Skip to main content
Top
Published in: Rare Metals 6/2021

25-02-2021 | Review

Recent developments of nanomaterials-based conductive type methane sensors

Authors: Ming-Zhi Jiao, Xiao-Yu Chen, Ke-Xiang Hu, De-Yu Qian, Xiao-Hu Zhao, En-Jie Ding

Published in: Rare Metals | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Methane is an explosive gas in coalmines and needs to be monitored by methane sensors. Conductive-type methane sensors are small, simple and stable, and they are very promising for mining safety or home safety applications. They can even be employed in mining Internet of things if the power consumption can be lowered down to few milliwatts. Many researches of nanomaterials-based conductive-type methane sensors have been reported recently. This review intends to present a comprehensive and critical summary on the recent progresses in the nanomaterials-based conductive-type methane sensors field. Many excellent methane-sensitive nanomaterials will be present, such as SnO2, ZnO, TiO2, WO3, carbon nanotubes, graphene, rare earth metal-based perovskite oxides and their hybrids. Particular attention is given to the synthetic methods of the nanomaterials, sensing mechanisms of the nanomaterials and the relationship between the sensing performance and the structures and components of the nanomaterials. Finally, the future trends and perspectives of nanomaterials-based conductive-type methane sensors are proposed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Haridas D, Gupta V. Study of collective efforts of catalytic activity and photoactivation to enhance room temperature response of SnO2 thin film sensor for methane. Sens Actuators B: Chem. 2013;182:741.CrossRef Haridas D, Gupta V. Study of collective efforts of catalytic activity and photoactivation to enhance room temperature response of SnO2 thin film sensor for methane. Sens Actuators B: Chem. 2013;182:741.CrossRef
[2]
go back to reference Kamieniak J, Randviir EP, Banks CE. The latest developments in the analytical sensing of methane. TrAC Trends Anal Chem. 2015;73:146.CrossRef Kamieniak J, Randviir EP, Banks CE. The latest developments in the analytical sensing of methane. TrAC Trends Anal Chem. 2015;73:146.CrossRef
[3]
go back to reference Lawrence NS. Analytical detection methodologies for methane and related hydrocarbons. Talanta. 2006;69(2):385.CrossRef Lawrence NS. Analytical detection methodologies for methane and related hydrocarbons. Talanta. 2006;69(2):385.CrossRef
[4]
go back to reference Gungor VC, Hancke GP. Industrial wireless sensor networks: challenges, design principles, and technical approaches. IEEE Trans Ind Electron. 2009;56(10):4258.CrossRef Gungor VC, Hancke GP. Industrial wireless sensor networks: challenges, design principles, and technical approaches. IEEE Trans Ind Electron. 2009;56(10):4258.CrossRef
[5]
go back to reference Potyrailo RA, Surman C, Nagraj N, Burns A. Materials and transducers toward selective wireless gas sensing. Chem Rev. 2011;111(11):7315.CrossRef Potyrailo RA, Surman C, Nagraj N, Burns A. Materials and transducers toward selective wireless gas sensing. Chem Rev. 2011;111(11):7315.CrossRef
[6]
go back to reference Jian Y, Hu W, Zhao ZH, Cheng P, Haick H, Yao M, Wu W. Gas sensors based on chemiresistive hybrid functional nanomaterials. Nano-Micro Lett. 2020;12:71.CrossRef Jian Y, Hu W, Zhao ZH, Cheng P, Haick H, Yao M, Wu W. Gas sensors based on chemiresistive hybrid functional nanomaterials. Nano-Micro Lett. 2020;12:71.CrossRef
[7]
go back to reference El-Sayed MA. Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res. 2004;37(5):326.CrossRef El-Sayed MA. Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res. 2004;37(5):326.CrossRef
[8]
go back to reference Zeng Y, Lin S, Gu D, Li X. Two-dimensional nanomaterials for gas sensing applications: the role of theoretical calculations. Nanomaterials. 2018;8(10):851.CrossRef Zeng Y, Lin S, Gu D, Li X. Two-dimensional nanomaterials for gas sensing applications: the role of theoretical calculations. Nanomaterials. 2018;8(10):851.CrossRef
[9]
go back to reference Kolmakov A, Moskovits M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu Rev Mater Res. 2004;34:151.CrossRef Kolmakov A, Moskovits M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu Rev Mater Res. 2004;34:151.CrossRef
[10]
go back to reference Jiao MZ. Microfabricated gas sensors based on hydrothermally grown 1-D ZnO nanostructures. Uppsala: Uppsala University; 2017. 37. Jiao MZ. Microfabricated gas sensors based on hydrothermally grown 1-D ZnO nanostructures. Uppsala: Uppsala University; 2017. 37.
