Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 9/2021

04-04-2021

Novel barium zirconate titanate-based lead-free ceramics with stably high energy storage performance over a broad temperature and frequency range

Authors: Xiongwei Lin, Xiaobo Zhao, Lei Zhou, Mingrui Zhao, Yi Lin, Yingbang Yao, Bo Liang, Tao Tao, Sheng-Guo Lu

Published in: Journal of Materials Science: Materials in Electronics | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lead-free relaxor ferroelectric ceramics with high recoverable energy storage density and energy storage efficiency over a broad temperature and frequency range are attractive for pulsed power capacitor applications. In this work, novel barium zirconate titanate-based lead-free relaxor ferroelectric ceramics are designed via introduction of Bi(Zn0.5Sn0.5)O3 with heterovalent ion substitution at both A- and B-sites which could disrupt long-range order, induce polar nanoregions (PNRs), and reduce remnant polarization (Pr). The (1 − x)Ba(Zr0.15Ti0.85)O3xBi(Zn0.5Sn0.5)O3 ((1 − x)BZT–xBZS) (x = 0.02, 0.06, 0.10, and 0.14) ceramics were prepared using a conventional solid-state reaction method. In addition, the structure, dielectric, ferroelectric, and energy storage properties of (1 − x)BZT–xBZS ceramics were systematically studied. All (1 − x)BZT–xBZS ceramics exhibited pure perovskite structure. With the increase of BZS content, the relaxor ferroelectric feature of (1 − x)BZT–xBZS ceramics tended to increase gradually, and slim linear PE loops were obtained in x = 0.10–0.14. A high recoverable energy storage density Wrec of 2.16 J/cm3 and a high energy storage efficiency η of 90.3% were simultaneously achieved in x = 0.10 at 250 kV/cm, together with excellent temperature and frequency stability, which were superior to those of the reported barium zirconate titanate-based ceramics. Our work provides an effective strategy to optimize the energy storage performance of lead-free barium zirconate titanate-based ceramics toward practical applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference F. Yan, H. Yang, Y. Lin et al., Dielectric and ferroelectric properties of SrTiO3-Bi0.5Na0.5TiO3-BaAl0.5Nb0.5O3 lead-free ceramics for high-energy-storage applications. Inorg. Chem. 56, 13510–13516 (2017)CrossRef F. Yan, H. Yang, Y. Lin et al., Dielectric and ferroelectric properties of SrTiO3-Bi0.5Na0.5TiO3-BaAl0.5Nb0.5O3 lead-free ceramics for high-energy-storage applications. Inorg. Chem. 56, 13510–13516 (2017)CrossRef
2.
go back to reference L. Yang, X. Kong, Z. Cheng et al., Ultra-high energy storage performance with mitigated polarization saturation in lead-free relaxors. J. Mater. Chem. A 7, 8573–8580 (2019)CrossRef L. Yang, X. Kong, Z. Cheng et al., Ultra-high energy storage performance with mitigated polarization saturation in lead-free relaxors. J. Mater. Chem. A 7, 8573–8580 (2019)CrossRef
3.
go back to reference L. Yang, X. Kong, F. Li et al., Perovskite lead-free dielectrics for energy storage applications. Prog. Mater Sci. 102, 72–108 (2019)CrossRef L. Yang, X. Kong, F. Li et al., Perovskite lead-free dielectrics for energy storage applications. Prog. Mater Sci. 102, 72–108 (2019)CrossRef
4.
go back to reference C. Zhu, Z. Cai, B. Luo et al., High temperature lead-free BNT-based ceramics with stable energy storage and dielectric properties. J. Mater. Chem. A 8, 683–692 (2020)CrossRef C. Zhu, Z. Cai, B. Luo et al., High temperature lead-free BNT-based ceramics with stable energy storage and dielectric properties. J. Mater. Chem. A 8, 683–692 (2020)CrossRef
5.
go back to reference F. Pang, X. Chen, C. Sun et al., Ultrahigh energy storage characteristics of sodium niobate-based ceramics by introducing a local random field. ACS Sustain. Chem. Eng. 8, 14985–14995 (2020)CrossRef F. Pang, X. Chen, C. Sun et al., Ultrahigh energy storage characteristics of sodium niobate-based ceramics by introducing a local random field. ACS Sustain. Chem. Eng. 8, 14985–14995 (2020)CrossRef
6.
