Skip to main content
Top
Published in: Journal of Computational Electronics 5/2021

13-08-2021

Optical and W-shaped bright solitons of the conformable derivative nonlinear differential equation

Authors: Hamadou Halidou, Alphonse Houwe, Souleymanou Abbagari, Mustafa Inc, Serge Y. Doka, Thomas Bouetou Bouetou

Published in: Journal of Computational Electronics | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we construct diverse solitary wave solutions for the nonlinear differential equation governing wave propagation in the low-pass nonlinear electrical transmission lines with conformable derivatives. However, by employing the new extended direct algebraic method and the improved Sub-ODE equation, we recovered W-shape bright soliton, dark soliton, periodic solutions, rational solutions and Weierstrass elliptic function solutions. The obtained results are new in nonlinear electrical transmission lines field. In addition, the acquired solitons are depicted with the appropriate parameters values of the methods and the nonlinear electrical transmission lines. The shape of the W-bright and dark soliton solutions points out the effect of the derivative order. Finally, the results indicate that the two integrations methods are a most applicable and forceful integration tools for emphasizing the soliton solutions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aminikhah, H., Sheikhani, A.R., Rezazadeh, H.: Sub-equation method for the fractional regularized long-wave equations with conformable fractional derivatives. Sci. Iran. 3, 1048–1054 (2016) Aminikhah, H., Sheikhani, A.R., Rezazadeh, H.: Sub-equation method for the fractional regularized long-wave equations with conformable fractional derivatives. Sci. Iran. 3, 1048–1054 (2016)
2.
go back to reference Korkmaz, A., Hepson, O.E., Hosseini, K., Rezazadeh, H., Eslami, M.: Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class. J. King Saud Univ.-Sci. 32, 567–574 (2020)CrossRef Korkmaz, A., Hepson, O.E., Hosseini, K., Rezazadeh, H., Eslami, M.: Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class. J. King Saud Univ.-Sci. 32, 567–574 (2020)CrossRef
3.
go back to reference Houwe, A., Sabi’u, J., Hammouch, Z., Doka, S.Y.: Solitary pulses of the conformable derivative nonlinear differential equation governing wave propagation in low-pass electrical transmission line. Phys. Scr. 95, 1–15 (2020) Houwe, A., Sabi’u, J., Hammouch, Z., Doka, S.Y.: Solitary pulses of the conformable derivative nonlinear differential equation governing wave propagation in low-pass electrical transmission line. Phys. Scr. 95, 1–15 (2020)
4.
go back to reference Hammouch, Z., Mekkaoui, T.: Travelling-wave solutions for some fractional partial differential equation by means of generalized trigonometry functions. Int. J. Appl. Math. Res. 1, 206–212 (2012)CrossRef Hammouch, Z., Mekkaoui, T.: Travelling-wave solutions for some fractional partial differential equation by means of generalized trigonometry functions. Int. J. Appl. Math. Res. 1, 206–212 (2012)CrossRef
5.
go back to reference Sabi’u, J., Jibril, A., Gadu, A.M.: New exact solution for the (3+1) conformable space-time fractional modified Korteweg-de-Vries equations via Sine–Cosine Method. J. Taibah Univ. Sci. 13, 91–95 (2019) Sabi’u, J., Jibril, A., Gadu, A.M.: New exact solution for the (3+1) conformable space-time fractional modified Korteweg-de-Vries equations via Sine–Cosine Method. J. Taibah Univ. Sci. 13, 91–95 (2019)
6.
go back to reference Owolabi, K.M., Hammouch, Z.: Mathematical modeling and analysis of two-variable system with noninteger-order derivative. Chaos 29, 013145–15 (2019)MathSciNetMATHCrossRef Owolabi, K.M., Hammouch, Z.: Mathematical modeling and analysis of two-variable system with noninteger-order derivative. Chaos 29, 013145–15 (2019)MathSciNetMATHCrossRef
7.