[11]
go back to reference Yamazoe N, Shimanoe K. New perspectives of gas sensor technology. Sens Actuators B: Chem. 2009;138(1):100.CrossRef Yamazoe N, Shimanoe K. New perspectives of gas sensor technology. Sens Actuators B: Chem. 2009;138(1):100.CrossRef
[12]
go back to reference Basu S, Basu PK. Nanocrystalline metal oxides for methane sensors: role of noble metals. J Sens. 2009;2009:861968.CrossRef Basu S, Basu PK. Nanocrystalline metal oxides for methane sensors: role of noble metals. J Sens. 2009;2009:861968.CrossRef
[13]
go back to reference Wang CX, Yin LW, Zhang LY, Xiang D, Gao R. Metal oxide gas sensors: sensitivity and influencing factors. Sensors. 2010;10(3):2088.CrossRef Wang CX, Yin LW, Zhang LY, Xiang D, Gao R. Metal oxide gas sensors: sensitivity and influencing factors. Sensors. 2010;10(3):2088.CrossRef
[14]
go back to reference Batzill M, Diebold U. The surface and materials science of tin oxide. Prog Surf Sci. 2005;79(2–4):47.CrossRef Batzill M, Diebold U. The surface and materials science of tin oxide. Prog Surf Sci. 2005;79(2–4):47.CrossRef
[15]
go back to reference Amutha A, Amirthapandian S, Sundaravel B, Prasad AK, Panigrahi BK, Thangadurai P. Structural and gas sensing properties of ex-situ oxidized Sn grown by thermal evaporation. Appl Surf Sci. 2016;360:731.CrossRef Amutha A, Amirthapandian S, Sundaravel B, Prasad AK, Panigrahi BK, Thangadurai P. Structural and gas sensing properties of ex-situ oxidized Sn grown by thermal evaporation. Appl Surf Sci. 2016;360:731.CrossRef
[16]
go back to reference Xue D, Zhang Z, Wang Y. Enhanced methane sensing performance of SnO2 nanoflowers based sensors decorated with Au nanoparticles. Mater Chem Phys. 2019;237:121864.CrossRef Xue D, Zhang Z, Wang Y. Enhanced methane sensing performance of SnO2 nanoflowers based sensors decorated with Au nanoparticles. Mater Chem Phys. 2019;237:121864.CrossRef
[17]
go back to reference Yang L, Wang Z, Zhou X, Wu X, Han N, Chen Y. Synthesis of Pd-loaded mesoporous SnO2 hollow spheres for highly sensitive and stable methane gas sensors. RSC Adv. 2018;8(43):24268.CrossRef Yang L, Wang Z, Zhou X, Wu X, Han N, Chen Y. Synthesis of Pd-loaded mesoporous SnO2 hollow spheres for highly sensitive and stable methane gas sensors. RSC Adv. 2018;8(43):24268.CrossRef
[18]
go back to reference Yao L, Li Y, Ran Y, Yang Y, Zhao R, Su L, Kong Y, Ma D, Chen Y, Wang Y. Construction of novel Pd–SnO2 composite nanoporous structure as a high-response sensor for methane gas. J Alloy Compd. 2020;826:154063.CrossRef Yao L, Li Y, Ran Y, Yang Y, Zhao R, Su L, Kong Y, Ma D, Chen Y, Wang Y. Construction of novel Pd–SnO2 composite nanoporous structure as a high-response sensor for methane gas. J Alloy Compd. 2020;826:154063.CrossRef
[19]
go back to reference Xue D, Wang P, Zhang Z, Wang Y. Enhanced methane sensing property of flower-like SnO2 doped by Pt nanoparticles: a combined experimental and first-principle study. Sens Actuators B: Chem. 2019;296:126710.CrossRef Xue D, Wang P, Zhang Z, Wang Y. Enhanced methane sensing property of flower-like SnO2 doped by Pt nanoparticles: a combined experimental and first-principle study. Sens Actuators B: Chem. 2019;296:126710.CrossRef
[20]
go back to reference Lu W, Ding D, Xue Q, Du Y, Xiong Y, Zhang J, Pan X, Xing W. Great enhancement of CH4 sensitivity of SnO2 based nanofibers by heterogeneous sensitization and catalytic effect. Sens Actuators B: Chem. 2018;254:393.CrossRef Lu W, Ding D, Xue Q, Du Y, Xiong Y, Zhang J, Pan X, Xing W. Great enhancement of CH4 sensitivity of SnO2 based nanofibers by heterogeneous sensitization and catalytic effect. Sens Actuators B: Chem. 2018;254:393.CrossRef
[21]
go back to reference Li G, Wang X, Yan L, Wang Y, Zhang Z, Xu J. PdPt bimetal-functionalized SnO2 nanosheets: controllable synthesis and its dual selectivity for detection of carbon monoxide and methane. ACS Appl Mater Interface. 2019;11(29):26116.CrossRef Li G, Wang X, Yan L, Wang Y, Zhang Z, Xu J. PdPt bimetal-functionalized SnO2 nanosheets: controllable synthesis and its dual selectivity for detection of carbon monoxide and methane. ACS Appl Mater Interface. 2019;11(29):26116.CrossRef
[22]
go back to reference Bunpang K, Wisitsoraat A, Tuantranont A, Singkammo S, Phanichphant S, Liewhiran C. Highly selective and sensitive CH4 gas sensors based on flame-spray-made Cr-doped SnO2 particulate films. Sens Actuators B: Chem. 2019;291:177.CrossRef Bunpang K, Wisitsoraat A, Tuantranont A, Singkammo S, Phanichphant S, Liewhiran C. Highly selective and sensitive CH4 gas sensors based on flame-spray-made Cr-doped SnO2 particulate films. Sens Actuators B: Chem. 2019;291:177.CrossRef
[23]
go back to reference Das A, Panda D. SnO2 tailored by CuO for improved CH4 sensing at low temperature. Phys Status Solidi (b). 2019;256(5):1800296.CrossRef Das A, Panda D. SnO2 tailored by CuO for improved CH4 sensing at low temperature. Phys Status Solidi (b). 2019;256(5):1800296.CrossRef
[24]
go back to reference Vuong NM, Hieu NM, Hieu HN, Yi H, Kim D, Han YS, Kim M. Ni2O3-decorated SnO2 particulate films for methane gas sensors. Sens Actuators B: Chem. 2014;192:327.CrossRef Vuong NM, Hieu NM, Hieu HN, Yi H, Kim D, Han YS, Kim M. Ni2O3-decorated SnO2 particulate films for methane gas sensors. Sens Actuators B: Chem. 2014;192:327.CrossRef
[25]
go back to reference Xue D, Wang Y, Cao J, Sun G, Zhang Z. Improving methane gas sensing performance of flower-like SnO2 decorated by WO3 nanoplates. Talanta. 2019;199:603.CrossRef Xue D, Wang Y, Cao J, Sun G, Zhang Z. Improving methane gas sensing performance of flower-like SnO2 decorated by WO3 nanoplates. Talanta. 2019;199:603.CrossRef
[26]
go back to reference Xue D, Zhang S, Zhang Z. Hydrothermally prepared porous 3D SnO2 microstructures for methane sensing at lower operating temperature. Mater Lett. 2019;237:336.CrossRef Xue D, Zhang S, Zhang Z. Hydrothermally prepared porous 3D SnO2 microstructures for methane sensing at lower operating temperature. Mater Lett. 2019;237:336.CrossRef
[27]
go back to reference Hong P, Li YX, Zhang X, Peng S, Zhao R, Yang Y, Wang ZD, Zou T, Wang YD. Nanoporous network SnO2 constructed with ultra-small nanoparticles for methane gas sensor. J Mater Sci: Mater Electron. 2019;30(15):14325. Hong P, Li YX, Zhang X, Peng S, Zhao R, Yang Y, Wang ZD, Zou T, Wang YD. Nanoporous network SnO2 constructed with ultra-small nanoparticles for methane gas sensor. J Mater Sci: Mater Electron. 2019;30(15):14325.