go back to reference X. Hao, A review on the dielectric materials for high energy-storage application. JAD 3, 1330001 (2013) X. Hao, A review on the dielectric materials for high energy-storage application. JAD 3, 1330001 (2013)
7.
go back to reference H. Pan, F. Li, Y. Liu et al., Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science 365, 578–582 (2019)CrossRef H. Pan, F. Li, Y. Liu et al., Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science 365, 578–582 (2019)CrossRef
8.
go back to reference Q. Wang, M. Gong, M. Wang, High recoverable energy storage density and large energy efficiency simultaneously achieved in BaTiO3-Bi(Zn1/2Zr1/2)O3 relaxor ferroelectrics. Ceram. Int. 46, 22452–22459 (2020)CrossRef Q. Wang, M. Gong, M. Wang, High recoverable energy storage density and large energy efficiency simultaneously achieved in BaTiO3-Bi(Zn1/2Zr1/2)O3 relaxor ferroelectrics. Ceram. Int. 46, 22452–22459 (2020)CrossRef
9.
go back to reference I. Burn, D. Smyth, Energy storage in ceramic dielectrics. J. Mater. Sci. 7, 339–343 (1972)CrossRef I. Burn, D. Smyth, Energy storage in ceramic dielectrics. J. Mater. Sci. 7, 339–343 (1972)CrossRef
10.
go back to reference P. Kim, N. Doss, J. Tillotson et al., High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3, 2581–2592 (2009)CrossRef P. Kim, N. Doss, J. Tillotson et al., High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3, 2581–2592 (2009)CrossRef
11.
go back to reference H. Ogihara, C. Randall, K. Trolier et al., High‐energy density capacitors utilizing 0.7BaTiO3–0.3BiScO3 ceramics. J. Am. Cream. Soc. 92, 1719–1724 (2009)CrossRef H. Ogihara, C. Randall, K. Trolier et al., High‐energy density capacitors utilizing 0.7BaTiO3–0.3BiScO3 ceramics. J. Am. Cream. Soc. 92, 1719–1724 (2009)CrossRef
12.
go back to reference P. Zhao, H. Wang, L. Wu et al., High-performance relaxor ferroelectric materials for energy storage applications. Adv. Energy Mater. 9, 1803048 (2019)CrossRef P. Zhao, H. Wang, L. Wu et al., High-performance relaxor ferroelectric materials for energy storage applications. Adv. Energy Mater. 9, 1803048 (2019)CrossRef
13.
go back to reference J. Yin, Y. Zhang, X. Lv et al., Ultrahigh energy-storage potential under low electric field in bismuth sodium titanate-based perovskite ferroelectrics. J. Mater. Chem. A 6, 9823–9832 (2018)CrossRef J. Yin, Y. Zhang, X. Lv et al., Ultrahigh energy-storage potential under low electric field in bismuth sodium titanate-based perovskite ferroelectrics. J. Mater. Chem. A 6, 9823–9832 (2018)CrossRef
14.
go back to reference H. Qi, R. Zuo, Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3-NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency. J. Mater. Chem. A 7, 3971–3978 (2019)CrossRef H. Qi, R. Zuo, Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3-NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency. J. Mater. Chem. A 7, 3971–3978 (2019)CrossRef
15.
go back to reference C. Yang, P. Lv, J. Qian et al., Fatigue‐free and bending‐endurable flexible Mn‐doped Na0.5Bi0.5TiO3-BaTiO3‐BiFeO3 film capacitor with an ultrahigh energy storage performance. Adv. Energy Mater. 9, 1803949 (2019)CrossRef C. Yang, P. Lv, J. Qian et al., Fatigue‐free and bending‐endurable flexible Mn‐doped Na0.5Bi0.5TiO3-BaTiO3‐BiFeO3 film capacitor with an ultrahigh energy storage performance. Adv. Energy Mater. 9, 1803949 (2019)CrossRef
16.