go back to reference Khan, H., Jarad, F., Abdeljawad, T., Khan, A.: A singular ABC-fractional differential equation with p-Laplacian operator. Chaos, Solitons Fractals 129, 56–61 (2019)MathSciNetMATHCrossRef Khan, H., Jarad, F., Abdeljawad, T., Khan, A.: A singular ABC-fractional differential equation with p-Laplacian operator. Chaos, Solitons Fractals 129, 56–61 (2019)MathSciNetMATHCrossRef
8.
go back to reference Singh, J., Kumar, D., Hammouch, Z., Atangana, A.: A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl. Math. Comput. 316, 504–515 (2018)MathSciNetMATH Singh, J., Kumar, D., Hammouch, Z., Atangana, A.: A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl. Math. Comput. 316, 504–515 (2018)MathSciNetMATH
9.
go back to reference Yang, X.J., Machado, J.A.T., Nieto, J.J.: A new family of the local fractional PDEs. Fundam. Inf. 151, 63–75 (2017)MathSciNetMATH Yang, X.J., Machado, J.A.T., Nieto, J.J.: A new family of the local fractional PDEs. Fundam. Inf. 151, 63–75 (2017)MathSciNetMATH
10.
go back to reference Rezazadeh, H., Inc, M., Baleanu, D.: New solitary wave solutions for variants of \((3+1)\)-dimensional Wazwaz–Benjamin–Bona–Mahony equations. Front. Phys. 8, 1–11 (2020)CrossRef Rezazadeh, H., Inc, M., Baleanu, D.: New solitary wave solutions for variants of \((3+1)\)-dimensional Wazwaz–Benjamin–Bona–Mahony equations. Front. Phys. 8, 1–11 (2020)CrossRef
11.
go back to reference Vahidi, J., Masood Zekavatmand, S., Rezazadeh, H., Inc, M., Akinlar, M.A., Chu, Y.M.: New solitary wave solutions to the coupled Maccari’s system. Results Phys. 21, 1–11 (2021) Vahidi, J., Masood Zekavatmand, S., Rezazadeh, H., Inc, M., Akinlar, M.A., Chu, Y.M.: New solitary wave solutions to the coupled Maccari’s system. Results Phys. 21, 1–11 (2021)
12.
go back to reference Bansal, M.K., Kumar, D.: On the integral operators pertaining to a family of incomplete I-functions. AIMS Math. 5, 1247–1259 (2020)MathSciNetCrossRef Bansal, M.K., Kumar, D.: On the integral operators pertaining to a family of incomplete I-functions. AIMS Math. 5, 1247–1259 (2020)MathSciNetCrossRef
13.
go back to reference Hashemi, M.S., Inc, M., Yusuf, A.: On three-dimensional variable order time fractional chaotic system with nonsingular kernel. Chaos Solitons Fractals. 133, 1–8 (2020)MathSciNetCrossRef Hashemi, M.S., Inc, M., Yusuf, A.: On three-dimensional variable order time fractional chaotic system with nonsingular kernel. Chaos Solitons Fractals. 133, 1–8 (2020)MathSciNetCrossRef
14.
go back to reference Inc, M., Kilic, B.: Classification of travelling wave solutions for the time- fractional fifth-order KdV-like equation. Waves Random Complex Media 24, 393–403 (2014)MathSciNetMATHCrossRef Inc, M., Kilic, B.: Classification of travelling wave solutions for the time- fractional fifth-order KdV-like equation. Waves Random Complex Media 24, 393–403 (2014)MathSciNetMATHCrossRef
15.
go back to reference Kilic, B., Inc, M.: The first integral method for the time fractional Kaup–Boussinesq system with time dependent coefficient. Appl. Math. Comput. 254, 70–74 (2015)MathSciNetMATH Kilic, B., Inc, M.: The first integral method for the time fractional Kaup–Boussinesq system with time dependent coefficient. Appl. Math. Comput. 254, 70–74 (2015)MathSciNetMATH
16.
go back to reference Prakash, A., Goyal, M., Baskonus, H.M., Gupta, S.: A reliable hybrid numerical method for a time dependent vibration model of arbitrary order. AIMS Math. 5, 979–1000 (2020)MathSciNetCrossRef Prakash, A., Goyal, M., Baskonus, H.M., Gupta, S.: A reliable hybrid numerical method for a time dependent vibration model of arbitrary order. AIMS Math. 5, 979–1000 (2020)MathSciNetCrossRef
17.
