go back to reference Wang L, Tian G, Chen Y, Xiao Y, Fu H. In situ formation of a ZnO/ZnSe nanonail array as a photoelectrode for enhanced photoelectrochemical water oxidation performance. Nanoscale. 2016;8(17):9366.CrossRef Wang L, Tian G, Chen Y, Xiao Y, Fu H. In situ formation of a ZnO/ZnSe nanonail array as a photoelectrode for enhanced photoelectrochemical water oxidation performance. Nanoscale. 2016;8(17):9366.CrossRef
[28]
go back to reference Wang Y, Qu F, Liu J, Wang Y, Zhou J, Ruan S. Enhanced H2S sensing characteristics of CuO–NiO core–shell microspheres sensors. Sens Actuators B Chem. 2015;209:515.CrossRef Wang Y, Qu F, Liu J, Wang Y, Zhou J, Ruan S. Enhanced H2S sensing characteristics of CuO–NiO core–shell microspheres sensors. Sens Actuators B Chem. 2015;209:515.CrossRef
[29]
go back to reference Bai S, Liu J, Guo J, Luo R, Li D, Song Y, Liu CC, Chen A. Facile preparation of SnO2/NiO composites and enhancement of sensing performance to NO2. Sens Actuators B Chem. 2017;249:22.CrossRef Bai S, Liu J, Guo J, Luo R, Li D, Song Y, Liu CC, Chen A. Facile preparation of SnO2/NiO composites and enhancement of sensing performance to NO2. Sens Actuators B Chem. 2017;249:22.CrossRef
[30]
go back to reference Ju D, Xu H, Xu Q, Gong H, Qiu Z, Guo J, Zhang J, Cao B. High triethylamine-sensing properties of NiO/SnO2 hollow sphere P–N heterojunction sensors. Sens Actuators B Chem. 2015;215:39.CrossRef Ju D, Xu H, Xu Q, Gong H, Qiu Z, Guo J, Zhang J, Cao B. High triethylamine-sensing properties of NiO/SnO2 hollow sphere P–N heterojunction sensors. Sens Actuators B Chem. 2015;215:39.CrossRef
[31]
go back to reference Zhang J, Zeng D, Zhu Q, Wu J, Huang Q, Zhang W, Xie C. Enhanced room temperature NO2 response of NiO–SnO2 nanocomposites induced by interface bonds at the p–n heterojunction. Phys Chem Chem Phys. 2016;18(7):5386.CrossRef Zhang J, Zeng D, Zhu Q, Wu J, Huang Q, Zhang W, Xie C. Enhanced room temperature NO2 response of NiO–SnO2 nanocomposites induced by interface bonds at the p–n heterojunction. Phys Chem Chem Phys. 2016;18(7):5386.CrossRef
[32]
go back to reference Liu S, Zhang Q, Zhang L, Gu L, Zou G, Bao J, Dai Z. Electrochemiluminescence tuned by electron-hole recombination from symmetry-breaking in wurtzite ZnSe. J Am Chem Soc. 2016;138(4):1154.CrossRef Liu S, Zhang Q, Zhang L, Gu L, Zou G, Bao J, Dai Z. Electrochemiluminescence tuned by electron-hole recombination from symmetry-breaking in wurtzite ZnSe. J Am Chem Soc. 2016;138(4):1154.CrossRef
[33]
go back to reference Zhang H, Fang Y. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures. J Alloys Compd. 2019;781:201.CrossRef Zhang H, Fang Y. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures. J Alloys Compd. 2019;781:201.CrossRef
[34]
go back to reference Lohar GM, Dhaygude HD, Patil RA, Ma YR, Fulari VJ. Studies of properties of Fe2+ doped ZnSe nano-needles for photoelectrochemical cell application. J Mater Sci Mater Electron. 2015;26(11):8904.CrossRef Lohar GM, Dhaygude HD, Patil RA, Ma YR, Fulari VJ. Studies of properties of Fe2+ doped ZnSe nano-needles for photoelectrochemical cell application. J Mater Sci Mater Electron. 2015;26(11):8904.CrossRef
[35]
go back to reference Wang M, Wang Y, Liu J, Pei C, Liu B, Yuan Y, Zhao H, Liu S, Yang H. Enhanced sensing performance and sensing mechanism of hydrogenated NiO particles. Sens Actuators B Chem. 2017;250:208.CrossRef Wang M, Wang Y, Liu J, Pei C, Liu B, Yuan Y, Zhao H, Liu S, Yang H. Enhanced sensing performance and sensing mechanism of hydrogenated NiO particles. Sens Actuators B Chem. 2017;250:208.CrossRef
[36]
go back to reference Geng X, Lahem D, Zhang C, Li CJ, Olivier MG, Debliquy M. Visible light enhanced black NiO sensors for ppb-level NO2 detection at room temperature. Ceram Int. 2019;45(4):4253.CrossRef Geng X, Lahem D, Zhang C, Li CJ, Olivier MG, Debliquy M. Visible light enhanced black NiO sensors for ppb-level NO2 detection at room temperature. Ceram Int. 2019;45(4):4253.CrossRef
[37]
go back to reference Wu J, Feng S, Li Z, Tao K, Chu J, Miao J, Norford LK. Boosted sensitivity of graphene gas sensor via nanoporous thin film structures. Sens Actuators B Chem. 2018;255:1805.CrossRef Wu J, Feng S, Li Z, Tao K, Chu J, Miao J, Norford LK. Boosted sensitivity of graphene gas sensor via nanoporous thin film structures. Sens Actuators B Chem. 2018;255:1805.CrossRef
