Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 9/2021

13-04-2021

Investigation of electrical properties of silica-reinforced RTV nanocomposite coatings

Authors: A. Zolriasatein, Z. Rajabi Mashhadi, Sh Navazani, M. Rezaei Abadchi, N. Riahi Noori, N. Abdi

Published in: Journal of Materials Science: Materials in Electronics | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study investigates the effect of various amounts of silica nanoparticles on electrical properties of RTV-SiO2 nanocomposite. The effect of increasing the amounts of filler in the RTV1 polymer matrix on the dispersion and dispersibility of nanoparticles has also been investigated through microscopic images. SEM images demonstrated that surface roughness excessed with increasing filler percentage, so that the non-uniformed distribution of the fillers will occur and the surface morphology will change. Electrical results indicated an increase in dielectric loss factor and a decrease in volume resistance via addition of 1, 3, and 5%wt nano-silica in composites. Also, there was a significant decrease in the dielectric strength by adding 3%wt of nano-silica. However, the dielectric constant and surface resistance did not change. Tracking test demonstrated that the erosion resistance of the sloping surface was greatly improved by increasing the nano-silica content, and this is very important for the application of this specific nanocomposite as a high-voltage insulators coating.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Katz, R.J. Theis, New high temperature polyimide insulation for partial discharge resistance in harsh environments. IEEE Electr. Insul. Mag. 13(4), 24–30 (1997)CrossRef M. Katz, R.J. Theis, New high temperature polyimide insulation for partial discharge resistance in harsh environments. IEEE Electr. Insul. Mag. 13(4), 24–30 (1997)CrossRef
2.
go back to reference X. Wang, S. Kumagai, N. Yoshimura, Contamination performances of silicone rubber insulator subjected to acid rain. IEEE Trans. Dielectr. Electr. Insul. 5(6), 909–916 (1998)CrossRef X. Wang, S. Kumagai, N. Yoshimura, Contamination performances of silicone rubber insulator subjected to acid rain. IEEE Trans. Dielectr. Electr. Insul. 5(6), 909–916 (1998)CrossRef
3.
go back to reference A. Germano, J. Kindersberger, M. Seifert. Influence of nanosilica on the performance of HTV silicone rubber for outdoor insulation. In 18th International Symposium on High Voltage Engineering. A. Germano, J. Kindersberger, M. Seifert. Influence of nanosilica on the performance of HTV silicone rubber for outdoor insulation. In 18th International Symposium on High Voltage Engineering.
4.
go back to reference A. Phillips, A. D. Childs, G. Gela. Application guide for transmission line non-ceramic insulators. Final report. No. EPRI-TR-111566. Electric Power Research Inst., Palo Alto, CA (United States), 1998. A. Phillips, A. D. Childs, G. Gela. Application guide for transmission line non-ceramic insulators. Final report. No. EPRI-TR-111566. Electric Power Research Inst., Palo Alto, CA (United States), 1998.
5.
go back to reference T. Zhao, R. Allen Bernstorf, Ageing tests of polymeric housing materials for non-ceramic insulators. IEEE Electr. Insul. Mag. 14(2), 26–33 (1998)CrossRef T. Zhao, R. Allen Bernstorf, Ageing tests of polymeric housing materials for non-ceramic insulators. IEEE Electr. Insul. Mag. 14(2), 26–33 (1998)CrossRef
6.
go back to reference R.E. Macey, W.L. Vosloo, C. Tourreil, The Practical Guide to Outdoor High Voltage Insulators (Crown Publications, New York, 2004). R.E. Macey, W.L. Vosloo, C. Tourreil, The Practical Guide to Outdoor High Voltage Insulators (Crown Publications, New York, 2004).