18.
go back to reference Kumar, D., Singh, J., Baleanu, D.: Modified Kawahara equation within a fractional derivative with non-singular Kernel. Therm. sci. 22, 789–796 (2018)CrossRef Kumar, D., Singh, J., Baleanu, D.: Modified Kawahara equation within a fractional derivative with non-singular Kernel. Therm. sci. 22, 789–796 (2018)CrossRef
19.
go back to reference Atangana, A., Alkahtani, B.S.T.: Analysis of the Kelleri–Segel model with a fractional derivative without singular kernel. Entropy 17, 4439–4453 (2015)MathSciNetMATHCrossRef Atangana, A., Alkahtani, B.S.T.: Analysis of the Kelleri–Segel model with a fractional derivative without singular kernel. Entropy 17, 4439–4453 (2015)MathSciNetMATHCrossRef
20.
go back to reference Orkun, T., Senol, M., Kurt, A., Özkanc, O.: New solutions of fractional Drinfeld–Sokolov–Wilson system in shallow water waves. Ocean Eng. 161, 62–68 (2018)CrossRef Orkun, T., Senol, M., Kurt, A., Özkanc, O.: New solutions of fractional Drinfeld–Sokolov–Wilson system in shallow water waves. Ocean Eng. 161, 62–68 (2018)CrossRef
21.
go back to reference Rezazadeh, H., Khodadad, F.S., Manafian, J.: New structure for exact solutions nonlinear time fractional Sharma–Tasso–Olver equation via conformable fraction derivative. Appl. Appl. Math. Int. J. 12, 405–414 (2017)MATH Rezazadeh, H., Khodadad, F.S., Manafian, J.: New structure for exact solutions nonlinear time fractional Sharma–Tasso–Olver equation via conformable fraction derivative. Appl. Appl. Math. Int. J. 12, 405–414 (2017)MATH
22.
go back to reference Rezazadeh, H., Korkmaz, A., Eslami, M., Vahidi, J., Asghari, R.: Traveling wave solution of conformable fractional generalized reaction Dufing model by generalized projective Riccati equation method. Opt. Quantum Electron. 50, 1–13 (2018)CrossRef Rezazadeh, H., Korkmaz, A., Eslami, M., Vahidi, J., Asghari, R.: Traveling wave solution of conformable fractional generalized reaction Dufing model by generalized projective Riccati equation method. Opt. Quantum Electron. 50, 1–13 (2018)CrossRef
23.
go back to reference Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, New York (1993)MATH Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, New York (1993)MATH
24.
go back to reference Igor, P.: Fractional Diferential Equations, 1st edn. Academic Press(1998) Igor, P.: Fractional Diferential Equations, 1st edn. Academic Press(1998)
25.
go back to reference Abdon, A., Dumitru, B., Alsaedi, A.: New properties of conformable derivative. Open Math. 13, 8891–898 (2015)MathSciNetMATH Abdon, A., Dumitru, B., Alsaedi, A.: New properties of conformable derivative. Open Math. 13, 8891–898 (2015)MathSciNetMATH
26.
go back to reference Sousa, J.V.D.C., Oliviera, E.: A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties. Int. J. Anal. Appl. 16, 83–96 (2018)MATH Sousa, J.V.D.C., Oliviera, E.: A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties. Int. J. Anal. Appl. 16, 83–96 (2018)MATH
27.
go back to reference Costa, A., Alfred Osborne, R., Donald, T., Resio, S., Alessio Chrivì, E., Saggese, E., Bellomo, K., Chuck Long, E.: Soliton turbulence in shallow water ocean surface waves. Phys. Rev. Lett. 113, 108501–5 (2014)CrossRef Costa, A., Alfred Osborne, R., Donald, T., Resio, S., Alessio Chrivì, E., Saggese, E., Bellomo, K., Chuck Long, E.: Soliton turbulence in shallow water ocean surface waves. Phys. Rev. Lett. 113, 108501–5 (2014)CrossRef
28.
go back to reference Ekici, M., Mirzazadeh, M., Sonmezoglu, A., Biswas, A.: Optical solitons with anti-cubic nonlinearity by extended trial equation method. Optik 136, 368–373 (2017)CrossRef Ekici, M., Mirzazadeh, M., Sonmezoglu, A., Biswas, A.: Optical solitons with anti-cubic nonlinearity by extended trial equation method. Optik 136, 368–373 (2017)CrossRef
29.
go back to reference Rezazadeh, H., Tariq, H., Eslami, M., Mirzazadeh, M., Zhou, Q.: New exact solutions of nonlinear conformable time-fractional Phi-4 equation. Chin. J. Phys. 56, 2805–2816 (2018)CrossRef Rezazadeh, H., Tariq, H., Eslami, M., Mirzazadeh, M., Zhou, Q.: New exact solutions of nonlinear conformable time-fractional Phi-4 equation. Chin. J. Phys. 56, 2805–2816 (2018)CrossRef
30.
go back to reference Ali, A., Seadawy, A.R., Lu, D.: Soliton solutions of the nonlinear Schrödinger equation with the dual power law nonlinearity and resonant nonlinear Schrödinger equation and their modulation instability analysis. Optik 145, 79–88 (2017)CrossRef Ali, A., Seadawy, A.R., Lu, D.: Soliton solutions of the nonlinear Schrödinger equation with the dual power law nonlinearity and resonant nonlinear Schrödinger equation and their modulation instability analysis. Optik 145, 79–88 (2017)CrossRef
31.
go back to reference Zayed, E.M.E., Alurrfi, K.A.E.: New extended auxiliary equation method and its applications to nonlinear Schrödinger-type equations. Optik 127, 9131–9151 (2016)CrossRef Zayed, E.M.E., Alurrfi, K.A.E.: New extended auxiliary equation method and its applications to nonlinear Schrödinger-type equations. Optik 127, 9131–9151 (2016)CrossRef
32.
go back to reference Mirzazadeh, M., Alqahtani, R.T., Biswas, A.: Optical soliton perturbation with quadratic-cubic nonlinearity by Riccati–Bernoulli sub-ODE method and Kudryashov’s scheme. Optik 145, 74–78 (2017) Mirzazadeh, M., Alqahtani, R.T., Biswas, A.: Optical soliton perturbation with quadratic-cubic nonlinearity by Riccati–Bernoulli sub-ODE method and Kudryashov’s scheme. Optik 145, 74–78 (2017)
33.
go back to reference Gabshi, M.A., Krishnan, E.V., Alquran, A., Al-Khaled, K.: Jacobi elliptic function solutions of a nonlinear Schrödinger equation in metamaterials. Nonlinear Stud. 3, 469–480 (2017)MATH Gabshi, M.A., Krishnan, E.V., Alquran, A., Al-Khaled, K.: Jacobi elliptic function solutions of a nonlinear Schrödinger equation in metamaterials. Nonlinear Stud. 3, 469–480 (2017)MATH
34.
go back to reference Jawad, A.J.M., Mirzazadeh, M., Zhou, Q., Biswas, A.: Optical solitons with anti-cubic nonlinearity using three integration schemes. Superlattices Microstruct. 105, 1–10 (2017)CrossRef Jawad, A.J.M., Mirzazadeh, M., Zhou, Q., Biswas, A.: Optical solitons with anti-cubic nonlinearity using three integration schemes. Superlattices Microstruct. 105, 1–10 (2017)CrossRef
35.
go back to reference Seadawy, A.R.: Stability analysis of traveling wave solutions for generalized coupled nonlinear KdV equations. Appl. Math. Inf. Sci. 1, 209–14 (2016)CrossRef Seadawy, A.R.: Stability analysis of traveling wave solutions for generalized coupled nonlinear KdV equations. Appl. Math. Inf. Sci. 1, 209–14 (2016)CrossRef
36.
go back to reference Qin, Z., Liu, L., Liu, Y., Yu, H., Yao, P., Wei, C., Zhang, H.: Exact optical solitons in metamaterials with cubic quintic nonlinearity and third-order dispersion. Nonlinear Dyn. 3, 1365–1371 (2015) Qin, Z., Liu, L., Liu, Y., Yu, H., Yao, P., Wei, C., Zhang, H.: Exact optical solitons in metamaterials with cubic quintic nonlinearity and third-order dispersion. Nonlinear Dyn. 3, 1365–1371 (2015)
37.
go back to reference Eslami, M., Rezazadeh, H.: The first integral method for Wu-Zhang system with conformable time-fractional derivative. Calcolo 3, 475–85 (2016)MathSciNetMATHCrossRef Eslami, M., Rezazadeh, H.: The first integral method for Wu-Zhang system with conformable time-fractional derivative. Calcolo 3, 475–85 (2016)MathSciNetMATHCrossRef
38.
go back to reference Tchier, F., Inc, M., Korpinar, Z., Baleanu, D.: Solution of the time fractional reaction-diffusion equations with residual power series method. Adv. Mech. Eng. 10, 11–10 (2016) Tchier, F., Inc, M., Korpinar, Z., Baleanu, D.: Solution of the time fractional reaction-diffusion equations with residual power series method. Adv. Mech. Eng. 10, 11–10 (2016)
39.
go back to reference Hammouch, Z., Mekkaoui, T., Agarwal, P.: Optical solitons for the Calogero–Bogoyavlenskii–Schiff equation in \((2+1)\) dimensions with time-fractional conformable derivative. Eur. Phys. J. Plus 248, 1–6 (2018) Hammouch, Z., Mekkaoui, T., Agarwal, P.: Optical solitons for the Calogero–Bogoyavlenskii–Schiff equation in \((2+1)\) dimensions with time-fractional conformable derivative. Eur. Phys. J. Plus 248, 1–6 (2018)
40.
go back to reference Houwe, A., Boudoue Hubert, M., Savaissoub, N., Jerome, D., Justin, M., Betchewe, G., Doka, Timoleon, S.Y., Crepin, K., Khang, S., Biswas, A., Ekici, M., Adesanya, S., Seithuti Moshokoah, S.P.S., Belic, M. : Optical solitons for higher-order nonlinear Schrödinger equation with three exotic integration architectures. Optik 179, 861–866 (2019) Houwe, A., Boudoue Hubert, M., Savaissoub, N., Jerome, D., Justin, M., Betchewe, G., Doka, Timoleon, S.Y., Crepin, K., Khang, S., Biswas, A., Ekici, M., Adesanya, S., Seithuti Moshokoah, S.P.S., Belic, M. : Optical solitons for higher-order nonlinear Schrödinger equation with three exotic integration architectures. Optik 179, 861–866 (2019)
41.
go back to reference Hubert Malwe, B., Betchewe, G., Doka, S.Y., Crepin Kofane, T.: Travelling wave solutions and soliton solutions for the nonlinear transmission line using the generalized Riccati equation mapping method. Nonlinear Dyn. 84, 171–177 (2016)MathSciNetMATHCrossRef Hubert Malwe, B., Betchewe, G., Doka, S.Y., Crepin Kofane, T.: Travelling wave solutions and soliton solutions for the nonlinear transmission line using the generalized Riccati equation mapping method. Nonlinear Dyn. 84, 171–177 (2016)MathSciNetMATHCrossRef
42.
go back to reference Rezazadeh, H., Mehdi Mirhosseini-Alizamini, S., Eslami, M., Abbagari, S.: New optical solitons of nonlinear conformable fractional Schrödinger–Hirota equation. Optik 172, 545–553 (2018)CrossRef Rezazadeh, H., Mehdi Mirhosseini-Alizamini, S., Eslami, M., Abbagari, S.: New optical solitons of nonlinear conformable fractional Schrödinger–Hirota equation. Optik 172, 545–553 (2018)CrossRef
43.
go back to reference Akinyemi, L., Rezazadeh, H., Yao, S.W., Ali Akbar, M., Mostafa Khater, M.A., Jhangeer, A., Inc, M., Ahmad, H.: Nonlinear dispersion in parabolic law medium and its optical solitons. Results Phys. 26, 1–9 (2021)CrossRef Akinyemi, L., Rezazadeh, H., Yao, S.W., Ali Akbar, M., Mostafa Khater, M.A., Jhangeer, A., Inc, M., Ahmad, H.: Nonlinear dispersion in parabolic law medium and its optical solitons. Results Phys. 26, 1–9 (2021)CrossRef
44.
go back to reference Ali Akbar, M., Akinyemi, L., Yao, S.W., Jhangeer, A., Rezazadeh, H., Mostafa Khater, M.A., Ahmad, H., Inc, M.: Soliton solutions to the Boussinesq equation through sine-Gordon method and Kudryashov method. Results Phys. 25, 1–10 (2021)CrossRef Ali Akbar, M., Akinyemi, L., Yao, S.W., Jhangeer, A., Rezazadeh, H., Mostafa Khater, M.A., Ahmad, H., Inc, M.: Soliton solutions to the Boussinesq equation through sine-Gordon method and Kudryashov method. Results Phys. 25, 1–10 (2021)CrossRef
45.
go back to reference Ahmad, H., Tufail Khan, A., Ahmad, I., Predrag Stanimirovi, S., Chu, Y.M.: A new analyzing technique for nonlinear time fractional Cauchy reaction–diffusion model equations. Results Phys. 19, 1–8 (2020)CrossRef Ahmad, H., Tufail Khan, A., Ahmad, I., Predrag Stanimirovi, S., Chu, Y.M.: A new analyzing technique for nonlinear time fractional Cauchy reaction–diffusion model equations. Results Phys. 19, 1–8 (2020)CrossRef
46.
go back to reference Ahmad, H., Akgül, A., Tufail Khan, A., Predrag Stanimirovic, S., Chu, Y.M.: New perspective on the conventional solutions of the nonlinear time-fractional partial differential equations. Hindawi 2020, 1–10 (2020)MATH Ahmad, H., Akgül, A., Tufail Khan, A., Predrag Stanimirovic, S., Chu, Y.M.: New perspective on the conventional solutions of the nonlinear time-fractional partial differential equations. Hindawi 2020, 1–10 (2020)MATH
47.
go back to reference Ahmad, H., Tufail Khan, A.: Variational iteration algorithm-I with an auxiliary parameter for wave-like vibration equations. J. Low Freq. Noise, Vibr. Active Control 38, 1113–1124 (2019)CrossRef Ahmad, H., Tufail Khan, A.: Variational iteration algorithm-I with an auxiliary parameter for wave-like vibration equations. J. Low Freq. Noise, Vibr. Active Control 38, 1113–1124 (2019)CrossRef
48.
go back to reference Ahmad, H., Tufail Khan, A., Predrag Stanimirovic, S., Chu, Y.M., Ahmad, I.: Modified variational iteration algorithm-II: convergence and applications to diffusion models. Hindawi 2020, 1–14 (2020)MATH Ahmad, H., Tufail Khan, A., Predrag Stanimirovic, S., Chu, Y.M., Ahmad, I.: Modified variational iteration algorithm-II: convergence and applications to diffusion models. Hindawi 2020, 1–14 (2020)MATH
49.
go back to reference Ahmad, I., Ahmad, H., Inc, M., Yao, S.W., Almohsen, B.: Application of local meshless method for the solution of two term time fractional-order multi-dimensional PDE arising in heat and mass transfer. Therm. Sci. 24, 95–105 (2020)CrossRef Ahmad, I., Ahmad, H., Inc, M., Yao, S.W., Almohsen, B.: Application of local meshless method for the solution of two term time fractional-order multi-dimensional PDE arising in heat and mass transfer. Therm. Sci. 24, 95–105 (2020)CrossRef
50.
go back to reference Inc, M., Nawaz Khan, M., Ahmad, I., Yao, S.W., Ahmad, H., Thounthong, P.: Analysing time-fractional exotic options via efficient local meshless method. Results Phys. 19, 1–6 (2020)CrossRef Inc, M., Nawaz Khan, M., Ahmad, I., Yao, S.W., Ahmad, H., Thounthong, P.: Analysing time-fractional exotic options via efficient local meshless method. Results Phys. 19, 1–6 (2020)CrossRef
51.
go back to reference Zayed, E.M.E., Alngar, M.E.M., Al-Nowehy, A.G.: On solving the nonlinear Schrödinger equation with an anti-cubic nonlinearity in presence of Hamiltonian perturbation terms. Optik 178, 488–508 (2019)CrossRef Zayed, E.M.E., Alngar, M.E.M., Al-Nowehy, A.G.: On solving the nonlinear Schrödinger equation with an anti-cubic nonlinearity in presence of Hamiltonian perturbation terms. Optik 178, 488–508 (2019)CrossRef
52.
go back to reference Li, Z.: Periodic wave solutions of a generalized KdV–mKdV equation with higher-order nonlinear terms. Z. Naturforsch. 56a, 649–657 (2010)CrossRef Li, Z.: Periodic wave solutions of a generalized KdV–mKdV equation with higher-order nonlinear terms. Z. Naturforsch. 56a, 649–657 (2010)CrossRef
53.
go back to reference Chen, H.T., Zhang, H.Q.: New double periodic and multiple soliton solutions of the generalized (2+1)-dimensional Boussinnesq equation. Chaos Soliton Fractals 20, 4765–769 (2004) Chen, H.T., Zhang, H.Q.: New double periodic and multiple soliton solutions of the generalized (2+1)-dimensional Boussinnesq equation. Chaos Soliton Fractals 20, 4765–769 (2004)
54.
go back to reference Wazwaz, A.M.: New solitary wave solutions to the modified forms of Degasperis–Procesi and Camassa–Holm equations. Appl. Math. Comput. 186, 130–141 (2007)MathSciNetMATH Wazwaz, A.M.: New solitary wave solutions to the modified forms of Degasperis–Procesi and Camassa–Holm equations. Appl. Math. Comput. 186, 130–141 (2007)MathSciNetMATH
55.
go back to reference Wazwaz, A.M.: The tanh–coth method for new compactons and solitons solutions for the \(K(n, n)\) and the \(K(n +1, n+1)\) equations. Appl. Math. Comput. 188, 1930–1940 (2007)MathSciNetMATH Wazwaz, A.M.: The tanh–coth method for new compactons and solitons solutions for the \(K(n, n)\) and the \(K(n +1, n+1)\) equations. Appl. Math. Comput. 188, 1930–1940 (2007)MathSciNetMATH
56.
go back to reference Ibrahim, R.W., Meshram, C., Hadid, S.B., Momani, S.: Analytic solutions of the generalized water wave dynamical equations based on time-space symmetric differential operator. J. Ocean Eng. Sci. 5, 186–195 (2020)CrossRef Ibrahim, R.W., Meshram, C., Hadid, S.B., Momani, S.: Analytic solutions of the generalized water wave dynamical equations based on time-space symmetric differential operator. J. Ocean Eng. Sci. 5, 186–195 (2020)CrossRef
57.
go back to reference Lu, D., Seadawy, A.R., Ali, A.: Dispersive analytical wave solutions of three nonlinear dynamical water waves models via modified mathematical method. Results Phys. 13, 102–177 (2019)CrossRef Lu, D., Seadawy, A.R., Ali, A.: Dispersive analytical wave solutions of three nonlinear dynamical water waves models via modified mathematical method. Results Phys. 13, 102–177 (2019)CrossRef
58.
go back to reference Burioni, R., Cassi, D., Sodano, P., Trombettoni, A., Vezzani, A.: Topological filters and high-pass/low-pass devices for solitons in inhomogeneous networks. Phys. Rev. E 73, 066624 (2006)CrossRef Burioni, R., Cassi, D., Sodano, P., Trombettoni, A., Vezzani, A.: Topological filters and high-pass/low-pass devices for solitons in inhomogeneous networks. Phys. Rev. E 73, 066624 (2006)CrossRef
Metadata
Title
Optical and W-shaped bright solitons of the conformable derivative nonlinear differential equation
Authors
Hamadou Halidou
Alphonse Houwe
Souleymanou Abbagari
Mustafa Inc
Serge Y. Doka
Thomas Bouetou Bouetou
Publication date
13-08-2021
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 5/2021
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-021-01758-9

Other articles of this Issue 5/2021

Journal of Computational Electronics 5/2021 Go to the issue