Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 13/2021

01-12-2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Phase Components, Microstructures, and Mechanical Properties of AlCoCrVX (X = Fe, Ni, and Cu) High-Entropy Alloys

Authors: J. J. Yi, L. Wang, M. Q. Xu, L. Yang

Published in: Physics of Metals and Metallography | Issue 13/2021

Login to get access
share
SHARE

Abstract

A series of 3d transition metal high-entropy alloys, AlCoCrVX (X= Fe/Ni/Cu), were prepared by a vacuum arc-melting, and their phase components, microstructures, and compressive properties were investigated. The phase components of the alloys with X = Fe and Ni belonged to the BCC phase, while that of the alloy with X = Cu was composed of a typical BCC + FCC dual phase. The added Cu mainly distributed in the interdendrites while the Fe and Ni distributed in the dendrites. Moreover, the alloy with X = Cu possesses a good synergy in strength and plasticity (ultimate strength: 2300 MPa, plastic strain: 5%) compared to the alloy with X = Fe, Ni, which might stem from the impingement role of netlike Cu-rich FCC interdendrites on crack propagation.
Literature
1.
go back to reference J. M. Zhu, H. M. Fu, H. F. Zhang, A. M. Wang, H. Li, and Z. Q. Hu, “Microstructures and compressive properties of multicomponent AlCoCrFeNiMo x alloys,” Mater. Sci. Eng., A 527, 6975–6979 (2010). CrossRef J. M. Zhu, H. M. Fu, H. F. Zhang, A. M. Wang, H. Li, and Z. Q. Hu, “Microstructures and compressive properties of multicomponent AlCoCrFeNiMo x alloys,” Mater. Sci. Eng., A 527, 6975–6979 (2010). CrossRef
2.
go back to reference J. Y. He, W. H. Liu, H. Wang, Y. Wu, X. J. Liu, T. G. Nieh, and Z. P. Lu, “Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system,” Acta Mater. 62, 105–113 (2014). CrossRef J. Y. He, W. H. Liu, H. Wang, Y. Wu, X. J. Liu, T. G. Nieh, and Z. P. Lu, “Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system,” Acta Mater. 62, 105–113 (2014). CrossRef
3.
go back to reference N. D. Stepanov, D. G. Shaysultanov, G. A. Salishchev, M. A. Tikhonovsky, E. E. Oleynik, A. S. Tortika, and O. N. Senkov, “Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiV x high entropy alloys,” J. Alloys Compd. 628, 170–185 (2015). CrossRef N. D. Stepanov, D. G. Shaysultanov, G. A. Salishchev, M. A. Tikhonovsky, E. E. Oleynik, A. S. Tortika, and O. N. Senkov, “Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiV x high entropy alloys,” J. Alloys Compd. 628, 170–185 (2015). CrossRef
4.
go back to reference B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, “Microstructural development in equiatomic multicomponent alloys,” Mater. Sci. Eng., A 375– 377, 213–218 (2004). CrossRef B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, “Microstructural development in equiatomic multicomponent alloys,” Mater. Sci. Eng., A 375377, 213–218 (2004). CrossRef
5.
go back to reference J. W. Yeh, S. K. Chen, J. Y. Gan, S. J. Lin, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, “Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements,” Metall. Mater. Trans. A 35, 2533–2536 (2004). CrossRef J. W. Yeh, S. K. Chen, J. Y. Gan, S. J. Lin, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, “Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements,” Metall. Mater. Trans. A 35, 2533–2536 (2004). CrossRef
6.
go back to reference J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, “Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes,” Adv. Eng. Mater. 6, 299–303 (2004). CrossRef J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, “Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes,” Adv. Eng. Mater. 6, 299–303 (2004). CrossRef
7.
go back to reference Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, and Z. P. Lu, “Microstructures and properties of high-entropy alloys,” Prog. Mater. Sci. 61, 1–93 (2014). CrossRef Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, and Z. P. Lu, “Microstructures and properties of high-entropy alloys,” Prog. Mater. Sci. 61, 1–93 (2014). CrossRef
8.
go back to reference C. J. Tong, M. R. Chen, S. K. Chen, J. W. Yeh, T. T. Shun, S. J. Lin, and S. Y. Chang, “Mechanical performance of the Al xCoCrCuFeNi high-entropy alloy system with multiprincipal elements,” Metall. Mater. Trans. A 36, 1263–1271 (2004). CrossRef C. J. Tong, M. R. Chen, S. K. Chen, J. W. Yeh, T. T. Shun, S. J. Lin, and S. Y. Chang, “Mechanical performance of the Al xCoCrCuFeNi high-entropy alloy system with multiprincipal elements,” Metall. Mater. Trans. A 36, 1263–1271 (2004). CrossRef
9.
go back to reference M. H. Tsai and J. W. Yeh, “High-entropy alloys: a critical review,” Mater. Res. Lett. 2, 107–123 (2014). CrossRef M. H. Tsai and J. W. Yeh, “High-entropy alloys: a critical review,” Mater. Res. Lett. 2, 107–123 (2014). CrossRef
10.
go back to reference V. F. Bashev and O. I. Kushnerov, “Structure and properties of cast and splat-quenched high-entropy Al–Cu–Fe–Ni–Si alloys,” Phys. Met. Metallogr. 118, 39–47 (2017). CrossRef V. F. Bashev and O. I. Kushnerov, “Structure and properties of cast and splat-quenched high-entropy Al–Cu–Fe–Ni–Si alloys,” Phys. Met. Metallogr. 118, 39–47 (2017). CrossRef
11.
go back to reference A. S. Rogachev, “Structure, stability, and properties of high-entropy alloys,” Phys. Met. Metallogr. 121, 733–764 (2020). CrossRef A. S. Rogachev, “Structure, stability, and properties of high-entropy alloys,” Phys. Met. Metallogr. 121, 733–764 (2020). CrossRef
12.
go back to reference S. G. Ma and Y. Zhang, “Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy,” Mater. Sci. Eng., A 532, 480–486 (2012). CrossRef S. G. Ma and Y. Zhang, “Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy,” Mater. Sci. Eng., A 532, 480–486 (2012). CrossRef
13.
go back to reference U. S. Hsu, U. D. Hung, J. W. Yeh, S. K. Chen, Y. S. Huang, and C. C. Yang, “Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys,” Mater. Sci. Eng., A 460– 461, 403–408 (2007). CrossRef U. S. Hsu, U. D. Hung, J. W. Yeh, S. K. Chen, Y. S. Huang, and C. C. Yang, “Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys,” Mater. Sci. Eng., A 460461, 403–408 (2007). CrossRef
14.
go back to reference S. Praveen, B. S. Murty, and R. S. Kottada, “Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys,” Mater. Sci. Eng., A 534, 83–89 (2012). CrossRef S. Praveen, B. S. Murty, and R. S. Kottada, “Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys,” Mater. Sci. Eng., A 534, 83–89 (2012). CrossRef
15.
go back to reference F. Otto, Y. Yang, H. Bei, and E. P. George, “Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys,” Acta Mater. 61, 2628–2638 (2013). CrossRef F. Otto, Y. Yang, H. Bei, and E. P. George, “Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys,” Acta Mater. 61, 2628–2638 (2013). CrossRef
16.
go back to reference J. Yi, S. Tang, M. Xu, L. Yang, L. Wang, and L. Zeng, “A novel Al 0.5CrCuNiV 3d transition metal high-entropy alloy: phase analysis, microstructure and compressive properties,” J. Alloys Compd. 846, 156466 (2020). CrossRef J. Yi, S. Tang, M. Xu, L. Yang, L. Wang, and L. Zeng, “A novel Al 0.5CrCuNiV 3d transition metal high-entropy alloy: phase analysis, microstructure and compressive properties,” J. Alloys Compd. 846, 156466 (2020). CrossRef
17.
go back to reference D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Mater. 122, 448–511 (2017). CrossRef D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Mater. 122, 448–511 (2017). CrossRef
18.
go back to reference Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, “Solid-solution phase formation rules for multi-component alloys,” Adv. Eng. Mater. 10, 534–538 (2008). CrossRef Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, “Solid-solution phase formation rules for multi-component alloys,” Adv. Eng. Mater. 10, 534–538 (2008). CrossRef
19.
go back to reference S. Guo, C. Ng, J. Lu, and C. T. Liu, “Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys,” J. Appl. Phys. 109, 103505 (2011). CrossRef S. Guo, C. Ng, J. Lu, and C. T. Liu, “Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys,” J. Appl. Phys. 109, 103505 (2011). CrossRef
20.
go back to reference Y. X. Zhuang, W. J. Liu, P. F. Xing, F. Wang, and J. C. He, “Effect of Co element on microstructure and mechanical properties of FeCo xNiCuAl alloys,” Acta Metall. Sin. 25, 124–130 (2012). Y. X. Zhuang, W. J. Liu, P. F. Xing, F. Wang, and J. C. He, “Effect of Co element on microstructure and mechanical properties of FeCo xNiCuAl alloys,” Acta Metall. Sin. 25, 124–130 (2012).
21.
go back to reference J. M. Zhu, H. F. Zhang, H. M. Fu, A. M. Wang, H. Li, and Z. Q. Hu, “Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMo x alloys,” J. Alloys Compd. 497, 52–56 (2010). CrossRef J. M. Zhu, H. F. Zhang, H. M. Fu, A. M. Wang, H. Li, and Z. Q. Hu, “Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMo x alloys,” J. Alloys Compd. 497, 52–56 (2010). CrossRef
22.
go back to reference A. Takeuchi and A. Inoue, “Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and Its application to characterization of the main alloying element,” Mater. Trans. 46, 2817–2829 (2005). CrossRef A. Takeuchi and A. Inoue, “Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and Its application to characterization of the main alloying element,” Mater. Trans. 46, 2817–2829 (2005). CrossRef
23.
go back to reference R. Chen, G. Qin, H. Zheng, L. Wang, Y. Su, Y. Chiu, H. Ding, J. Guo, and H. Fu, “Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility,” Acta Mater. 144, 129–137 (2018). CrossRef R. Chen, G. Qin, H. Zheng, L. Wang, Y. Su, Y. Chiu, H. Ding, J. Guo, and H. Fu, “Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility,” Acta Mater. 144, 129–137 (2018). CrossRef
24.
go back to reference D. G. Shaysultanov, N. D. Stepanov, G. A. Salishchev, and M. A. Tikhonovsky, “Effect of heat treatment on the structure and hardness of high-entropy alloys CoCrFeNiMnV x ( x = 0.25, 0.5, 0.75, 1),” Phys. Met. Metallogr. 118, 579–590 (2017). CrossRef D. G. Shaysultanov, N. D. Stepanov, G. A. Salishchev, and M. A. Tikhonovsky, “Effect of heat treatment on the structure and hardness of high-entropy alloys CoCrFeNiMnV x ( x = 0.25, 0.5, 0.75, 1),” Phys. Met. Metallogr. 118, 579–590 (2017). CrossRef
25.
go back to reference V. F. Gorban, N. A. Krapivka, S. A. Firstov, and D. V. Kurilenko, “Role of various parameters in the formation of the physicomechanical properties of high-entropy alloys with BCC lattices,” Phys. Met. Metallogr. 119, 477–481 (2018). CrossRef V. F. Gorban, N. A. Krapivka, S. A. Firstov, and D. V. Kurilenko, “Role of various parameters in the formation of the physicomechanical properties of high-entropy alloys with BCC lattices,” Phys. Met. Metallogr. 119, 477–481 (2018). CrossRef
26.
go back to reference Y. F. Kao, T. J. Chen, S. K. Chen, and J. W. Yeh, “Microstructure and mechanical property of as-cast, -homogenized, and -deformed Al xCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys,” J. Alloys Compd. 488, 57–64 (2009). CrossRef Y. F. Kao, T. J. Chen, S. K. Chen, and J. W. Yeh, “Microstructure and mechanical property of as-cast, -homogenized, and -deformed Al xCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys,” J. Alloys Compd. 488, 57–64 (2009). CrossRef
27.
go back to reference M. R. Chen, S. J. Lin, J. W. Yeh, S. K. Chen, Y. S. Huang, and M. H. Chuang, “Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al 0.5CoCrCuFeNi high-entropy alloy,” Metall. Mater. Trans. A 37, 1363–1369 (2006). CrossRef M. R. Chen, S. J. Lin, J. W. Yeh, S. K. Chen, Y. S. Huang, and M. H. Chuang, “Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al 0.5CoCrCuFeNi high-entropy alloy,” Metall. Mater. Trans. A 37, 1363–1369 (2006). CrossRef
Metadata
Title
Phase Components, Microstructures, and Mechanical Properties of AlCoCrVX (X = Fe, Ni, and Cu) High-Entropy Alloys
Authors
J. J. Yi
L. Wang
M. Q. Xu
L. Yang
Publication date
01-12-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 13/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21130172