[38]
go back to reference Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M. Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 2003;3(7):929.CrossRef Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M. Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 2003;3(7):929.CrossRef
[39]
go back to reference Xu H, Zhang J, Rehman AU, Gong L, Kan K, Li L, Shi K. Synthesis of NiO@CuO nanocomposite as high-performance gas sensing material for NO2 at room temperature. Appl Surf Sci. 2017;412:230.CrossRef Xu H, Zhang J, Rehman AU, Gong L, Kan K, Li L, Shi K. Synthesis of NiO@CuO nanocomposite as high-performance gas sensing material for NO2 at room temperature. Appl Surf Sci. 2017;412:230.CrossRef
[40]
go back to reference Ngo YLT, Hur SH. Low-temperature NO2 gas sensor fabricated with NiO and reduced graphene oxide hybrid structure. Mater Res Bull. 2016;84:168.CrossRef Ngo YLT, Hur SH. Low-temperature NO2 gas sensor fabricated with NiO and reduced graphene oxide hybrid structure. Mater Res Bull. 2016;84:168.CrossRef
[41]
go back to reference Wang JK, Liao KT, Tseng WJ. NiO/SnO2 hybrid nanowires for enhanced NO2 gas sensing. Ceram Int. 2017;43:S541.CrossRef Wang JK, Liao KT, Tseng WJ. NiO/SnO2 hybrid nanowires for enhanced NO2 gas sensing. Ceram Int. 2017;43:S541.CrossRef
[42]
go back to reference Bao M, Chen Y, Li F, Ma J, Lv T, Tang Y, Chen L, Xu Z, Wang T. Plate-like p–n heterogeneous NiO/WO3 nanocomposites for high performance room temperature NO2 sensors. Nanoscale. 2014;6(8):4063.CrossRef Bao M, Chen Y, Li F, Ma J, Lv T, Tang Y, Chen L, Xu Z, Wang T. Plate-like p–n heterogeneous NiO/WO3 nanocomposites for high performance room temperature NO2 sensors. Nanoscale. 2014;6(8):4063.CrossRef
[43]
go back to reference Greiner MT, Helander MG, Bin Wang Z, Tang WM, Lu ZH. Effects of processing conditions on the work function and energy-level alignment of NiO thin films. J Phys Chem C. 2010;114(46):19777.CrossRef Greiner MT, Helander MG, Bin Wang Z, Tang WM, Lu ZH. Effects of processing conditions on the work function and energy-level alignment of NiO thin films. J Phys Chem C. 2010;114(46):19777.CrossRef
[44]
go back to reference Woodall JM, Hodgson RT, Gunshor RL. Low-resistivity p-type ZnSe through surface Fermi level engineering. Appl Phys Lett. 1991;58(4):379.CrossRef Woodall JM, Hodgson RT, Gunshor RL. Low-resistivity p-type ZnSe through surface Fermi level engineering. Appl Phys Lett. 1991;58(4):379.CrossRef
[45]
go back to reference Gao L, Ren F, Cheng Z, Zhang Y, Xiang Q, Xu J. Porous corundum-type In2O3 nanoflowers: controllable synthesis, enhanced ethanol-sensing properties and response mechanism. CrystEngComm. 2015;17(17):3268.CrossRef Gao L, Ren F, Cheng Z, Zhang Y, Xiang Q, Xu J. Porous corundum-type In2O3 nanoflowers: controllable synthesis, enhanced ethanol-sensing properties and response mechanism. CrystEngComm. 2015;17(17):3268.CrossRef
[46]
go back to reference Gu D, Li X, Zhao Y, Wang J. Enhanced NO2 sensing of SnO2/SnS2 heterojunction based sensor. Sens Actuators B Chem. 2017;244:67.CrossRef Gu D, Li X, Zhao Y, Wang J. Enhanced NO2 sensing of SnO2/SnS2 heterojunction based sensor. Sens Actuators B Chem. 2017;244:67.CrossRef
[47]
go back to reference Gurlo A, Bârsan N, Ivanovskaya M, Weimar U, Göpel W. In2O3 and MoO3–In2O3 thin film semiconductor sensors: interaction with NO2 and O3. Sens Actuators B Chem. 1998;47:92.CrossRef Gurlo A, Bârsan N, Ivanovskaya M, Weimar U, Göpel W. In2O3 and MoO3–In2O3 thin film semiconductor sensors: interaction with NO2 and O3. Sens Actuators B Chem. 1998;47:92.CrossRef
Metadata
Title
ZnSe/NiO heterostructure-based chemiresistive-type sensors for low-concentration NO2 detection
Authors
Wei Liu
Ding Gu
Jian-Wei Zhang
Xiao-Gan Li
Marina N. Rumyantseva
Alexander M. Gaskov
Publication date
01-09-2020
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 6/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01564-5

Other articles of this Issue 6/2021

Rare Metals 6/2021 Go to the issue

Premium Partners