7.
go back to reference A.P. Mishra, R.S. Gorur, S. Venkataraman, Evaluation of porcelain and toughened glass suspension insulators removed from service. IEEE Trans. Dielectr. Electr. Insul. 15(2), 467–475 (2008)CrossRef A.P. Mishra, R.S. Gorur, S. Venkataraman, Evaluation of porcelain and toughened glass suspension insulators removed from service. IEEE Trans. Dielectr. Electr. Insul. 15(2), 467–475 (2008)CrossRef
8.
go back to reference R.S. Gorur, E.A. Cherney, R. Hackam, T. Orbeck, The electrical performance of polymeric insulating materials under accelerated aging in a fog chamber. IEEE Trans. Power Delivery 3(3), 1157–1164 (1988)CrossRef R.S. Gorur, E.A. Cherney, R. Hackam, T. Orbeck, The electrical performance of polymeric insulating materials under accelerated aging in a fog chamber. IEEE Trans. Power Delivery 3(3), 1157–1164 (1988)CrossRef
9.
go back to reference R. Hackam, Outdoor HV composite polymeric insulators. IEEE Trans. Dielectr. Electr. Insul. 6(5), 557–585 (1999)CrossRef R. Hackam, Outdoor HV composite polymeric insulators. IEEE Trans. Dielectr. Electr. Insul. 6(5), 557–585 (1999)CrossRef
10.
go back to reference J. Mackevich, S. Simmons, Polymer outdoor insulating materials. II. Material considerations. IEEE Electr. Insul. Mag. 13(4), 10–16 (1997)CrossRef J. Mackevich, S. Simmons, Polymer outdoor insulating materials. II. Material considerations. IEEE Electr. Insul. Mag. 13(4), 10–16 (1997)CrossRef
11.
go back to reference JST Looms. Insulators for high voltages. No. 7. IET, 1988. JST Looms. Insulators for high voltages. No. 7. IET, 1988.
12.
go back to reference E.A. Cherney, Non-ceramic insulators-A simple design that requires careful analysis. IEEE Electr. Insul. Mag. 12(3), 7–15 (1996)CrossRef E.A. Cherney, Non-ceramic insulators-A simple design that requires careful analysis. IEEE Electr. Insul. Mag. 12(3), 7–15 (1996)CrossRef
13.
go back to reference S. Gubanski, R. Hartings, Swedish research on the application of composite insulators in outdoor insulation. IEEE Electr. Insul. Mag. 11(5), 24–31 (1995)CrossRef S. Gubanski, R. Hartings, Swedish research on the application of composite insulators in outdoor insulation. IEEE Electr. Insul. Mag. 11(5), 24–31 (1995)CrossRef
14.
go back to reference M. Amin, A. Khattak, M. Ali, Accelerated aging investigation of silicone rubber/silica composites for coating of high-voltage insulators. Electr. Eng. 100(1), 217–230 (2018)CrossRef M. Amin, A. Khattak, M. Ali, Accelerated aging investigation of silicone rubber/silica composites for coating of high-voltage insulators. Electr. Eng. 100(1), 217–230 (2018)CrossRef
15.
go back to reference S. Braley, The silicones as sub dermal engineering materials. Ann. N. Y. Acad. Sci. 146(1), 148–157 (1968)CrossRef S. Braley, The silicones as sub dermal engineering materials. Ann. N. Y. Acad. Sci. 146(1), 148–157 (1968)CrossRef
16.
go back to reference J.P. Reynders, I.R. Jandrell, S.M. Reynders, Review of aging and recovery of silicone rubber insulation for outdoor use. IEEE Trans. Dielectr. Electr. Insul. 6(5), 620–631 (1999)CrossRef J.P. Reynders, I.R. Jandrell, S.M. Reynders, Review of aging and recovery of silicone rubber insulation for outdoor use. IEEE Trans. Dielectr. Electr. Insul. 6(5), 620–631 (1999)CrossRef
17.
go back to reference W. Song, W.-W. Shen, G.-J. Zhang, B.-P. Song, Y. Lang, Su. Guo-Qiang, Mu. Hai-Bao, J.-B. Deng, Aging characterization of high temperature vulcanized silicone rubber housing material used for outdoor insulation. IEEE Trans. Dielectr. Electr. Insul. 22(2), 961–969 (2015)CrossRef W. Song, W.-W. Shen, G.-J. Zhang, B.-P. Song, Y. Lang, Su. Guo-Qiang, Mu. Hai-Bao, J.-B. Deng, Aging characterization of high temperature vulcanized silicone rubber housing material used for outdoor insulation. IEEE Trans. Dielectr. Electr. Insul. 22(2), 961–969 (2015)CrossRef
18.
go back to reference R.S. Gorur, A.O. De La, H. El-Kishky, M. Chowdhary, H. Mukherjee, R. Sundaram, J.T. Burnham, Sudden flashover of nonceramic insulators in artificial contamination tests. IEEE Trans. Dielectr. Electr. Insul. 4(1), 79–87 (1997)CrossRef R.S. Gorur, A.O. De La, H. El-Kishky, M. Chowdhary, H. Mukherjee, R. Sundaram, J.T. Burnham, Sudden flashover of nonceramic insulators in artificial contamination tests. IEEE Trans. Dielectr. Electr. Insul. 4(1), 79–87 (1997)CrossRef
19.
go back to reference D. Cangialosi, V.M. Boucher, A. Alegría, J. Colmenero, Physical aging in polymers and polymer nanocomposites: recent results and open questions. Soft Matter 9(36), 8619–8630 (2013)CrossRef D. Cangialosi, V.M. Boucher, A. Alegría, J. Colmenero, Physical aging in polymers and polymer nanocomposites: recent results and open questions. Soft Matter 9(36), 8619–8630 (2013)CrossRef
20.
go back to reference A. H. El-Hag, S. H. Jayaram, E. A. Cherney. Comparison between silicone rubber containing micro-and nano-size silica fillers [insulating material applications]. In The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2004. LEOS 2004, pp. 385–388. IEEE, 2004. A. H. El-Hag, S. H. Jayaram, E. A. Cherney. Comparison between silicone rubber containing micro-and nano-size silica fillers [insulating material applications]. In The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2004. LEOS 2004, pp. 385–388. IEEE, 2004.
21.
go back to reference A.H. El-Hag, L.C. Simon, S.H. Jayaram, E.A. Cherney, Erosion resistance of nano-filled silicone rubber. IEEE Trans. Dielectr. Electr. Insul. 13(1), 122–128 (2006)CrossRef A.H. El-Hag, L.C. Simon, S.H. Jayaram, E.A. Cherney, Erosion resistance of nano-filled silicone rubber. IEEE Trans. Dielectr. Electr. Insul. 13(1), 122–128 (2006)CrossRef
22.
go back to reference L.C. Sim, S.R. Ramanan, H. Ismail, K.N. Seetharamu, T.J. Goh, Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim. Acta 430(1–2), 155–165 (2005)CrossRef L.C. Sim, S.R. Ramanan, H. Ismail, K.N. Seetharamu, T.J. Goh, Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim. Acta 430(1–2), 155–165 (2005)CrossRef
23.
go back to reference S. Kemaloglu, G. Ozkoc, A. Aytac, Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites. Thermochim. Acta 499(1–2), 40–47 (2010)CrossRef S. Kemaloglu, G. Ozkoc, A. Aytac, Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites. Thermochim. Acta 499(1–2), 40–47 (2010)CrossRef
24.
go back to reference J. K. Nelson, Y. Hu, J. Thiticharoenpong. Electrical properties of TiO/sub 2/nanocomposites. In 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp. 719–722. IEEE, 2003. J. K. Nelson, Y. Hu, J. Thiticharoenpong. Electrical properties of TiO/sub 2/nanocomposites. In 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp. 719–722. IEEE, 2003.
25.
go back to reference S.H. Kim, E.A. Cherney, R. Hackam, Effects of filler level in RTV silicone rubber coatings used in HV insulators. IEEE Trans. Electr. Insul. 27(6), 1065–1072 (1992)CrossRef S.H. Kim, E.A. Cherney, R. Hackam, Effects of filler level in RTV silicone rubber coatings used in HV insulators. IEEE Trans. Electr. Insul. 27(6), 1065–1072 (1992)CrossRef
26.
go back to reference H. Deng, R. Hackam, E.A. Cherney, Role of the size of particles of alumina trihydrate filler on the life of RTV silicone rubber coating. IEEE Trans. Power Delivery 10(2), 1012–1024 (1995)CrossRef H. Deng, R. Hackam, E.A. Cherney, Role of the size of particles of alumina trihydrate filler on the life of RTV silicone rubber coating. IEEE Trans. Power Delivery 10(2), 1012–1024 (1995)CrossRef
27.
go back to reference S. Fang, J. Zhidong, G. Haifeng, G. Zhicheng. Influence of fillers on silicone rubber for outdoor insulation. In 2007 Annual Report-Conference on Electrical Insulation and Dielectric Phenomena, pp. 300–303. IEEE, 2007. S. Fang, J. Zhidong, G. Haifeng, G. Zhicheng. Influence of fillers on silicone rubber for outdoor insulation. In 2007 Annual Report-Conference on Electrical Insulation and Dielectric Phenomena, pp. 300–303. IEEE, 2007.
28.
go back to reference D. Chen, F. Chen, Hu. Xiaoyun, H. Zhang, X. Yin, Y. Zhou, Thermal stability, mechanical and optical properties of novel addition cured PDMS composites with nano-silica sol and MQ silicone resin. Compos. Sci. Technol. 117, 307–314 (2015)CrossRef D. Chen, F. Chen, Hu. Xiaoyun, H. Zhang, X. Yin, Y. Zhou, Thermal stability, mechanical and optical properties of novel addition cured PDMS composites with nano-silica sol and MQ silicone resin. Compos. Sci. Technol. 117, 307–314 (2015)CrossRef
29.
go back to reference I. Yousafa, A. Sahrish, M. Sajid. Ethylene-propylene-diene terpolymer vulcanizates reinforcement with precipitated silica. In Proceedings of 2013 10th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 43–46. IEEE, 2013. I. Yousafa, A. Sahrish, M. Sajid. Ethylene-propylene-diene terpolymer vulcanizates reinforcement with precipitated silica. In Proceedings of 2013 10th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 43–46. IEEE, 2013.
30.
go back to reference H. Tan, A.I. Isayev, Comparative study of silica-, nanoclay-and carbon black-filled EPDM rubbers. J. Appl. Polym. Sci. 109(2), 767–774 (2008)CrossRef H. Tan, A.I. Isayev, Comparative study of silica-, nanoclay-and carbon black-filled EPDM rubbers. J. Appl. Polym. Sci. 109(2), 767–774 (2008)CrossRef
31.
go back to reference H. Khan, M. Amin, M. Yasin, M. Ali, A. Ahmad, Effect of hybrid-SiO2 particles on characterization of EPDM and silicone rubber composites for outdoor high-voltage insulations. J. Polym. Eng. 37(7), 671–680 (2017)CrossRef H. Khan, M. Amin, M. Yasin, M. Ali, A. Ahmad, Effect of hybrid-SiO2 particles on characterization of EPDM and silicone rubber composites for outdoor high-voltage insulations. J. Polym. Eng. 37(7), 671–680 (2017)CrossRef
32.
go back to reference A. Khattak, M. Amin, Accelerated aging investigation of high voltage EPDM/silica composite insulators. J. Polym. Eng. 36(2), 199–209 (2016)CrossRef A. Khattak, M. Amin, Accelerated aging investigation of high voltage EPDM/silica composite insulators. J. Polym. Eng. 36(2), 199–209 (2016)CrossRef
33.
go back to reference S. Ansorge, F. Schmuck, K.O. Papailiou, Impact of different fillers and filler treatments on the erosion suppression mechanism of silicone rubber for use as outdoor insulation material. IEEE Trans. Dielectr. Electr. Insul. 22(2), 979–988 (2015)CrossRef S. Ansorge, F. Schmuck, K.O. Papailiou, Impact of different fillers and filler treatments on the erosion suppression mechanism of silicone rubber for use as outdoor insulation material. IEEE Trans. Dielectr. Electr. Insul. 22(2), 979–988 (2015)CrossRef
35.
go back to reference W. Xiaofeng, W. Jincheng, Z. Yi, Study on the structure and properties of RTV/FR-DOMt nanocomposites. J. Exp. Nanosci. 11(13), 1058–1073 (2016)CrossRef W. Xiaofeng, W. Jincheng, Z. Yi, Study on the structure and properties of RTV/FR-DOMt nanocomposites. J. Exp. Nanosci. 11(13), 1058–1073 (2016)CrossRef
36.
go back to reference C. Wu, Y. Gao, X. Liang, S.M. Gubanski, Q. Wang, W. Bao, S. Li, Manifestation of interactions of nano-silica in silicone rubber investigated by low-frequency dielectric spectroscopy and mechanical tests. Polymers 11(4), 717 (2019)CrossRef C. Wu, Y. Gao, X. Liang, S.M. Gubanski, Q. Wang, W. Bao, S. Li, Manifestation of interactions of nano-silica in silicone rubber investigated by low-frequency dielectric spectroscopy and mechanical tests. Polymers 11(4), 717 (2019)CrossRef
37.
go back to reference V. Jafari, A. Allahverdi, Synthesis of nanosilica from silica fume using an acid-base precipitation technique and PVA as a nonionic surfactant. J. Ultrafine Grained Nanostruct. Mater. 47(2), 105–112 (2014) V. Jafari, A. Allahverdi, Synthesis of nanosilica from silica fume using an acid-base precipitation technique and PVA as a nonionic surfactant. J. Ultrafine Grained Nanostruct. Mater. 47(2), 105–112 (2014)
38.
go back to reference Y. Özbakır, A. Jonáš, A. Kiraz, C. Erkey, A new type of microphotoreactor with integrated optofluidic waveguide based on solid-air nanoporous aerogels. R. Soc. Open Sci. 5(11), 180802 (2018)CrossRef Y. Özbakır, A. Jonáš, A. Kiraz, C. Erkey, A new type of microphotoreactor with integrated optofluidic waveguide based on solid-air nanoporous aerogels. R. Soc. Open Sci. 5(11), 180802 (2018)CrossRef
39.
go back to reference S.-A. Seyedmehdi, R. Vrckovnik, A. Amirfazli, Robust superhydrophobic coatings from modified siloxane resin. Surf. Innov. 5(4), 203–210 (2017)CrossRef S.-A. Seyedmehdi, R. Vrckovnik, A. Amirfazli, Robust superhydrophobic coatings from modified siloxane resin. Surf. Innov. 5(4), 203–210 (2017)CrossRef
40.
go back to reference R. Tchoudakov, O. Breuer, M. Narkis, A. Siegmann, Conductive polymer blends with low carbon black loading: polypropylene/polyamide. Polym. Eng. Sci. 36(10), 1336–1346 (1996)CrossRef R. Tchoudakov, O. Breuer, M. Narkis, A. Siegmann, Conductive polymer blends with low carbon black loading: polypropylene/polyamide. Polym. Eng. Sci. 36(10), 1336–1346 (1996)CrossRef
41.
go back to reference R. Taipalus, T. Harmia, M.Q. Zhang, K. Friedrich, The electrical conductivity of carbon-fibre-reinforced polypropylene/polyaniline complex-blends: experimental characterisation and modelling. Compos. Sci. Technol. 61(6), 801–814 (2001)CrossRef R. Taipalus, T. Harmia, M.Q. Zhang, K. Friedrich, The electrical conductivity of carbon-fibre-reinforced polypropylene/polyaniline complex-blends: experimental characterisation and modelling. Compos. Sci. Technol. 61(6), 801–814 (2001)CrossRef
42.
go back to reference D. Zhi-Min, Z. Yi-He, S.C. Tjong, Dependence of dielectric behavior on the physical property of fillers in the polymer-matrix composites. Synth. Met. 146(1), 79–84 (2004)CrossRef D. Zhi-Min, Z. Yi-He, S.C. Tjong, Dependence of dielectric behavior on the physical property of fillers in the polymer-matrix composites. Synth. Met. 146(1), 79–84 (2004)CrossRef
43.
go back to reference D. Ajalesh Balachandran Nair, E.P. Ayswarya, J. Rani, N. Changwoon, Effect of aluminium hydroxide on thermal, dynamic mechanical and dielectric properties of hexafluoropropylene-vinylidinefluoride elastomeric composites. Adv. Nanomater. 2(2), 80–95 (2017) D. Ajalesh Balachandran Nair, E.P. Ayswarya, J. Rani, N. Changwoon, Effect of aluminium hydroxide on thermal, dynamic mechanical and dielectric properties of hexafluoropropylene-vinylidinefluoride elastomeric composites. Adv. Nanomater. 2(2), 80–95 (2017)
44.
go back to reference H. Khan, M. Amin, M. Ali, M. Iqbal, M. Yasin, Effect of micro/nano-SiO2 on mechanical, thermal, and electrical properties of silicone rubber, epoxy, and EPDM composites for outdoor electrical insulations. Turk. J. Electr. Eng. Comput. Sci. 25(2), 1426–1435 (2017)CrossRef H. Khan, M. Amin, M. Ali, M. Iqbal, M. Yasin, Effect of micro/nano-SiO2 on mechanical, thermal, and electrical properties of silicone rubber, epoxy, and EPDM composites for outdoor electrical insulations. Turk. J. Electr. Eng. Comput. Sci. 25(2), 1426–1435 (2017)CrossRef
45.
go back to reference H. Khan, M. Amin, A. Ahmad, M. Yasin, Investigation of electrical, tracking/erosion, and water absorption resistance properties of ATH-SiO2-reinforced RTV-SiR composites for high-voltage insulations. J. Elastomers Plast. 50(6), 501–519 (2018)CrossRef H. Khan, M. Amin, A. Ahmad, M. Yasin, Investigation of electrical, tracking/erosion, and water absorption resistance properties of ATH-SiO2-reinforced RTV-SiR composites for high-voltage insulations. J. Elastomers Plast. 50(6), 501–519 (2018)CrossRef
46.
go back to reference R. Prabu, S. Usa, K. Udayakumar, M. Abdullah Khan, S.S.M. Abdul Majeed, Electrical insulation characteristics of silicone and epdm polymeric blends. I. IEEE Trans. Dielectr. Electr. Insul. 14(5), 1207–1214 (2007)CrossRef R. Prabu, S. Usa, K. Udayakumar, M. Abdullah Khan, S.S.M. Abdul Majeed, Electrical insulation characteristics of silicone and epdm polymeric blends. I. IEEE Trans. Dielectr. Electr. Insul. 14(5), 1207–1214 (2007)CrossRef
47.
go back to reference M.A. Pradeep, N. Vasudev, P.V. Reddy, D. Khastgir, Effect of ATH content on electrical and aging properties of EVA and silicone rubber blends for high voltage insulator compound. J. Appl. Polym. Sci. 104(6), 3505–3516 (2007)CrossRef M.A. Pradeep, N. Vasudev, P.V. Reddy, D. Khastgir, Effect of ATH content on electrical and aging properties of EVA and silicone rubber blends for high voltage insulator compound. J. Appl. Polym. Sci. 104(6), 3505–3516 (2007)CrossRef
Metadata
Title
Investigation of electrical properties of silica-reinforced RTV nanocomposite coatings
Authors
A. Zolriasatein
Z. Rajabi Mashhadi
Sh Navazani
M. Rezaei Abadchi
N. Riahi Noori
N. Abdi
Publication date
13-04-2021
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 9/2021
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-05855-0

Other articles of this Issue 9/2021

Journal of Materials Science: Materials in Electronics 9/2021 Go to the issue