go back to reference A.K. Yadav, H. Fan, B. Yan et al., High energy storage density and stable fatigue resistance of Na0.46Bi0.46Ba0.05La0.02Zr0.03Ti0.97-xSnxO3 ceramics. Ceram. Int. 46, 5681–5688 (2020)CrossRef A.K. Yadav, H. Fan, B. Yan et al., High energy storage density and stable fatigue resistance of Na0.46Bi0.46Ba0.05La0.02Zr0.03Ti0.97-xSnxO3 ceramics. Ceram. Int. 46, 5681–5688 (2020)CrossRef
17.
go back to reference B. Yan, H. Fan, C. Wang et al., Giant electro-strain and enhanced energy storage performance of (Y0.5Ta0.5)4+ co-doped 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 lead-free ceramics. Ceram. Int. 46, 281–288 (2020)CrossRef B. Yan, H. Fan, C. Wang et al., Giant electro-strain and enhanced energy storage performance of (Y0.5Ta0.5)4+ co-doped 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 lead-free ceramics. Ceram. Int. 46, 281–288 (2020)CrossRef
18.
go back to reference D. Zheng, R. Zuo, D. Zhang et al., Novel BiFeO3-BaTiO3-Ba(Mg1/3Nb2/3)O3 lead-free relaxor ferroelectric ceramics for energy-storage capacitors. J. Am. Cream. Soc. 98, 2692–2695 (2015)CrossRef D. Zheng, R. Zuo, D. Zhang et al., Novel BiFeO3-BaTiO3-Ba(Mg1/3Nb2/3)O3 lead-free relaxor ferroelectric ceramics for energy-storage capacitors. J. Am. Cream. Soc. 98, 2692–2695 (2015)CrossRef
19.
go back to reference H. Pan, J. Ma, J. Ma et al., Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat. Commun. 9, 1–8 (2018)CrossRef H. Pan, J. Ma, J. Ma et al., Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat. Commun. 9, 1–8 (2018)CrossRef
20.
go back to reference H. Yang, H. Qi, R. Zuo, Enhanced breakdown strength and energy storage density in a new BiFeO3-based ternary lead-free relaxor ferroelectric ceramic. J. Eur. Ceram. Soc. 39, 2673–2679 (2019)CrossRef H. Yang, H. Qi, R. Zuo, Enhanced breakdown strength and energy storage density in a new BiFeO3-based ternary lead-free relaxor ferroelectric ceramic. J. Eur. Ceram. Soc. 39, 2673–2679 (2019)CrossRef
21.
go back to reference H. Qi, A. Xie, A. Tian et al., Superior energy-storage capacitors with simultaneously giant energy density and efficiency using nanodomain engineered BiFeO3-BaTiO3-NaNbO3 lead-free bulk ferroelectrics. Adv. Energy Mater. 10, 1903338 (2020)CrossRef H. Qi, A. Xie, A. Tian et al., Superior energy-storage capacitors with simultaneously giant energy density and efficiency using nanodomain engineered BiFeO3-BaTiO3-NaNbO3 lead-free bulk ferroelectrics. Adv. Energy Mater. 10, 1903338 (2020)CrossRef
22.
go back to reference Y. Zhang, Y. Li, H. Zhu et al., Low dielectric loss of Bi-doped BaZr0.15Ti0.85O3 ceramics for high-voltage capacitor applications. Ceram. Int. 43, 12186–12190 (2017)CrossRef Y. Zhang, Y. Li, H. Zhu et al., Low dielectric loss of Bi-doped BaZr0.15Ti0.85O3 ceramics for high-voltage capacitor applications. Ceram. Int. 43, 12186–12190 (2017)CrossRef
23.
go back to reference V. Puli, D. Pradhan, B. Riggs et al., Structure, ferroelectric, dielectric and energy storage studies of Ba0.70Ca0.30TiO3, Ba(Zr0.20Ti0.80)O3 ceramic capacitors. Integr. Ferroelectr. 157, 139–146 (2014)CrossRef V. Puli, D. Pradhan, B. Riggs et al., Structure, ferroelectric, dielectric and energy storage studies of Ba0.70Ca0.30TiO3, Ba(Zr0.20Ti0.80)O3 ceramic capacitors. Integr. Ferroelectr. 157, 139–146 (2014)CrossRef
24.
go back to reference Y. Zhang, Y. Li, H. Zhu et al., Sintering temperature dependence of dielectric properties and energy-storage properties in (Ba, Zr) TiO3 ceramics. J. Mater. Sci.: Mater. Electron. 28, 514–518 (2017) Y. Zhang, Y. Li, H. Zhu et al., Sintering temperature dependence of dielectric properties and energy-storage properties in (Ba, Zr) TiO3 ceramics. J. Mater. Sci.: Mater. Electron. 28, 514–518 (2017)
25.
go back to reference B. Liu, Y. Wu, Y. Huang et al., Enhanced dielectric strength and energy storage density in BaTi0.7Zr0.3O3 ceramics via spark plasma sintering. J. Mater. Sci. 54, 4511–4517 (2019)CrossRef B. Liu, Y. Wu, Y. Huang et al., Enhanced dielectric strength and energy storage density in BaTi0.7Zr0.3O3 ceramics via spark plasma sintering. J. Mater. Sci. 54, 4511–4517 (2019)CrossRef
26.
go back to reference S. Ghosh, S. Saha, T. Sinha et al., Large electrostrictive effect in (Ba1-xGd2x/3)Zr0.3Ti0.7O3 relaxor towards moderate field actuator and energy storage applications. J. Appl. Phys. 120, (2016)CrossRef S. Ghosh, S. Saha, T. Sinha et al., Large electrostrictive effect in (Ba1-xGd2x/3)Zr0.3Ti0.7O3 relaxor towards moderate field actuator and energy storage applications. J. Appl. Phys. 120, (2016)CrossRef
27.
go back to reference Z. Sun, L. Li, S. Yu et al., Energy storage properties and relaxor behavior of lead-free Ba1−xSm2x/3Zr0.15Ti0.85O3 ceramics. Dalton Trans. 46, 14341–14347 (2017)CrossRef Z. Sun, L. Li, S. Yu et al., Energy storage properties and relaxor behavior of lead-free Ba1−xSm2x/3Zr0.15Ti0.85O3 ceramics. Dalton Trans. 46, 14341–14347 (2017)CrossRef
28.
go back to reference X. Wang, B. Zhang, L. Shi et al., Dielectric relaxation behavior and energy storage properties in Ba1−x(Bi0.5K0.5)xTi0.85Zr0.15O3 ceramics. J. Alloys Compd. 789, 983–990 (2019)CrossRef X. Wang, B. Zhang, L. Shi et al., Dielectric relaxation behavior and energy storage properties in Ba1−x(Bi0.5K0.5)xTi0.85Zr0.15O3 ceramics. J. Alloys Compd. 789, 983–990 (2019)CrossRef
29.
go back to reference R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)CrossRef R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)CrossRef
30.
go back to reference C. Huang, D. Cann, Phase transitions and dielectric properties in Bi (Zn1/2Ti1/2) O 3-BaTiO3 perovskite solid solutions. J. Appl. Phys. 104, (2008)CrossRef C. Huang, D. Cann, Phase transitions and dielectric properties in Bi (Zn1/2Ti1/2) O 3-BaTiO3 perovskite solid solutions. J. Appl. Phys. 104, (2008)CrossRef
31.
go back to reference X. Fu, W. Cai, G. Cheng et al., Effects of Sn doping on the microstructure and dielectric and ferroelectric properties of Ba(Zr0.2Ti0.8)O3 ceramics. J. Mater. Sci.: Mater. Electron. 28, 8177–8185 (2017) X. Fu, W. Cai, G. Cheng et al., Effects of Sn doping on the microstructure and dielectric and ferroelectric properties of Ba(Zr0.2Ti0.8)O3 ceramics. J. Mater. Sci.: Mater. Electron. 28, 8177–8185 (2017)
32.
go back to reference P. Ren, Z. Liu, X. Wang et al., Dielectric and energy storage properties of SrTiO3 and SrZrO3 modified Bi0.5Na0.5TiO3-Sr0.8Bi0.1-0.1TiO3 based ceramics. J. Alloys Compd. 742, 683–689 (2018)CrossRef P. Ren, Z. Liu, X. Wang et al., Dielectric and energy storage properties of SrTiO3 and SrZrO3 modified Bi0.5Na0.5TiO3-Sr0.8Bi0.1-0.1TiO3 based ceramics. J. Alloys Compd. 742, 683–689 (2018)CrossRef
33.
go back to reference G. Liu, Y. Li, Z. Wang et al., Dielectric, ferroelectric and energy storage properties of lead-free (1 − x)Ba0.9Sr0.1TiO3-xBi(Zn0.5Zr0.5)O3 ferroelectric ceramics sintered at lower temperature. Ceram. Int. 45, 15556–15565 (2019)CrossRef G. Liu, Y. Li, Z. Wang et al., Dielectric, ferroelectric and energy storage properties of lead-free (1 − x)Ba0.9Sr0.1TiO3-xBi(Zn0.5Zr0.5)O3 ferroelectric ceramics sintered at lower temperature. Ceram. Int. 45, 15556–15565 (2019)CrossRef
34.
go back to reference A. Xie, H. Qi, R. Zuo, Achieving remarkable amplification of energy-storage density in two-step sintered NaNbO3-SrTiO3 antiferroelectric capacitors through dual adjustment of local heterogeneity and grain scale. ACS Appl. Mater. Interfaces 12, 19467–19475 (2020)CrossRef A. Xie, H. Qi, R. Zuo, Achieving remarkable amplification of energy-storage density in two-step sintered NaNbO3-SrTiO3 antiferroelectric capacitors through dual adjustment of local heterogeneity and grain scale. ACS Appl. Mater. Interfaces 12, 19467–19475 (2020)CrossRef
35.
go back to reference Q. Yuan, F. Yao, Y. Wang et al., Relaxor ferroelectric 0.9BaTiO3-0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties. J. Mater. Chem. C 5, 9552–9558 (2017)CrossRef Q. Yuan, F. Yao, Y. Wang et al., Relaxor ferroelectric 0.9BaTiO3-0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties. J. Mater. Chem. C 5, 9552–9558 (2017)CrossRef
36.
go back to reference C. Cui, Y. Pu, R. Shi, High-energy storage performance in lead-free (0.8 − x)SrTiO3-0.2Na0.5Bi0.5TiO3-xBaTiO3 relaxor ferroelectric ceramics. J. Alloys Compd. 740, 1180–1187 (2018)CrossRef C. Cui, Y. Pu, R. Shi, High-energy storage performance in lead-free (0.8 − x)SrTiO3-0.2Na0.5Bi0.5TiO3-xBaTiO3 relaxor ferroelectric ceramics. J. Alloys Compd. 740, 1180–1187 (2018)CrossRef
37.
go back to reference M. Zhou, R. Liang, Z. Zhou et al., Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy. J. Mater. Chem. A 6, 17896–17904 (2018)CrossRef M. Zhou, R. Liang, Z. Zhou et al., Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy. J. Mater. Chem. A 6, 17896–17904 (2018)CrossRef
38.
go back to reference J. Ye, G. Wang, M. Zhou et al., Excellent comprehensive energy storage properties of novel lead-free NaNbO3-based ceramics for dielectric capacitor applications. J. Mater. Chem. C 7, 5639–5645 (2019)CrossRef J. Ye, G. Wang, M. Zhou et al., Excellent comprehensive energy storage properties of novel lead-free NaNbO3-based ceramics for dielectric capacitor applications. J. Mater. Chem. C 7, 5639–5645 (2019)CrossRef
39.
go back to reference X. Zhao, Z. Zhou, R. Liang et al., High-energy storage performance in lead-free (1 − x)BaTiO3-xBi(Zn0.5Ti0.5)O3 relaxor ceramics for temperature stability applications. Ceram. Int. 43, 9060–9066 (2017)CrossRef X. Zhao, Z. Zhou, R. Liang et al., High-energy storage performance in lead-free (1 − x)BaTiO3-xBi(Zn0.5Ti0.5)O3 relaxor ceramics for temperature stability applications. Ceram. Int. 43, 9060–9066 (2017)CrossRef
40.
go back to reference T. Wang, Y. Wang, H. Yang et al., Structure, dielectric properties of low-temperature-sintering BaTiO3-based glass–ceramics for energy storage. JAD 8, 1850041 (2018) T. Wang, Y. Wang, H. Yang et al., Structure, dielectric properties of low-temperature-sintering BaTiO3-based glass–ceramics for energy storage. JAD 8, 1850041 (2018)
41.
go back to reference Y. Pu, L. Zhang, Y. Cui et al., High energy storage density and optical transparency of microwave sintered homogeneous (Na0.5Bi0.5)(1–x)BaxTi(1–y)SnyO3-Ceramics. ACS Sustain. Chem. Eng. 6, 6102–6109 (2018)CrossRef Y. Pu, L. Zhang, Y. Cui et al., High energy storage density and optical transparency of microwave sintered homogeneous (Na0.5Bi0.5)(1–x)BaxTi(1–y)SnyO3-Ceramics. ACS Sustain. Chem. Eng. 6, 6102–6109 (2018)CrossRef
42.
go back to reference K. Axelsson, G. Le, M. Valant et al., Electrocaloric effect in lead-free Aurivillius relaxor ferroelectric ceramics. Acta Mater. 124, 120–126 (2017)CrossRef K. Axelsson, G. Le, M. Valant et al., Electrocaloric effect in lead-free Aurivillius relaxor ferroelectric ceramics. Acta Mater. 124, 120–126 (2017)CrossRef
43.
go back to reference T. Li, X. Liu, S. Shi et al., Large electrocaloric efficiency over a broad temperature span in lead-free BaTiO3-based ceramics near room temperature. Appl. Phys. Lett. 111, 202902 (2017)CrossRef T. Li, X. Liu, S. Shi et al., Large electrocaloric efficiency over a broad temperature span in lead-free BaTiO3-based ceramics near room temperature. Appl. Phys. Lett. 111, 202902 (2017)CrossRef
44.
go back to reference W. Ping, W. Liu, S. Li, Enhanced energy storage property in glass-added Ba(Zr0.2Ti0.8)O3-0.15(Ba0.7Ca0.3)TiO3 ceramics and the charge relaxation. Ceram. Int. 45, 11388–11394 (2019)CrossRef W. Ping, W. Liu, S. Li, Enhanced energy storage property in glass-added Ba(Zr0.2Ti0.8)O3-0.15(Ba0.7Ca0.3)TiO3 ceramics and the charge relaxation. Ceram. Int. 45, 11388–11394 (2019)CrossRef
45.
go back to reference A. Jayakrishnan, K. Alex, A. Thomas et al., Composition-dependent xBa (Zr0.2Ti0.8)O3-(1 − x)(Ba0.7Ca0.3)TiO3 bulk ceramics for high energy storage applications. Ceram. Int. 45, 5808–5818 (2019)CrossRef A. Jayakrishnan, K. Alex, A. Thomas et al., Composition-dependent xBa (Zr0.2Ti0.8)O3-(1 − x)(Ba0.7Ca0.3)TiO3 bulk ceramics for high energy storage applications. Ceram. Int. 45, 5808–5818 (2019)CrossRef
46.
go back to reference R. Sumang, N. Thongmee, T. Bongkarn et al., Structural, optical and electrical properties of the microcrystalline structure of (Ba1−xY2x/3)(Zr0.20Ti0.80)O3 ceramics. Radiat. Phys. Chem. 172, (2020)CrossRef R. Sumang, N. Thongmee, T. Bongkarn et al., Structural, optical and electrical properties of the microcrystalline structure of (Ba1−xY2x/3)(Zr0.20Ti0.80)O3 ceramics. Radiat. Phys. Chem. 172, (2020)CrossRef
Metadata
Title
Novel barium zirconate titanate-based lead-free ceramics with stably high energy storage performance over a broad temperature and frequency range
Authors
Xiongwei Lin
Xiaobo Zhao
Lei Zhou
Mingrui Zhao
Yi Lin
Yingbang Yao
Bo Liang
Tao Tao
Sheng-Guo Lu
Publication date
04-04-2021
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 9/2021
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-05814-9

Other articles of this Issue 9/2021

Journal of Materials Science: Materials in Electronics 9/2021 Go to the issue