[28]
go back to reference Das A, Bonu V, Prasad AK, Panda D, Dhara S, Tyagi AK. The role of SnO2 quantum dots in improved CH4 sensing at low temperature. J Mater Chem C. 2014;2(1):164.CrossRef Das A, Bonu V, Prasad AK, Panda D, Dhara S, Tyagi AK. The role of SnO2 quantum dots in improved CH4 sensing at low temperature. J Mater Chem C. 2014;2(1):164.CrossRef
[29]
go back to reference Gao P, Wang Z. Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process. J Phys Chem B. 2004;108(23):7534.CrossRef Gao P, Wang Z. Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process. J Phys Chem B. 2004;108(23):7534.CrossRef
[30]
go back to reference Xu S, Wang Z. One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 2011;4(11):1013.CrossRef Xu S, Wang Z. One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 2011;4(11):1013.CrossRef
[31]
go back to reference Schmidt-Mende L, MacManus-Driscoll JL. ZnO nanostructures, defects, and devices. Mater Today. 2007;10(5):40.CrossRef Schmidt-Mende L, MacManus-Driscoll JL. ZnO nanostructures, defects, and devices. Mater Today. 2007;10(5):40.CrossRef
[32]
go back to reference Han J, Mantas PQ, Senos AMR. Defect chemistry and electrical characteristics of undoped and Mn-doped ZnO. J Eur Ceram Soc. 2002;22(1):49.CrossRef Han J, Mantas PQ, Senos AMR. Defect chemistry and electrical characteristics of undoped and Mn-doped ZnO. J Eur Ceram Soc. 2002;22(1):49.CrossRef
[33]
go back to reference Chen RS, Jing Wang J, Luo SR, Xiang L, Li WW, Xie D. Unraveling photoexcited electron transfer pathway of oxygen vacancy-enriched ZnO/Pd hybrid toward visible light-enhanced methane detection at a relatively low temperature. Appl Catal B. 2020;264:118554.CrossRef Chen RS, Jing Wang J, Luo SR, Xiang L, Li WW, Xie D. Unraveling photoexcited electron transfer pathway of oxygen vacancy-enriched ZnO/Pd hybrid toward visible light-enhanced methane detection at a relatively low temperature. Appl Catal B. 2020;264:118554.CrossRef
[34]
go back to reference Yang Y, Wang X, Yi G, Li H, Shi C, Sun G, Zhang ZY. Hydrothermally synthesized ZnO hierarchical structure for lower concentration methane sensing. Mater Lett. 2019;254:242.CrossRef Yang Y, Wang X, Yi G, Li H, Shi C, Sun G, Zhang ZY. Hydrothermally synthesized ZnO hierarchical structure for lower concentration methane sensing. Mater Lett. 2019;254:242.CrossRef
[35]
go back to reference Li X, Li Y, Sun G, Luo N, Zhang B, Zhang Z. Synthesis of a flower-like g-C3N4/ZnO hierarchical structure with improved CH4 sensing properties. Nanomaterials (Basel). 2019;9(5):724.CrossRef Li X, Li Y, Sun G, Luo N, Zhang B, Zhang Z. Synthesis of a flower-like g-C3N4/ZnO hierarchical structure with improved CH4 sensing properties. Nanomaterials (Basel). 2019;9(5):724.CrossRef
[36]
go back to reference Xiao M, Li Y, Zhang B, Sun G, Zhang Z. Synthesis of g-C3N4-decorated ZnO porous hollow microspheres for room-temperature detection of CH4 under UV-light illumination. Nanomaterials (Basel). 2019;9(11):1507.CrossRef Xiao M, Li Y, Zhang B, Sun G, Zhang Z. Synthesis of g-C3N4-decorated ZnO porous hollow microspheres for room-temperature detection of CH4 under UV-light illumination. Nanomaterials (Basel). 2019;9(11):1507.CrossRef
[37]
go back to reference Zhang S, Li Y, Sun G, Zhang B, Wang Y, Cao J, Zhang ZY. Synthesis of NiO-decorated ZnO porous nanosheets with improved CH4 sensing performance. Appl Surf Sci. 2019;497:143811.CrossRef Zhang S, Li Y, Sun G, Zhang B, Wang Y, Cao J, Zhang ZY. Synthesis of NiO-decorated ZnO porous nanosheets with improved CH4 sensing performance. Appl Surf Sci. 2019;497:143811.CrossRef
[38]
go back to reference Li XJ, Li YW, Sun G, Zhang B, Wang Y, Zhang ZY. Enhanced CH4 sensitivity of porous nanosheets-assembled ZnO microflower by decoration with Zn2SnO4. Sens Actuators B: Chem. 2020;304:127374.CrossRef Li XJ, Li YW, Sun G, Zhang B, Wang Y, Zhang ZY. Enhanced CH4 sensitivity of porous nanosheets-assembled ZnO microflower by decoration with Zn2SnO4. Sens Actuators B: Chem. 2020;304:127374.CrossRef
[39]
go back to reference Aljaafari A, Ahmed F, Awada C, Shaalan NM. Flower-like ZnO nanorods synthesized by microwave-assisted one-pot method for detecting reducing gases: structural properties and sensing reversibility. Front Chem. 2020;8:456.CrossRef Aljaafari A, Ahmed F, Awada C, Shaalan NM. Flower-like ZnO nanorods synthesized by microwave-assisted one-pot method for detecting reducing gases: structural properties and sensing reversibility. Front Chem. 2020;8:456.CrossRef
[40]
go back to reference Zhang B, Wang Y, Meng XN, Zhang ZY, Mu SF. High response methane sensor based on Au-modified hierarchical porous nanosheets-assembled ZnO microspheres. Mater Chem Phys. 2020;250:123027.CrossRef Zhang B, Wang Y, Meng XN, Zhang ZY, Mu SF. High response methane sensor based on Au-modified hierarchical porous nanosheets-assembled ZnO microspheres. Mater Chem Phys. 2020;250:123027.CrossRef
[41]
go back to reference Ghosh S, Roychaudhuri C, Bhattacharya R, Saha H, Mukherjee N. Palladium-silver-activated ZnO surface: highly selective methane sensor at reasonably low operating temperature. ACS Appl Mater Interface. 2014;6(6):3879.CrossRef Ghosh S, Roychaudhuri C, Bhattacharya R, Saha H, Mukherjee N. Palladium-silver-activated ZnO surface: highly selective methane sensor at reasonably low operating temperature. ACS Appl Mater Interface. 2014;6(6):3879.CrossRef
[42]
go back to reference Wang Y, Meng X, Yao M, Sun G, Zhang Z. Enhanced CH4 sensing properties of Pd modified ZnO nanosheets. Ceram Int. 2019;45(10):13150.CrossRef Wang Y, Meng X, Yao M, Sun G, Zhang Z. Enhanced CH4 sensing properties of Pd modified ZnO nanosheets. Ceram Int. 2019;45(10):13150.CrossRef
[43]
go back to reference Anchal BBN, Singh P, Pyare R. A nano wrinkled Zn0.92Fe0.08O thin film developed using a high-RPM electro-spin patterning technique via sol-gel route for methane sensing. Chem Select. 2018;3(42):11881. Anchal BBN, Singh P, Pyare R. A nano wrinkled Zn0.92Fe0.08O thin film developed using a high-RPM electro-spin patterning technique via sol-gel route for methane sensing. Chem Select. 2018;3(42):11881.
[44]
go back to reference Hu J, Gao F, Zhao Z, Sang S, Li P, Zhang WD, Zhou XT, Chen Y. Synthesis and characterization of cobalt-doped ZnO microstructures for methane gas sensing. Appl Surf Sci. 2016;363:181.CrossRef Hu J, Gao F, Zhao Z, Sang S, Li P, Zhang WD, Zhou XT, Chen Y. Synthesis and characterization of cobalt-doped ZnO microstructures for methane gas sensing. Appl Surf Sci. 2016;363:181.CrossRef
[45]
go back to reference Aghagoli Z, Ardyanian M. Synthesis and study of the structure, magnetic, optical and methane gas sensing properties of cobalt doped zinc oxide microstructures. J Mater Sci: Mater Electron. 2018;29(9):7130. Aghagoli Z, Ardyanian M. Synthesis and study of the structure, magnetic, optical and methane gas sensing properties of cobalt doped zinc oxide microstructures. J Mater Sci: Mater Electron. 2018;29(9):7130.
[46]
go back to reference Lupan O, Postica V, Grottrup J, Mishra AK, de Leeuw NH, Carreira JF, Rodrigues J, Sedrine NB, Correia MR, Monteiro T, Cretu V, Tiginyanu I, Smazna D, Mishra YK, Adelung R. Hybridization of zinc oxide tetrapods for selective gas sensing applications. ACS Appl Mater Interface. 2017;9(4):4084.CrossRef Lupan O, Postica V, Grottrup J, Mishra AK, de Leeuw NH, Carreira JF, Rodrigues J, Sedrine NB, Correia MR, Monteiro T, Cretu V, Tiginyanu I, Smazna D, Mishra YK, Adelung R. Hybridization of zinc oxide tetrapods for selective gas sensing applications. ACS Appl Mater Interface. 2017;9(4):4084.CrossRef
[47]
go back to reference Ghosh S, Bhattacharyya R, Saha H, Chaudhuri CR, Mukherjee N. Functionalized ZnO/ZnO2 n-N straddling heterostructure achieved by oxygen plasma bombardment for highly selective methane sensing. Phys Chem Chem Phys. 2015;17(41):27777.CrossRef Ghosh S, Bhattacharyya R, Saha H, Chaudhuri CR, Mukherjee N. Functionalized ZnO/ZnO2 n-N straddling heterostructure achieved by oxygen plasma bombardment for highly selective methane sensing. Phys Chem Chem Phys. 2015;17(41):27777.CrossRef
[48]
go back to reference GuL M, Amin M, Abbas M, Ilyas SZ, Shah NA. Synthesis and characterization of magnesium doped ZnO nanostructures: methane (CH4) detection. J Mater Sci: Mater Electron. 2019;30(5):5257. GuL M, Amin M, Abbas M, Ilyas SZ, Shah NA. Synthesis and characterization of magnesium doped ZnO nanostructures: methane (CH4) detection. J Mater Sci: Mater Electron. 2019;30(5):5257.
[49]
go back to reference Kimiagear S, Najafi V, Witkowski B, Pietruszka R, Godlewski M. High performance and low temperature coal mine gas sensor activated by UV-irradiation. Sci Rep. 2018;8:16298.CrossRef Kimiagear S, Najafi V, Witkowski B, Pietruszka R, Godlewski M. High performance and low temperature coal mine gas sensor activated by UV-irradiation. Sci Rep. 2018;8:16298.CrossRef
[50]
go back to reference Tshabalala ZP, Shingange K, Dhonge BP, Ntwaeaborwa OM, Mhlongo GH, Motaung DE. Fabrication of ultra-high sensitive and selective CH4 room temperature gas sensing of TiO2 nanorods: detailed study on the annealing temperature. Sens Actuators B: Chem. 2017;238:402.CrossRef Tshabalala ZP, Shingange K, Dhonge BP, Ntwaeaborwa OM, Mhlongo GH, Motaung DE. Fabrication of ultra-high sensitive and selective CH4 room temperature gas sensing of TiO2 nanorods: detailed study on the annealing temperature. Sens Actuators B: Chem. 2017;238:402.CrossRef
[51]
go back to reference Comert B, Akin N, Donmez M, Saglam S, Ozcelik S. Titanium dioxide thin films as methane gas sensors. IEEE Sens J. 2016;16(24):8890.CrossRef Comert B, Akin N, Donmez M, Saglam S, Ozcelik S. Titanium dioxide thin films as methane gas sensors. IEEE Sens J. 2016;16(24):8890.CrossRef
[52]
go back to reference Sertel BC, Sonmez NA, Kaya MD, Ozcelik S. Development of MgO:TiO2 thin films for gas sensor applications. Ceram Int. 2019;45(3):2917.CrossRef Sertel BC, Sonmez NA, Kaya MD, Ozcelik S. Development of MgO:TiO2 thin films for gas sensor applications. Ceram Int. 2019;45(3):2917.CrossRef
[53]
go back to reference Chen SF, Aldalbahi A, Feng PX. Nanostructured tungsten oxide composite for high-performance gas sensors. Sensors (Basel). 2015;15(10):27035.CrossRef Chen SF, Aldalbahi A, Feng PX. Nanostructured tungsten oxide composite for high-performance gas sensors. Sensors (Basel). 2015;15(10):27035.CrossRef
[54]
go back to reference Zhou Q, Lu Z, Wei Z, Xu L, Gui Y, Chen W. Hydrothermal synthesis of hierarchical ultrathin NiO nanoflakes for high-performance CH4 Sensing. Front Chem. 2018;6:194.CrossRef Zhou Q, Lu Z, Wei Z, Xu L, Gui Y, Chen W. Hydrothermal synthesis of hierarchical ultrathin NiO nanoflakes for high-performance CH4 Sensing. Front Chem. 2018;6:194.CrossRef
[55]
go back to reference Zhang S, Li Y, Sun G, Zhang B, Wang Y, Cao JL, Zhang ZY. Enhanced methane sensing properties of porous NiO nanaosheets by decorating with SnO2. Sens Actuators B: Chem. 2019;288:373.CrossRef Zhang S, Li Y, Sun G, Zhang B, Wang Y, Cao JL, Zhang ZY. Enhanced methane sensing properties of porous NiO nanaosheets by decorating with SnO2. Sens Actuators B: Chem. 2019;288:373.CrossRef
[56]
go back to reference Cao Y, Zhao J, Zou X, Jin PP, Chen H, Gao RQ, Zhou LJ, Zou YC, Li GD. Synthesis of porous In2O3 microspheres as a sensitive material for early warning of hydrocarbon explosions. RSC Adv. 2015;5(7):5424.CrossRef Cao Y, Zhao J, Zou X, Jin PP, Chen H, Gao RQ, Zhou LJ, Zou YC, Li GD. Synthesis of porous In2O3 microspheres as a sensitive material for early warning of hydrocarbon explosions. RSC Adv. 2015;5(7):5424.CrossRef
[57]
go back to reference Xue DP, Wang Y, Zhang ZY, Cao JL. Porous In2O3 nanospheres with high methane sensitivity: a combined experimental and first-principle study. Sens Actuators A. 2020;305:111944.CrossRef Xue DP, Wang Y, Zhang ZY, Cao JL. Porous In2O3 nanospheres with high methane sensitivity: a combined experimental and first-principle study. Sens Actuators A. 2020;305:111944.CrossRef
[58]
go back to reference Xue D, Zhang S, Zhang Z. Hydrothermal synthesis of methane sensitive porous In2O3 nanosheets. Mater Lett. 2019;252:169.CrossRef Xue D, Zhang S, Zhang Z. Hydrothermal synthesis of methane sensitive porous In2O3 nanosheets. Mater Lett. 2019;252:169.CrossRef
[59]
go back to reference Vuong NM, Hieu NM, Kim D, Choi BI, Kim M. Ni2O3 decoration of In2O3 nanostructures for catalytically enhanced methane sensing. Appl Surf Sci. 2014;317:765.CrossRef Vuong NM, Hieu NM, Kim D, Choi BI, Kim M. Ni2O3 decoration of In2O3 nanostructures for catalytically enhanced methane sensing. Appl Surf Sci. 2014;317:765.CrossRef
[60]
go back to reference Basu R, Reshma PR, Arun KP, Dhara S. Near room temperature CH4 sensing and role of oxidation states for phase pure Wadsley VnO2n+1 nanostructures. Mater Chem Phys. 2020;248:122901.CrossRef Basu R, Reshma PR, Arun KP, Dhara S. Near room temperature CH4 sensing and role of oxidation states for phase pure Wadsley VnO2n+1 nanostructures. Mater Chem Phys. 2020;248:122901.CrossRef
[61]
go back to reference Radhakrishnan RP, Arun KP, Dhara S. Role of native defect in near room temperature CH4 sensing using nanostructured V2O5. IEEE Sens J. 2020;20(9):4555.CrossRef Radhakrishnan RP, Arun KP, Dhara S. Role of native defect in near room temperature CH4 sensing using nanostructured V2O5. IEEE Sens J. 2020;20(9):4555.CrossRef
[62]
go back to reference Mounasamy V, Mani GK, Ponnusamy D, Tsuchiya K, Reshma PR, Prasad AK, Madanagurusamy S. Investigation on CH4 sensing characteristics of hierarchical V2O5 nanoflowers operated at relatively low temperature using chemiresistive approach. Anal Chim Acta. 2020;1106:148.CrossRef Mounasamy V, Mani GK, Ponnusamy D, Tsuchiya K, Reshma PR, Prasad AK, Madanagurusamy S. Investigation on CH4 sensing characteristics of hierarchical V2O5 nanoflowers operated at relatively low temperature using chemiresistive approach. Anal Chim Acta. 2020;1106:148.CrossRef
[63]
go back to reference Liang J, Liu J, Li N, Li W. Magnetron sputtered Au-decorated vanadium oxides composite thin films for methane-sensing properties at room temperature. J Alloy Compd. 2016;671:283.CrossRef Liang J, Liu J, Li N, Li W. Magnetron sputtered Au-decorated vanadium oxides composite thin films for methane-sensing properties at room temperature. J Alloy Compd. 2016;671:283.CrossRef
[64]
go back to reference Tan Y, Lei Y. Atomic layer deposition of Rh nanoparticles on WO3 thin film for CH4 gas sensing with enhanced detection characteristics. Ceram Int. 2020;46(7):9936.CrossRef Tan Y, Lei Y. Atomic layer deposition of Rh nanoparticles on WO3 thin film for CH4 gas sensing with enhanced detection characteristics. Ceram Int. 2020;46(7):9936.CrossRef
[65]
go back to reference Xue D, Wang J, Wang Y, Sun G, Cao J, Bala H, Zhang ZY. Enhanced methane sensing properties of WO3 nanosheets with dominant exposed (200) facet via loading of SnO2 nanoparticles. Nanomaterials (Basel). 2019;9(3):351.CrossRef Xue D, Wang J, Wang Y, Sun G, Cao J, Bala H, Zhang ZY. Enhanced methane sensing properties of WO3 nanosheets with dominant exposed (200) facet via loading of SnO2 nanoparticles. Nanomaterials (Basel). 2019;9(3):351.CrossRef
[66]
go back to reference Chen X, Huang Z, Li J, Wu C, Wang Z, Cui Y. Methane gas sensing behavior of lithium ion doped carbon nanotubes. Sens Vac. 2018;154:120.CrossRef Chen X, Huang Z, Li J, Wu C, Wang Z, Cui Y. Methane gas sensing behavior of lithium ion doped carbon nanotubes. Sens Vac. 2018;154:120.CrossRef
[67]
go back to reference Assar M, Karimzadeh R. Enhancement of methane gas sensing characteristics of graphene oxide sensor by heat treatment and laser irradiation. J Colloid Interface Sci. 2016;483:275.CrossRef Assar M, Karimzadeh R. Enhancement of methane gas sensing characteristics of graphene oxide sensor by heat treatment and laser irradiation. J Colloid Interface Sci. 2016;483:275.CrossRef
[68]
go back to reference Navazani S, Hassanisadi M, Eskandari MM, Talaei Z. Design and evaluation of SnO2-Pt/MWCNTs hybrid system as room temperature-methane sensor. Synth Met. 2020;260:116267.CrossRef Navazani S, Hassanisadi M, Eskandari MM, Talaei Z. Design and evaluation of SnO2-Pt/MWCNTs hybrid system as room temperature-methane sensor. Synth Met. 2020;260:116267.CrossRef
[69]
go back to reference Lam KC, Huang B, Shi SQ. Room-temperature methane gas sensing properties based on in situ reduced graphene oxide incorporated with tin dioxide. J Mater Chem A. 2017;5(22):11131.CrossRef Lam KC, Huang B, Shi SQ. Room-temperature methane gas sensing properties based on in situ reduced graphene oxide incorporated with tin dioxide. J Mater Chem A. 2017;5(22):11131.CrossRef
[70]
go back to reference Nasresfahani S, Sheikhi MH, Tohidi M, Zarifkar A. Methane gas sensing properties of Pd-doped SnO2/reduced graphene oxide synthesized by a facile hydrothermal route. Mater Res Bull. 2017;89:161.CrossRef Nasresfahani S, Sheikhi MH, Tohidi M, Zarifkar A. Methane gas sensing properties of Pd-doped SnO2/reduced graphene oxide synthesized by a facile hydrothermal route. Mater Res Bull. 2017;89:161.CrossRef
[71]
go back to reference Navazani S, Shokuhfar A, Hassanisadi M, Di Carlo A, Shahcheraghi N. Fabrication and characterization of a sensitive, room temperature methane sensor based on SnO2@reduced graphene oxide-polyaniline ternary nanohybrid. Mater Sci Semicond Process. 2018;88:139.CrossRef Navazani S, Shokuhfar A, Hassanisadi M, Di Carlo A, Shahcheraghi N. Fabrication and characterization of a sensitive, room temperature methane sensor based on SnO2@reduced graphene oxide-polyaniline ternary nanohybrid. Mater Sci Semicond Process. 2018;88:139.CrossRef
[72]
go back to reference Volder MFLD, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science. 2013;339(6119):535.CrossRef Volder MFLD, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science. 2013;339(6119):535.CrossRef
[73]
go back to reference Zhang T, Mubeen S, Myung NV, Deshusses MA. Recent progress in carbon nanotube-based gas sensors. Nanotechnology. 2008;19(33):332001.CrossRef Zhang T, Mubeen S, Myung NV, Deshusses MA. Recent progress in carbon nanotube-based gas sensors. Nanotechnology. 2008;19(33):332001.CrossRef
[74]
go back to reference Naghadeh SB, Vahdatifar S, Mortazavi Y, Khodadadi AA, Abbasi A. Functionalized MWCNTs effects on dramatic enhancement of MWCNTs/SnO2 nanocomposite gas sensing properties at low temperatures. Sens Actuators B: Chem. 2016;223:252.CrossRef Naghadeh SB, Vahdatifar S, Mortazavi Y, Khodadadi AA, Abbasi A. Functionalized MWCNTs effects on dramatic enhancement of MWCNTs/SnO2 nanocomposite gas sensing properties at low temperatures. Sens Actuators B: Chem. 2016;223:252.CrossRef
[75]
go back to reference Keshtkar S, Rashidi A, Kooti M. Development of tin dioxide quantum dots/multi-walled carbon nanotubes and tin dioxide quantum dots/carbon nanohorns nanohybrids as low temperatures natural gas sensors. Ceram Int. 2017;43(16):14326.CrossRef Keshtkar S, Rashidi A, Kooti M. Development of tin dioxide quantum dots/multi-walled carbon nanotubes and tin dioxide quantum dots/carbon nanohorns nanohybrids as low temperatures natural gas sensors. Ceram Int. 2017;43(16):14326.CrossRef
[76]
go back to reference Yuan W, Shi G. Graphene-based gas sensors. J Mater Chem A. 2013;1(35):10078.CrossRef Yuan W, Shi G. Graphene-based gas sensors. J Mater Chem A. 2013;1(35):10078.CrossRef
[77]
go back to reference Varghese SS, Lonkar S, Singh KK, Swaminathan S, Abdala A. Recent advances in graphene based gas sensors. Sens Actuators B: Chem. 2015;218:160.CrossRef Varghese SS, Lonkar S, Singh KK, Swaminathan S, Abdala A. Recent advances in graphene based gas sensors. Sens Actuators B: Chem. 2015;218:160.CrossRef
[78]
go back to reference Kooti M, Keshtkar S, Askarieh M, Rashidi A. Progress toward a novel methane gas sensor based on SnO2 nanorods-nanoporous graphene hybrid. Sen Actuators B: Chem. 2019;281:96.CrossRef Kooti M, Keshtkar S, Askarieh M, Rashidi A. Progress toward a novel methane gas sensor based on SnO2 nanorods-nanoporous graphene hybrid. Sen Actuators B: Chem. 2019;281:96.CrossRef
[79]
go back to reference Karami Horastani Z, Sayedi SM, Sheikhi MH. Effect of single wall carbon nanotube additive on electrical conductivity and methane sensitivity of SnO2. Sen Actuators B: Chem. 2014;202:461.CrossRef Karami Horastani Z, Sayedi SM, Sheikhi MH. Effect of single wall carbon nanotube additive on electrical conductivity and methane sensitivity of SnO2. Sen Actuators B: Chem. 2014;202:461.CrossRef
[80]
go back to reference Galstyan V, Comini E, Kholmanov I, Faglia G, Sberveglieri G. Reduced graphene oxide/ZnO nanocomposite for application in chemical gas sensors. RSC Adv. 2016;6(41):34225.CrossRef Galstyan V, Comini E, Kholmanov I, Faglia G, Sberveglieri G. Reduced graphene oxide/ZnO nanocomposite for application in chemical gas sensors. RSC Adv. 2016;6(41):34225.CrossRef
[81]
go back to reference Zhang D, Yin N, Xia B. Facile fabrication of ZnO nanocrystalline-modified graphene hybrid nanocomposite toward methane gas sensing application. J Mater Sci: Mater Electron. 2015;26(8):5937. Zhang D, Yin N, Xia B. Facile fabrication of ZnO nanocrystalline-modified graphene hybrid nanocomposite toward methane gas sensing application. J Mater Sci: Mater Electron. 2015;26(8):5937.
[82]
go back to reference Xia Y, Wang J, Xu L, Lie X, Huang SJ. A room-temperature methane sensor based on Pd-decorated ZnO/rGO hybrids enhanced by visible light photocatalysis. Sens Actuators B: Chem. 2020;304:127334.CrossRef Xia Y, Wang J, Xu L, Lie X, Huang SJ. A room-temperature methane sensor based on Pd-decorated ZnO/rGO hybrids enhanced by visible light photocatalysis. Sens Actuators B: Chem. 2020;304:127334.CrossRef
[83]
go back to reference Ghanbari R, Safaiee R, Sheikhi MH, Golshan MM, Horastani ZK. Graphene decorated with silver nanoparticles as a low-temperature methane gas sensor. ACS Appl Mater Interfaces. 2019;11(24):21795.CrossRef Ghanbari R, Safaiee R, Sheikhi MH, Golshan MM, Horastani ZK. Graphene decorated with silver nanoparticles as a low-temperature methane gas sensor. ACS Appl Mater Interfaces. 2019;11(24):21795.CrossRef
[84]
go back to reference Navazani S, Shokuhfar A, Hassanisadi M, Askarieh M, Di Carlo A, Agresti A. Facile synthesis of a SnO2@rGO nanohybrid and optimization of its methane-sensing parameters. Talanta. 2018;181:422.CrossRef Navazani S, Shokuhfar A, Hassanisadi M, Askarieh M, Di Carlo A, Agresti A. Facile synthesis of a SnO2@rGO nanohybrid and optimization of its methane-sensing parameters. Talanta. 2018;181:422.CrossRef
[85]
go back to reference Giang HT, Duy HT, Ngan PQ, Thai GH, Thu DTA, Thu DT, Toan NN. Hydrocarbon gas sensing of nano-crystalline perovskite oxides LnFeO3 (Ln=La, Nd and Sm). Sens Actuators B: Chem. 2011;158(1):246.CrossRef Giang HT, Duy HT, Ngan PQ, Thai GH, Thu DTA, Thu DT, Toan NN. Hydrocarbon gas sensing of nano-crystalline perovskite oxides LnFeO3 (Ln=La, Nd and Sm). Sens Actuators B: Chem. 2011;158(1):246.CrossRef
[86]
go back to reference Abadi MH, Hamidon MN, Shaari AH, Abdullah N, Misron N, Wagiran R. Characterization of mixed xWO3(1–x)Y2O3 nanoparticle thick film for gas sensing application. Sensors (Basel). 2010;10(5):5074.CrossRef Abadi MH, Hamidon MN, Shaari AH, Abdullah N, Misron N, Wagiran R. Characterization of mixed xWO3(1–x)Y2O3 nanoparticle thick film for gas sensing application. Sensors (Basel). 2010;10(5):5074.CrossRef
[87]
go back to reference Xiang C, Chen T, Zhang H, Zou Y, Chu H, Zhang HZ, Xu F, Sun LX, Tang CY. Growth of copper–benzene-1,3,5-tricarboxylate on boron nitride nanotubes and application of the composite in methane sensing. Appl Surf Sci. 2017;424(1):39.CrossRef Xiang C, Chen T, Zhang H, Zou Y, Chu H, Zhang HZ, Xu F, Sun LX, Tang CY. Growth of copper–benzene-1,3,5-tricarboxylate on boron nitride nanotubes and application of the composite in methane sensing. Appl Surf Sci. 2017;424(1):39.CrossRef
[88]
go back to reference Toan NN, Saukko S, Lantto V. Gas sensing with semiconducting perovskite oxide LaFeO3. Physica B. 2003;327(2–4):279.CrossRef Toan NN, Saukko S, Lantto V. Gas sensing with semiconducting perovskite oxide LaFeO3. Physica B. 2003;327(2–4):279.CrossRef
[89]
go back to reference Moseley PT, Oprea A, Merdrignac-Conanec O, Kerlau M, Bârsan N, Weimar U. Limitations on the use of perovskite-structure oxides in gas sensing as a result of the concurrent operation of separate mechanisms. Sens Actuators B: Chem. 2008;133(2):543.CrossRef Moseley PT, Oprea A, Merdrignac-Conanec O, Kerlau M, Bârsan N, Weimar U. Limitations on the use of perovskite-structure oxides in gas sensing as a result of the concurrent operation of separate mechanisms. Sens Actuators B: Chem. 2008;133(2):543.CrossRef
[90]
go back to reference Mosahebfard A, Jahromi HD, Sheikhi MH. Highly sensitive, room temperature methane gas sensor based on lead sulfide colloidal nanocrystals. IEEE Sens J. 2016;16(11):4174.CrossRef Mosahebfard A, Jahromi HD, Sheikhi MH. Highly sensitive, room temperature methane gas sensor based on lead sulfide colloidal nanocrystals. IEEE Sens J. 2016;16(11):4174.CrossRef
[91]
go back to reference Parida S, Das A, Prasad AK, Ghatak J, Dhara S. Native defect-assisted enhanced response to CH4 near room temperature by Al0.07Ga0.93N nanowires. Phys Chem Chem Phys. 2018;20(27):18391.CrossRef Parida S, Das A, Prasad AK, Ghatak J, Dhara S. Native defect-assisted enhanced response to CH4 near room temperature by Al0.07Ga0.93N nanowires. Phys Chem Chem Phys. 2018;20(27):18391.CrossRef
[92]
go back to reference Kumari K, Ram S. Sensitivity study of nanocrystalline Fe3BO6 sensor for methane gas detection. IEEE Sens J. 2018;18(20):8230.CrossRef Kumari K, Ram S. Sensitivity study of nanocrystalline Fe3BO6 sensor for methane gas detection. IEEE Sens J. 2018;18(20):8230.CrossRef
[93]
go back to reference Chen M, Li ZK, Li WM, Shan CW, Li WJ, Li KW, Gu GQ, Feng Y, Zhong GH, Wei L, Yang CL. Large-scale synthesis of single-crystalline self-standing SnSe2 nanoplate arrays for wearable gas sensors. Nanotechnology. 2018;29(45):455501.CrossRef Chen M, Li ZK, Li WM, Shan CW, Li WJ, Li KW, Gu GQ, Feng Y, Zhong GH, Wei L, Yang CL. Large-scale synthesis of single-crystalline self-standing SnSe2 nanoplate arrays for wearable gas sensors. Nanotechnology. 2018;29(45):455501.CrossRef
[94]
go back to reference Liu H, Peng T, Sun H, Xie R, Ma G. Room temperature methane sensing properties of α-Fe2−xCuxO3 nanoparticles. RSC Adv. 2017;7(19):11414.CrossRef Liu H, Peng T, Sun H, Xie R, Ma G. Room temperature methane sensing properties of α-Fe2−xCuxO3 nanoparticles. RSC Adv. 2017;7(19):11414.CrossRef
Metadata
Title
Recent developments of nanomaterials-based conductive type methane sensors
Authors
Ming-Zhi Jiao
Xiao-Yu Chen
Ke-Xiang Hu
De-Yu Qian
Xiao-Hu Zhao
En-Jie Ding
Publication date
25-02-2021
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 6/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01679-9

Other articles of this Issue 6/2021

Rare Metals 6/2021 Go to the issue

Premium Partners