Skip to main content
Top
Published in: Polymer Science, Series D 4/2021

01-10-2021

Phenol–Formaldehyde Oligomers Modified with Carbon Nanoparticles and Their Use in Adhesives and Prepregs

Authors: I. I. Nikonova, V. F. Shkodich, N. E. Temnikova, M. V. Kolpakova, O. V. Stoyanov

Published in: Polymer Science, Series D | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this review, we describe carbon nanoparticles (carbon nanotubes and detonation nanodiamonds) and discuss the methods for their introduction and distribution in a reactive polymer matrix using the example of a phenol–formaldehyde oligomer. It has been shown that carbon nanoparticles affect the physical and mechanical characteristics, thermal stability, and water absorption of adhesive compositions, composite materials, and prepregs made on the basis of a structured phenol–formaldehyde oligomer.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y. Dong, L. Xiaofeng, J. Yue, et al., “Thermally conductive phenol formaldehyde composites filled with carbon fillers,” Mater. Lett. 118, 212–216 (2014).CrossRef Y. Dong, L. Xiaofeng, J. Yue, et al., “Thermally conductive phenol formaldehyde composites filled with carbon fillers,” Mater. Lett. 118, 212–216 (2014).CrossRef
2.
go back to reference S. S. Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: A review from preparation to processing,” Prog. Polym. Sci. 28, 1539–1541 (2003).CrossRef S. S. Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: A review from preparation to processing,” Prog. Polym. Sci. 28, 1539–1541 (2003).CrossRef
3.
go back to reference Polymer-Clay Nanocomposites, Ed. by T. J. Pinnavaia and G. W. Beall (Wiley, Chichester, 2000). Polymer-Clay Nanocomposites, Ed. by T. J. Pinnavaia and G. W. Beall (Wiley, Chichester, 2000).
4.
go back to reference Z. Peng, X. Kong, and S. D. Li, “Dynamic mechanical analysis of polyvinylalcohol/silica nanocomposite,” Synth. Met. 152, 25–28 (2005).CrossRef Z. Peng, X. Kong, and S. D. Li, “Dynamic mechanical analysis of polyvinylalcohol/silica nanocomposite,” Synth. Met. 152, 25–28 (2005).CrossRef
5.
go back to reference V. Yu. Dolmatov, Detonation Nanodiamonds. Getting, Properties, and Application (NPO Professional, St. Petersburg, 2011) [in Russian]. V. Yu. Dolmatov, Detonation Nanodiamonds. Getting, Properties, and Application (NPO Professional, St. Petersburg, 2011) [in Russian].
6.
go back to reference “Detonation nanodiamonds: New nanomaterials and nanotechnologies for biology and medicine,” Nauka Sib., No. 50, 2635 (2007). “Detonation nanodiamonds: New nanomaterials and nanotechnologies for biology and medicine,” Nauka Sib., No. 50, 2635 (2007).
8.
go back to reference V. N. Mochalin, I. Neitzel, J. M. Etzold Bastian, et al., “Covalent incorporation of aminated nanodiamond into an epoxy polymer network,” ACS Nano 5 (9), 7494–7502 (2011).CrossRef V. N. Mochalin, I. Neitzel, J. M. Etzold Bastian, et al., “Covalent incorporation of aminated nanodiamond into an epoxy polymer network,” ACS Nano 5 (9), 7494–7502 (2011).CrossRef
9.
go back to reference M. N. Krikova, A. S. Ivanov, S. V. Savilov, and V. V. Lunin, “Modification of multiwalled carbon nanotubes by carboxy groups and determination of the degree of functionalization,” Russ. Chem. Bull. 57, 298–303. M. N. Krikova, A. S. Ivanov, S. V. Savilov, and V. V. Lunin, “Modification of multiwalled carbon nanotubes by carboxy groups and determination of the degree of functionalization,” Russ. Chem. Bull. 57, 298–303.
10.
go back to reference E. G. Rakov, “The chemistry and application of carbon nanotubes,” Russ. Chem. Rev. 70, 827–863 (2001).CrossRef E. G. Rakov, “The chemistry and application of carbon nanotubes,” Russ. Chem. Rev. 70, 827–863 (2001).CrossRef
11.
go back to reference N. V. Glebova and A. A. Nechitailov, “Functionalization of the surface of multiwalled carbon nanotubes,” Tech. Phys. Lett. 36, 878–881 (2010).CrossRef N. V. Glebova and A. A. Nechitailov, “Functionalization of the surface of multiwalled carbon nanotubes,” Tech. Phys. Lett. 36, 878–881 (2010).CrossRef
12.
go back to reference D. A. Shibaev, V. Yu. Orlov, D. A. Bazlov, and V. E. Vaganov, “Chemical modification of carbon nanotubes,” Izv. Vyssh. Uchebn. Zaved., Ser.: Khim. Khim. Tekhnol. 54 (7), 38–41 (2011). D. A. Shibaev, V. Yu. Orlov, D. A. Bazlov, and V. E. Vaganov, “Chemical modification of carbon nanotubes,” Izv. Vyssh. Uchebn. Zaved., Ser.: Khim. Khim. Tekhnol. 54 (7), 38–41 (2011).
13.
go back to reference R. B. Mathur, B. P. Singh, T. L. Dhami, et al., “Influence of carbon nanotube dispersion on the mechanical properties of phenolic resin composites,” Polym. Compos. 31 (2), 321–327 (2010). R. B. Mathur, B. P. Singh, T. L. Dhami, et al., “Influence of carbon nanotube dispersion on the mechanical properties of phenolic resin composites,” Polym. Compos. 31 (2), 321–327 (2010).
14.
go back to reference S. V. Kondrashov, V. P. Grachev, R. V. Akatenkov, V. N. Aleksashin, I. S. Deev, I. V. Anoshin, E. G. Rakov, and V. I. Irzhak, “Modification of epoxy polymers with small additives of multiwall carbon nanotubes,” Polym. Sci., Ser. A 56 (3), 330–336 (2014).CrossRef S. V. Kondrashov, V. P. Grachev, R. V. Akatenkov, V. N. Aleksashin, I. S. Deev, I. V. Anoshin, E. G. Rakov, and V. I. Irzhak, “Modification of epoxy polymers with small additives of multiwall carbon nanotubes,” Polym. Sci., Ser. A 56 (3), 330–336 (2014).CrossRef
15.
go back to reference J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun’ko, “Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites,” Carbon 44 (9), 1624–1652 (2006).CrossRef J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun’ko, “Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites,” Carbon 44 (9), 1624–1652 (2006).CrossRef
16.
go back to reference G. Mittal, V. Dhand, K. Y. Rhee, et al., “A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites,” J. Ind. Eng. Chem. 21, 11–25 (2015).CrossRef G. Mittal, V. Dhand, K. Y. Rhee, et al., “A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites,” J. Ind. Eng. Chem. 21, 11–25 (2015).CrossRef
17.
go back to reference Y. W. Zhu, X. Q. Shen, B. C. Wang, et al., “Chemical mechanical modification of nanodiamond in an aqueous system,” Phys. Solid State 46, 681–684 (2004).CrossRef Y. W. Zhu, X. Q. Shen, B. C. Wang, et al., “Chemical mechanical modification of nanodiamond in an aqueous system,” Phys. Solid State 46, 681–684 (2004).CrossRef
18.
go back to reference A. A. Okhlopkova and E. Yu. Shits, “Structure and properties of Teflon composites with natural diamond powders,” Mech. Compos. Mater. 40 (2), 145–150 (2004).CrossRef A. A. Okhlopkova and E. Yu. Shits, “Structure and properties of Teflon composites with natural diamond powders,” Mech. Compos. Mater. 40 (2), 145–150 (2004).CrossRef
19.
go back to reference V. S. Bondar’ and A. P. Puzyr’, “Nanodiamonds for biological investigations,” Phys. Solid State 46 (4), 698–701 (2004). V. S. Bondar’ and A. P. Puzyr’, “Nanodiamonds for biological investigations,” Phys. Solid State 46 (4), 698–701 (2004).
21.
go back to reference V. F. Shkodich, V. F. Abubakirov, A. V. Naumov, N. F. Shkodich, and S. V. Naumov, “Effect of mechanically activated nanodiamonds on the structure formation in thermosetting oligomers,” Vestn. Kazan. Tekhnol. Univ. 15 (11), 102–105 (2012). V. F. Shkodich, V. F. Abubakirov, A. V. Naumov, N. F. Shkodich, and S. V. Naumov, “Effect of mechanically activated nanodiamonds on the structure formation in thermosetting oligomers,” Vestn. Kazan. Tekhnol. Univ. 15 (11), 102–105 (2012).
22.
go back to reference E. R. Badamshina, M. P. Gafurova, and Ya. I. Estrin, “Modification of carbon nanotubes and synthesis of polymeric composites involving the nanotubes,” Russ. Chem. Rev. 79, 945–979 (2010).CrossRef E. R. Badamshina, M. P. Gafurova, and Ya. I. Estrin, “Modification of carbon nanotubes and synthesis of polymeric composites involving the nanotubes,” Russ. Chem. Rev. 79, 945–979 (2010).CrossRef
23.
go back to reference E. C. Botelho, E. R. Edwards, B. Bittmann, and Th. Burkhart, “Dispersing carbon nanotubes in phenolic resin using an aqueous solution,” J. Braz. Chem. Soc. 22 (11), 2040–2047 (2011).CrossRef E. C. Botelho, E. R. Edwards, B. Bittmann, and Th. Burkhart, “Dispersing carbon nanotubes in phenolic resin using an aqueous solution,” J. Braz. Chem. Soc. 22 (11), 2040–2047 (2011).CrossRef
25.
go back to reference J. Cui, Y. Yehai, J. Liu, and Q. Wu, “Phenolic resin-MWNT nanocomposites prepared through an in situ polymerization method,” Polym. J. 40 (11), 1067–1073 (2008).CrossRef J. Cui, Y. Yehai, J. Liu, and Q. Wu, “Phenolic resin-MWNT nanocomposites prepared through an in situ polymerization method,” Polym. J. 40 (11), 1067–1073 (2008).CrossRef
26.
go back to reference A. P. Puzyr’, G. E. Selyutin, V. B. Vorob’ev, et al., “Prospects for the use of detonation nanodiamonds with increased colloidal stability in technical areas,” Nanotekhnika, No. 8, 96–106 (2006). A. P. Puzyr’, G. E. Selyutin, V. B. Vorob’ev, et al., “Prospects for the use of detonation nanodiamonds with increased colloidal stability in technical areas,” Nanotekhnika, No. 8, 96–106 (2006).
27.
go back to reference V. Yu. Dolmatov, “Detonation-synthesis nanodiamonds: Synthesis, structure, properties, and applications,” Russ. Chem. Rev. 76 (4), 339–360 (2007).CrossRef V. Yu. Dolmatov, “Detonation-synthesis nanodiamonds: Synthesis, structure, properties, and applications,” Russ. Chem. Rev. 76 (4), 339–360 (2007).CrossRef
28.
go back to reference V. Shkodich, N. Temnikova, I. Boiko, H. Leicht, E. Kraus, N. Shkodich, and O. Stoyanov, “Structural properties of nanocomposites based on resole-type phenolformaldehyde oligomers and detonation nanodiamonds,” J. Appl. Polym. Sci. 137 (16), 48582 (2020). https://doi.org/10.1002/APP.48582CrossRef V. Shkodich, N. Temnikova, I. Boiko, H. Leicht, E. Kraus, N. Shkodich, and O. Stoyanov, “Structural properties of nanocomposites based on resole-type phenolformaldehyde oligomers and detonation nanodiamonds,” J. Appl. Polym. Sci. 137 (16), 48582 (2020). https://​doi.​org/​10.​1002/​APP.​48582CrossRef
29.
go back to reference N.-H. Tai, M.-K. Yeh, and T.-H. Peng, “Experimental study and theoretical analysis on the mechanical properties of SWNTs/phenolic composites,” Composites, Part B 39 (6), 920–932 (2008).CrossRef N.-H. Tai, M.-K. Yeh, and T.-H. Peng, “Experimental study and theoretical analysis on the mechanical properties of SWNTs/phenolic composites,” Composites, Part B 39 (6), 920–932 (2008).CrossRef
33.
34.
go back to reference Xiang-Feng Wu, Yong-Ke Zhao, Yun Zhang, et al., “The comparison of mechanical and thermal properties of carbon nanotubes and graphene naonosheets enhanced phenol-formaldehyde resin,” J. Chem. Soc. Pak. 39 (5), 737–742 (2017). Xiang-Feng Wu, Yong-Ke Zhao, Yun Zhang, et al., “The comparison of mechanical and thermal properties of carbon nanotubes and graphene naonosheets enhanced phenol-formaldehyde resin,” J. Chem. Soc. Pak. 39 (5), 737–742 (2017).
36.
38.
go back to reference D. Bychanok, A. Liubimau, K. Piasotski, et al., “Effective carbon nanotube/phenol formaldehyde resin based double-layer absorbers of microwave radiation: Design and modeling,” Phys. Status Solidi (B) 255 (1), 1–6 (2018).CrossRef D. Bychanok, A. Liubimau, K. Piasotski, et al., “Effective carbon nanotube/phenol formaldehyde resin based double-layer absorbers of microwave radiation: Design and modeling,” Phys. Status Solidi (B) 255 (1), 1–6 (2018).CrossRef
39.
go back to reference G. A. Sokolina, S. A. Denisov, B. V. Spitsyn, A. G. Chopurova, S. V. Bantsekov, and N. Yu. Boldyrev, “Electrical conductivity of modified detonation diamond nanopowders,” Khim. Khim. Tekhnol. 53 (10), 69–74 (2010). G. A. Sokolina, S. A. Denisov, B. V. Spitsyn, A. G. Chopurova, S. V. Bantsekov, and N. Yu. Boldyrev, “Electrical conductivity of modified detonation diamond nanopowders,” Khim. Khim. Tekhnol. 53 (10), 69–74 (2010).
40.
go back to reference Xiang-Feng Wu, Yong-Ke Zhao, Ze-Hua Zhao, et al., “Graphene oxide–carbon nanotubes hybrids: Preparation, characterization and application in phenol formaldehyde resin,” J. Macromol. Sci. 54 (12), 1507–1514 (2015).CrossRef Xiang-Feng Wu, Yong-Ke Zhao, Ze-Hua Zhao, et al., “Graphene oxide–carbon nanotubes hybrids: Preparation, characterization and application in phenol formaldehyde resin,” J. Macromol. Sci. 54 (12), 1507–1514 (2015).CrossRef
41.
go back to reference Yaolin Zhang, Xiang- Ming Wang, Martin Feng et al., US Patent No. US8816007B2 (2014). Yaolin Zhang, Xiang- Ming Wang, Martin Feng et al., US Patent No. US8816007B2 (2014).
42.
go back to reference B.-D. Park and J. F. Kadla, “Thermal degradation kinetics of resole phenol–formaldehyde resin/milti-walled carbon nanotubes/cellulose nanocomposite,” Thermochim. Acta 540, 107–115 (2012).CrossRef B.-D. Park and J. F. Kadla, “Thermal degradation kinetics of resole phenol–formaldehyde resin/milti-walled carbon nanotubes/cellulose nanocomposite,” Thermochim. Acta 540, 107–115 (2012).CrossRef
44.
go back to reference R. R. Faizrakhmanov, V. F. Shkodich, V. F. Abubakirov, A. V. Naumov, and S. V. Naumov, “Effect of highly active carbon particles on the physical and mechanical properties of prepregs based on aramid fibers,” Vestn. Kazan. Tekhnol. Univ. 16 (1), 114–116 (2013). R. R. Faizrakhmanov, V. F. Shkodich, V. F. Abubakirov, A. V. Naumov, and S. V. Naumov, “Effect of highly active carbon particles on the physical and mechanical properties of prepregs based on aramid fibers,” Vestn. Kazan. Tekhnol. Univ. 16 (1), 114–116 (2013).
45.
go back to reference N. I. Shvets, O. B. Zastrogina, S. L. Barbot’ko, and V. M. Aleksashin, “Phenol–formaldehyde binder of low flammability,” Pozharovzryvobezopasnost’ 22 (5), 26–32 (2013).CrossRef N. I. Shvets, O. B. Zastrogina, S. L. Barbot’ko, and V. M. Aleksashin, “Phenol–formaldehyde binder of low flammability,” Pozharovzryvobezopasnost’ 22 (5), 26–32 (2013).CrossRef
Metadata
Title
Phenol–Formaldehyde Oligomers Modified with Carbon Nanoparticles and Their Use in Adhesives and Prepregs
Authors
I. I. Nikonova
V. F. Shkodich
N. E. Temnikova
M. V. Kolpakova
O. V. Stoyanov
Publication date
01-10-2021
Publisher
Pleiades Publishing
Published in
Polymer Science, Series D / Issue 4/2021
Print ISSN: 1995-4212
Electronic ISSN: 1995-4220
DOI
https://doi.org/10.1134/S199542122104016X

Other articles of this Issue 4/2021

Polymer Science, Series D 4/2021 Go to the issue

Premium Partners