Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 3/2020

17-07-2019 | Original Article

Prediction of pyrolytic product composition and yield for various grass biomass feedstocks

Authors: Pathy Abhijeet, G. Swagathnath, S. Rangabhashiyam, M. Asok Rajkumar, P. Balasubramanian

Published in: Biomass Conversion and Biorefinery | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Pyrolysis is the fundamental thermochemical reaction for both combustion and gasification processes aimed at the conversion of a wide array of biomass wastes into many desirable products. The main products of biomass pyrolysis are biochar, bio-oil, and flue gases (which includes methane, carbon monoxide, hydrogen, and carbon dioxide). The present article is an attempt to observe the effect of temperature on the pyrolysis process by using elementary composition of biomass to estimate the product yield along with its composition. This study considered the grasses such as bamboo, kenaf, miscanthus, reed canary, and switch grasses as the biomass feedstock. The dependence of pyrolytic product (solid, liquid, gas) formation on variation of temperature and heating rate has been discussed. The results revealed that the amount of pyrolytic product formation is dependent on the elementary and biochemical composition of grass biomasses. Based upon the biomass composition, possibility of co-pyrolysis has been discussed in this paper. Validation of model results revealed that almost 99% similarity is observed in the case of miscanthus biochar yield; however, 10% dissimilarity in gas and water yield for miscanthus is observed between predicted and experimental yield. This modeling approach would not only help in optimizing the pyrolysis process, but also encouraged the utilization of the biomass feedstock efficiently for the production of desired products in a sustainable manner.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rangabhashiyam S, Balasubramanian P (2019) The potential of lignocellulosic biomass precursors for biochar production: performance, mechanism and wastewater application—a review. Ind Crop Prod 128:405–423CrossRef Rangabhashiyam S, Balasubramanian P (2019) The potential of lignocellulosic biomass precursors for biochar production: performance, mechanism and wastewater application—a review. Ind Crop Prod 128:405–423CrossRef
2.
go back to reference Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sust Energ Rev 57:1126–1140CrossRef Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sust Energ Rev 57:1126–1140CrossRef
3.
go back to reference Qiao Y, Wang B, Ji Y, Xu F, Zong P, Zhang J, Tian Y (2019) Thermal decomposition of castor oil, corn starch, soy protein, lignin, xylan, and cellulose during fast pyrolysis. Bioresour Technol 278:287–295CrossRef Qiao Y, Wang B, Ji Y, Xu F, Zong P, Zhang J, Tian Y (2019) Thermal decomposition of castor oil, corn starch, soy protein, lignin, xylan, and cellulose during fast pyrolysis. Bioresour Technol 278:287–295CrossRef
4.
go back to reference Bhola V, Desikan R, Santosh SK, Subburamu K, Sanniyasi E, Bux F (2011) Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris. J Biosci Bioeng 111(3):377–382CrossRef Bhola V, Desikan R, Santosh SK, Subburamu K, Sanniyasi E, Bux F (2011) Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris. J Biosci Bioeng 111(3):377–382CrossRef
5.
go back to reference Sanchez-Monedero MA, Cayuela ML, Roig A, Jindo K, Mondini C, Bolan N (2018) Role of biochar as an additive in organic waste composting. Bioresour Technol 247:1155–1164CrossRef Sanchez-Monedero MA, Cayuela ML, Roig A, Jindo K, Mondini C, Bolan N (2018) Role of biochar as an additive in organic waste composting. Bioresour Technol 247:1155–1164CrossRef
6.
go back to reference Boateng AA, Schaffer MA, Mullen CA, Goldberg NM (2019) Mobile demonstration unit for fast-and catalytic pyrolysis: the combustion reduction integrated pyrolysis system (CRIPS). J Anal Appl Pyrolysis 137:185–194CrossRef Boateng AA, Schaffer MA, Mullen CA, Goldberg NM (2019) Mobile demonstration unit for fast-and catalytic pyrolysis: the combustion reduction integrated pyrolysis system (CRIPS). J Anal Appl Pyrolysis 137:185–194CrossRef
7.
go back to reference Sharma ML, Nirmala C (2015) Bamboo diversity of India: an update. In: 10th World Bamboo Congress, (17–22 September 2015), Damyang, Korea. World Bamboo organisation, Plymouth, MA, USA Sharma ML, Nirmala C (2015) Bamboo diversity of India: an update. In: 10th World Bamboo Congress, (17–22 September 2015), Damyang, Korea. World Bamboo organisation, Plymouth, MA, USA
8.
go back to reference GRIN (Germplasm Resources Information Network) (2017) “Phalaris arundinacea” on Agricultural Research Service (ARS), United States Department of Agriculture (USDA) [Retrieved on 2017-12-15] GRIN (Germplasm Resources Information Network) (2017) “Phalaris arundinacea” on Agricultural Research Service (ARS), United States Department of Agriculture (USDA) [Retrieved on 2017-12-15]
9.
go back to reference PLANTS Database (2018) “Panicum virgatum” on Natural Resources Conservation Service PLANTS Database, USDA [Retrieved on 2018-05-21] PLANTS Database (2018) “Panicum virgatum” on Natural Resources Conservation Service PLANTS Database, USDA [Retrieved on 2018-05-21]
10.
go back to reference Saba N, Paridah MT, Jawaid M (2015) Mechanical properties of kenaf fibre reinforced polymer composite: a review. Constr Build Mater 76:87–96CrossRef Saba N, Paridah MT, Jawaid M (2015) Mechanical properties of kenaf fibre reinforced polymer composite: a review. Constr Build Mater 76:87–96CrossRef
11.
go back to reference Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19(4):209–227CrossRef Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19(4):209–227CrossRef
12.
go back to reference Nayak KR, Auti S (2019) Reviewing the problem of ELVs in India and checking possibilities of pyrolysis as a solution. In: Vasudevan H, Kottur V, Raina A (eds) Proceedings of International Conference on Intelligent Manufacturing and Automation. Lecture Notes in Mechanical Engineering. Springer, Singapore Nayak KR, Auti S (2019) Reviewing the problem of ELVs in India and checking possibilities of pyrolysis as a solution. In: Vasudevan H, Kottur V, Raina A (eds) Proceedings of International Conference on Intelligent Manufacturing and Automation. Lecture Notes in Mechanical Engineering. Springer, Singapore
13.
go back to reference Balasubramanian P, Karthickumar P (2012) Indian energy crisis—a sustainable solution. In: IEEE-International Conference On Advances In Engineering, Science And Management (ICAESM-2012) (pp. 411–415). IEEE Balasubramanian P, Karthickumar P (2012) Indian energy crisis—a sustainable solution. In: IEEE-International Conference On Advances In Engineering, Science And Management (ICAESM-2012) (pp. 411–415). IEEE
14.
go back to reference Asok R, Balasubramanian P, Karthickumar P (2013) Consolidated renewable energy—a future hawk-eyed energy in India. Int J Adv Res Technol 2(2) Asok R, Balasubramanian P, Karthickumar P (2013) Consolidated renewable energy—a future hawk-eyed energy in India. Int J Adv Res Technol 2(2)
15.
go back to reference Yaliwal VS, Banapurmath NR, Hosmath RS, Khandal SV, Budzianowski WM (2016) Utilization of hydrogen in low calorific value producer gas derived from municipal solid waste and biodiesel for diesel engine power generation application. Renew Energy 99:1253–1261CrossRef Yaliwal VS, Banapurmath NR, Hosmath RS, Khandal SV, Budzianowski WM (2016) Utilization of hydrogen in low calorific value producer gas derived from municipal solid waste and biodiesel for diesel engine power generation application. Renew Energy 99:1253–1261CrossRef
16.
go back to reference Muradov N (2014) Industrial utilization of CO2: a win-win solution. In: Liberating energy from carbon: introduction to decarbonization. Lecture Notes in Energy, vol 22. Springer, New York, NY Muradov N (2014) Industrial utilization of CO2: a win-win solution. In: Liberating energy from carbon: introduction to decarbonization. Lecture Notes in Energy, vol 22. Springer, New York, NY
17.
go back to reference Swagathnath G, Rangabhashiyam S, Parthsarathi K, Murugan S, Balasubramanian P (2019) Modeling biochar yield and syngas production during the pyrolysis of agro-residues. In: Green Buildings and Sustainable Engineering (pp. 325–336). Springer, Singapore. Swagathnath G, Rangabhashiyam S, Parthsarathi K, Murugan S, Balasubramanian P (2019) Modeling biochar yield and syngas production during the pyrolysis of agro-residues. In: Green Buildings and Sustainable Engineering (pp. 325–336). Springer, Singapore.
18.
go back to reference Mythili R, Subramanian P, Venkatachalam P (2016) Art of waste to fortune: conversion of redgram stalk into value added chemicals through fast pyrolysis. Natl Acad Sci Lett 39(3):151–155CrossRef Mythili R, Subramanian P, Venkatachalam P (2016) Art of waste to fortune: conversion of redgram stalk into value added chemicals through fast pyrolysis. Natl Acad Sci Lett 39(3):151–155CrossRef
19.
go back to reference Kim JS (2015) Production, separation and applications of phenolic-rich bio-oil—a review. Bioresour Technol 178:90–98CrossRef Kim JS (2015) Production, separation and applications of phenolic-rich bio-oil—a review. Bioresour Technol 178:90–98CrossRef
20.
go back to reference Zhang C, Liu L, Zhao M, Rong H, Xu Y (2018) The environmental characteristics and applications of biochar. Environ Sci Pollut Res 25(22):21525–21534CrossRef Zhang C, Liu L, Zhao M, Rong H, Xu Y (2018) The environmental characteristics and applications of biochar. Environ Sci Pollut Res 25(22):21525–21534CrossRef
21.
go back to reference Favetta D, Rosse DJ, Slattery JC (2016) U.S. Patent No. 9,478,324. U.S. Patent and Trademark Office, Washington, DC Favetta D, Rosse DJ, Slattery JC (2016) U.S. Patent No. 9,478,324. U.S. Patent and Trademark Office, Washington, DC
22.
go back to reference Heck V, Gerten D, Lucht W, Popp A (2018) Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat Clim Chang 8(2):151–155CrossRef Heck V, Gerten D, Lucht W, Popp A (2018) Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat Clim Chang 8(2):151–155CrossRef
23.
go back to reference Son EB, Poo KM, Chang JS, Chae KJ (2018) Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Sci Total Environ 615:161–168CrossRef Son EB, Poo KM, Chang JS, Chae KJ (2018) Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Sci Total Environ 615:161–168CrossRef
24.
go back to reference Sreelakshmy K, Sindhu N (2019) Modelling and simulation of microwave-assisted pyrolysis of plastic. In: Ghosh S (ed) Waste management and resource efficiency. Springer, Singapore Sreelakshmy K, Sindhu N (2019) Modelling and simulation of microwave-assisted pyrolysis of plastic. In: Ghosh S (ed) Waste management and resource efficiency. Springer, Singapore
25.
go back to reference Nanda S, Dalai AK, Berruti F, Kozinski JA (2016) Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valoriz 7(2):201–235CrossRef Nanda S, Dalai AK, Berruti F, Kozinski JA (2016) Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valoriz 7(2):201–235CrossRef
26.
go back to reference Dernbecher A, Dieguez-Alonso A, Ortwein A, Tabet F (2019) Review on modelling approaches based on computational fluid dynamics for biomass combustion systems. Biomass Convers Bioref 9(1):129–182CrossRef Dernbecher A, Dieguez-Alonso A, Ortwein A, Tabet F (2019) Review on modelling approaches based on computational fluid dynamics for biomass combustion systems. Biomass Convers Bioref 9(1):129–182CrossRef
27.
go back to reference Yaman S (2004) Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers Manag 45(5):651–671CrossRef Yaman S (2004) Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers Manag 45(5):651–671CrossRef
28.
go back to reference Prakash N, Karunanithi T (2008) Kinetic modeling in biomass pyrolysis—a review. J Appl Sci Res 4(12):1627–1636 Prakash N, Karunanithi T (2008) Kinetic modeling in biomass pyrolysis—a review. J Appl Sci Res 4(12):1627–1636
29.
go back to reference Di Blasi C (1993) Modeling and simulation of combustion processes of charring and non-charring solid fuels. Prog Energy Combust Sci 19(1):71–104CrossRef Di Blasi C (1993) Modeling and simulation of combustion processes of charring and non-charring solid fuels. Prog Energy Combust Sci 19(1):71–104CrossRef
30.
go back to reference Neves D, Thunman H, Matos A, Tarelho L, Gómez-Barea A (2011) Characterization and prediction of biomass pyrolysis products. Prog Energy Combust Sci 37(5):611–630CrossRef Neves D, Thunman H, Matos A, Tarelho L, Gómez-Barea A (2011) Characterization and prediction of biomass pyrolysis products. Prog Energy Combust Sci 37(5):611–630CrossRef
31.
go back to reference Yoder J, Galinato S, Granatstein D, Garcia-Perez M (2011) Economic tradeoff between biochar and bio-oil production via pyrolysis. Biomass Bioenergy 35(5):1851–1862CrossRef Yoder J, Galinato S, Granatstein D, Garcia-Perez M (2011) Economic tradeoff between biochar and bio-oil production via pyrolysis. Biomass Bioenergy 35(5):1851–1862CrossRef
32.
go back to reference Song B (2016) Biomass pyrolysis for biochar production: kinetics, energetics and economics. Biochar:227–238 Song B (2016) Biomass pyrolysis for biochar production: kinetics, energetics and economics. Biochar:227–238
33.
go back to reference Di Blasi C (2008) Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci 34(1):47–90CrossRef Di Blasi C (2008) Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci 34(1):47–90CrossRef
34.
go back to reference Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89(5):913–933CrossRef Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89(5):913–933CrossRef
35.
go back to reference Akil H, Omar MF, Mazuki AAM, Safiee SZAM, Ishak ZM, Bakar AA (2011) Kenaf fiber reinforced composites: a review. Mater Des 32(8–9):4107–4121CrossRef Akil H, Omar MF, Mazuki AAM, Safiee SZAM, Ishak ZM, Bakar AA (2011) Kenaf fiber reinforced composites: a review. Mater Des 32(8–9):4107–4121CrossRef
36.
go back to reference Chen W, Yu H, Liu Y (2011) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86(2):453–461CrossRef Chen W, Yu H, Liu Y (2011) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86(2):453–461CrossRef
37.
go back to reference Brosse N, Dufour A, Meng X, Sun Q, Ragauskas A (2012) Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuels Bioprod Biorefin 6(5):580–598CrossRef Brosse N, Dufour A, Meng X, Sun Q, Ragauskas A (2012) Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuels Bioprod Biorefin 6(5):580–598CrossRef
38.
go back to reference Dhyani V, Bhaskar T (2018) A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy 129:695–716CrossRef Dhyani V, Bhaskar T (2018) A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy 129:695–716CrossRef
39.
go back to reference Daugaard DE, Brown RC (2003) Enthalpy for pyrolysis for several types of biomass. Energy Fuel 17(4):934–939CrossRef Daugaard DE, Brown RC (2003) Enthalpy for pyrolysis for several types of biomass. Energy Fuel 17(4):934–939CrossRef
40.
go back to reference Sheng C, Azevedo JLT (2005) Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy 28(5):499–507CrossRef Sheng C, Azevedo JLT (2005) Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy 28(5):499–507CrossRef
41.
go back to reference Demirbaş A (1997) Calculation of higher heating values of biomass fuels. Fuel 76(5):431–434CrossRef Demirbaş A (1997) Calculation of higher heating values of biomass fuels. Fuel 76(5):431–434CrossRef
42.
go back to reference Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 62:33–86CrossRef Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 62:33–86CrossRef
43.
go back to reference Han L, Ro KS, Wang Y, Sun K, Sun H, Libra JA, Xing B (2018) Oxidation resistance of biochars as a function of feedstock and pyrolysis condition. Sci Total Environ 616:335–344CrossRef Han L, Ro KS, Wang Y, Sun K, Sun H, Libra JA, Xing B (2018) Oxidation resistance of biochars as a function of feedstock and pyrolysis condition. Sci Total Environ 616:335–344CrossRef
44.
go back to reference Zhang X, Lei H, Chen S, Wu J (2016) Catalytic co-pyrolysis of lignocellulosic biomass with polymers: a critical review. Green Chem 18(15):4145–4169CrossRef Zhang X, Lei H, Chen S, Wu J (2016) Catalytic co-pyrolysis of lignocellulosic biomass with polymers: a critical review. Green Chem 18(15):4145–4169CrossRef
45.
go back to reference de Andrés JM, Roche E, Narros A, Rodríguez ME (2016) Characterisation of tar from sewage sludge gasification. Influence of gasifying conditions: temperature, throughput, steam and use of primary catalysts. Fuel 180:116–126CrossRef de Andrés JM, Roche E, Narros A, Rodríguez ME (2016) Characterisation of tar from sewage sludge gasification. Influence of gasifying conditions: temperature, throughput, steam and use of primary catalysts. Fuel 180:116–126CrossRef
46.
go back to reference Trubetskaya A, Brown A, Tompsett GA, Timko MT, Kling J, Broström M, Andersen ML, Umeki K (2018) Characterization and reactivity of soot from fast pyrolysis of lignocellulosic compounds and monolignols. Appl Energy 212:1489–1500CrossRef Trubetskaya A, Brown A, Tompsett GA, Timko MT, Kling J, Broström M, Andersen ML, Umeki K (2018) Characterization and reactivity of soot from fast pyrolysis of lignocellulosic compounds and monolignols. Appl Energy 212:1489–1500CrossRef
47.
go back to reference Nanda S, Reddy SN, Vo DVN, Sahoo BN, Kozinski JA (2018) Catalytic gasification of wheat straw in hot compressed (subcritical and supercritical) water for hydrogen production. Energy Sci Eng 6(5):448–459CrossRef Nanda S, Reddy SN, Vo DVN, Sahoo BN, Kozinski JA (2018) Catalytic gasification of wheat straw in hot compressed (subcritical and supercritical) water for hydrogen production. Energy Sci Eng 6(5):448–459CrossRef
48.
go back to reference Arregi A, Amutio M, Lopez G, Bilbao J, Olazar M (2018) Evaluation of thermochemical routes for hydrogen production from biomass: a review. Energy Convers Manag 165:696–719CrossRef Arregi A, Amutio M, Lopez G, Bilbao J, Olazar M (2018) Evaluation of thermochemical routes for hydrogen production from biomass: a review. Energy Convers Manag 165:696–719CrossRef
49.
go back to reference Sun W, Liu X, Chen X (2019) Methane oxidizing bacteria and its potential application of methane emission control in landfills. In: Zhan L, Chen Y, Bouazza A (eds) Proceedings of the 8th International Congress on Environmental Geotechnics Volume 3. ICEG 2018. Environmental Science and Engineering. Springer, Singapore Sun W, Liu X, Chen X (2019) Methane oxidizing bacteria and its potential application of methane emission control in landfills. In: Zhan L, Chen Y, Bouazza A (eds) Proceedings of the 8th International Congress on Environmental Geotechnics Volume 3. ICEG 2018. Environmental Science and Engineering. Springer, Singapore
50.
go back to reference Peng X, Ye LL, Wang CH, Zhou H, Sun B (2011) Temperature-and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil Tillage Res 112(2):159–166 Peng X, Ye LL, Wang CH, Zhou H, Sun B (2011) