Skip to main content
Top
Published in: Rare Metals 6/2021

10-01-2021 | Original Article

Fluorescent graphene oxide derived from carbonized citric acid for copper(II) ions detection

Authors: Wen-Dan Li, Xiang-Yu Zeng, Gang-Yu Lv, Zhen-Hui Liang, Qi-Jie Liu, Wan-Qi Fu, Jiu-An Zhang, Yan-Xian Feng, Hao-Yi Wu

Published in: Rare Metals | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fluorescent graphene oxide (GO) nanoparticles were obtained from the thermal carbonization of citrate acid. Depending on the synthesizing temperature, the size of GO varied from several to several hundred nanometers. Owing to the confinement from the size, green and blue emissions at around 504 and 450 nm were observed from the GO suspension. These emissions could be dynamically quenched by titrating against copper (II) (Cu2+) ions, and the emission intensity was reduced exponentially as a function of Cu2+ concentration. The quenching mechanism was ascribed to the bridging of the surface –COOH and –OH groups by Cu2+, which restricted the vibration of edge atoms or clusters and reduced the number of luminophores of GO nanosheets. As a result, the concentration of Cu2+ was detectable with the fluorescent intensity of GO.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Sun Q, Yang LM, Zhang L, Huang ST, Zhang Xu. Extraction and separation of Fe(III) from heavy metal wastewater using P204 solvent impregnated resin. Rare Met. 2018;37(10):894.CrossRef Sun Q, Yang LM, Zhang L, Huang ST, Zhang Xu. Extraction and separation of Fe(III) from heavy metal wastewater using P204 solvent impregnated resin. Rare Met. 2018;37(10):894.CrossRef
[2]
go back to reference Fu X, Li L, Yang G, Zeng J. Removal thallium from industrial wastewater: a review. Chin J Rare Met. 2020;44(2):205. Fu X, Li L, Yang G, Zeng J. Removal thallium from industrial wastewater: a review. Chin J Rare Met. 2020;44(2):205.
[3]
go back to reference Wang Z, Wang H, Yang J, Liu X, Yue R. Removal of heavy metal complex pollutants in water by adsorption. Chin J Rare Met. 2020;44(1):87. Wang Z, Wang H, Yang J, Liu X, Yue R. Removal of heavy metal complex pollutants in water by adsorption. Chin J Rare Met. 2020;44(1):87.
[4]
go back to reference Namdari P, Negahdari B, Eatemadi A. Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed Pharmacother. 2017;87:209.CrossRef Namdari P, Negahdari B, Eatemadi A. Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed Pharmacother. 2017;87:209.CrossRef
[5]
go back to reference Pan D, Zhang J, Li Z, Wu M. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater. 2010;22(6):734.CrossRef Pan D, Zhang J, Li Z, Wu M. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater. 2010;22(6):734.CrossRef
[6]
go back to reference Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany LB, Zhan X, Gao G, Vithayathil SA, Kaipparettu BA, Marti AA, Hayashi T, Zhu JJ, Ajayan PM. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012;12(2):844.CrossRef Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany LB, Zhan X, Gao G, Vithayathil SA, Kaipparettu BA, Marti AA, Hayashi T, Zhu JJ, Ajayan PM. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012;12(2):844.CrossRef
[7]
go back to reference Dong Y, Chen C, Zheng X, Gao L, Cui Z, Yang H, Guo C, Chi Y, Li CM. One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J Mater Chem. 2012;22(18):8764.CrossRef Dong Y, Chen C, Zheng X, Gao L, Cui Z, Yang H, Guo C, Chi Y, Li CM. One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J Mater Chem. 2012;22(18):8764.CrossRef
[8]
go back to reference Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon. 2012;50(12):4738.CrossRef Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon. 2012;50(12):4738.CrossRef
[9]
go back to reference Wang S, Chen ZG, Cole I, Li Q. Structural evolution of graphene quantum dots during thermal decomposition of citric acid and the corresponding photoluminescence. Carbon. 2015;82:304.CrossRef Wang S, Chen ZG, Cole I, Li Q. Structural evolution of graphene quantum dots during thermal decomposition of citric acid and the corresponding photoluminescence. Carbon. 2015;82:304.CrossRef
[10]
go back to reference Alizadeh T, Shokri M. A new humidity sensor based upon graphene quantum dots prepared via carbonization of citric acid. Sens Actuators B: Chem. 2016;222:728.CrossRef Alizadeh T, Shokri M. A new humidity sensor based upon graphene quantum dots prepared via carbonization of citric acid. Sens Actuators B: Chem. 2016;222:728.CrossRef
[11]
go back to reference Sun H, Wu L, Wei W, Qu X. Recent advances in graphene quantum dots for sensing. Mater Today. 2013;16(11):433.CrossRef Sun H, Wu L, Wei W, Qu X. Recent advances in graphene quantum dots for sensing. Mater Today. 2013;16(11):433.CrossRef
[12]
go back to reference Wu H, Jiang J, Gu X, Tong C. Nitrogen and sulfur co-doped carbon quantum dots for highly selective and sensitive fluorescent detection of Fe(III) ions and L-cysteine. Microchim Acta. 2017;184(7):2291.CrossRef Wu H, Jiang J, Gu X, Tong C. Nitrogen and sulfur co-doped carbon quantum dots for highly selective and sensitive fluorescent detection of Fe(III) ions and L-cysteine. Microchim Acta. 2017;184(7):2291.CrossRef
[14]
go back to reference Tyagi A, Tripathi KM, Sing N, Choudhary S, Gupta RK. Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis. RSC Adv. 2016;6(76):72423.CrossRef Tyagi A, Tripathi KM, Sing N, Choudhary S, Gupta RK. Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis. RSC Adv. 2016;6(76):72423.CrossRef
[15]
go back to reference Carrasco PM, García I, Yate L, Zaera RT, Cabañero G, Grande HJ, Ruiz V. Graphene quantum dot membranes as fluorescent sensing platforms for Cr (VI) detection. Carbon. 2016;109:658.CrossRef Carrasco PM, García I, Yate L, Zaera RT, Cabañero G, Grande HJ, Ruiz V. Graphene quantum dot membranes as fluorescent sensing platforms for Cr (VI) detection. Carbon. 2016;109:658.CrossRef
[16]
go back to reference Ju J, Chen W. Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe(III) in aqueous media. Biosens Bioelectron. 2014;58:219.CrossRef Ju J, Chen W. Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe(III) in aqueous media. Biosens Bioelectron. 2014;58:219.CrossRef
[17]
go back to reference Liu T, Dong JX, Liu SG, Li N, Lin SM, Fan YZ, Lei JL, Luo HQ, Li NB. Carbon quantum dots prepared with polyethyleneimine as both reducing agent and stabilizer for synthesis of Ag/CQDs composite for Hg2+ ions detection. J Hazard Mater. 2017;322:430.CrossRef Liu T, Dong JX, Liu SG, Li N, Lin SM, Fan YZ, Lei JL, Luo HQ, Li NB. Carbon quantum dots prepared with polyethyleneimine as both reducing agent and stabilizer for synthesis of Ag/CQDs composite for Hg2+ ions detection. J Hazard Mater. 2017;322:430.CrossRef
[18]
go back to reference Li Z, Wang Y, Ni Y, Kokot S. A rapid and label-free dual detection of Hg (II) and cysteine with the use of fluorescence switching of graphene quantum dots. Sens Actuators B Chem. 2015;207:490.CrossRef Li Z, Wang Y, Ni Y, Kokot S. A rapid and label-free dual detection of Hg (II) and cysteine with the use of fluorescence switching of graphene quantum dots. Sens Actuators B Chem. 2015;207:490.CrossRef
[19]
go back to reference Niu WJ, Shan D, Zhu RH, Deng SY, Cosnier S, Zhang XJ. Dumbbell-shaped carbon quantum dots/AuNCs nanohybrid as an efficient ratiometric fluorescent probe for sensing cadmium (II) ions and L-ascorbic acid. Carbon. 2016;96:1034.CrossRef Niu WJ, Shan D, Zhu RH, Deng SY, Cosnier S, Zhang XJ. Dumbbell-shaped carbon quantum dots/AuNCs nanohybrid as an efficient ratiometric fluorescent probe for sensing cadmium (II) ions and L-ascorbic acid. Carbon. 2016;96:1034.CrossRef
[20]
go back to reference Qian ZS, Shan XY, Chai LJ, Chen JR, Feng H. A fluorescent nanosensor based on graphene quantum dots–aptamer probe and graphene oxide platform for detection of lead(II) ion. Biosens Bioelectron. 2015;68:255. Qian ZS, Shan XY, Chai LJ, Chen JR, Feng H. A fluorescent nanosensor based on graphene quantum dots–aptamer probe and graphene oxide platform for detection of lead(II) ion. Biosens Bioelectron. 2015;68:255.
[21]
go back to reference Huang H, Liao L, Xu X, Zou M, Liu F, Li N. The electron-transfer based interaction between transition metal ions and photoluminescent graphene quantum dots(GQDs): a platform for metalionsensing. Talanta. 2019;117:152.CrossRef Huang H, Liao L, Xu X, Zou M, Liu F, Li N. The electron-transfer based interaction between transition metal ions and photoluminescent graphene quantum dots(GQDs): a platform for metalionsensing. Talanta. 2019;117:152.CrossRef
[22]
go back to reference Wang F, Gu Z, Lei W, Wang W, Xia X, Hao Q. Graphene quantum dots as a fluorescent sensing platform for highlyefficient detection of copper(II) ions. Sens Actuators B Chem. 2014;190:516.CrossRef Wang F, Gu Z, Lei W, Wang W, Xia X, Hao Q. Graphene quantum dots as a fluorescent sensing platform for highlyefficient detection of copper(II) ions. Sens Actuators B Chem. 2014;190:516.CrossRef
[23]
go back to reference Zhang YL, Wang L, Zhang HC, Liu Y, Wang HY, Kang ZH, Lee ST. Graphitic carbon quantum dots as a fluorescent sensing platform for highly efficient detection of Fe3+ ions. RSC Adv. 2013;3(11):3733.CrossRef Zhang YL, Wang L, Zhang HC, Liu Y, Wang HY, Kang ZH, Lee ST. Graphitic carbon quantum dots as a fluorescent sensing platform for highly efficient detection of Fe3+ ions. RSC Adv. 2013;3(11):3733.CrossRef
[24]
go back to reference Gan Z, Xu H, Fu Y. Photon re-absorption and non-radiative energy transfer-induced quenching of blue photoluminescence from aggregated graphene quantum dots. J Phys Chem C. 2016;120(51):29432.CrossRef Gan Z, Xu H, Fu Y. Photon re-absorption and non-radiative energy transfer-induced quenching of blue photoluminescence from aggregated graphene quantum dots. J Phys Chem C. 2016;120(51):29432.CrossRef
[25]
go back to reference Deng J, Lu Q, Li H, Zhang Y, Yao S. Large scale preparation of graphene quantum dots from graphite oxide in pure water via one-step electrochemical tailoring. RSC Adv. 2015;5(38):29704.CrossRef Deng J, Lu Q, Li H, Zhang Y, Yao S. Large scale preparation of graphene quantum dots from graphite oxide in pure water via one-step electrochemical tailoring. RSC Adv. 2015;5(38):29704.CrossRef
[26]
go back to reference Liu Q, Zhang J, He H, Huang G, Xing B, Jia J, Zhang C. Green preparation of high yield fluorescent graphene quantum dots from coal-tar-pitch by mild oxidation. Nanometer. 2018;8(10):844.CrossRef Liu Q, Zhang J, He H, Huang G, Xing B, Jia J, Zhang C. Green preparation of high yield fluorescent graphene quantum dots from coal-tar-pitch by mild oxidation. Nanometer. 2018;8(10):844.CrossRef
[27]
go back to reference Ogi T, Iwasaki H, Aishima K, Iskandar F, Wang WN, Takimiya K, Okuyama K. Transient nature of graphene quantum dots formation via a hydrothermal reaction. RSC Adv. 2014;4(99):55709.CrossRef Ogi T, Iwasaki H, Aishima K, Iskandar F, Wang WN, Takimiya K, Okuyama K. Transient nature of graphene quantum dots formation via a hydrothermal reaction. RSC Adv. 2014;4(99):55709.CrossRef
[28]
go back to reference You Y, Ni Z, Yu T, Shen Z. Edge chirality determination of graphene by Raman spectroscopy. Appl Phys Lett. 2008;93(16):163112.CrossRef You Y, Ni Z, Yu T, Shen Z. Edge chirality determination of graphene by Raman spectroscopy. Appl Phys Lett. 2008;93(16):163112.CrossRef
[29]
go back to reference Rajender G, Giri PK. Formation mechanism of graphene quantum dots and its edge state conversion probed by photoluminescence and Raman spectroscopy. J Mater Chem C. 2016;4(46):10852.CrossRef Rajender G, Giri PK. Formation mechanism of graphene quantum dots and its edge state conversion probed by photoluminescence and Raman spectroscopy. J Mater Chem C. 2016;4(46):10852.CrossRef
[30]
go back to reference Ramble JR. CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press; 2002. 147. Ramble JR. CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press; 2002. 147.
Metadata
Title
Fluorescent graphene oxide derived from carbonized citric acid for copper(II) ions detection
Authors
Wen-Dan Li
Xiang-Yu Zeng
Gang-Yu Lv
Zhen-Hui Liang
Qi-Jie Liu
Wan-Qi Fu
Jiu-An Zhang
Yan-Xian Feng
Hao-Yi Wu
Publication date
10-01-2021
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 6/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01664-2

Other articles of this Issue 6/2021

Rare Metals 6/2021 Go to the issue

Premium Partners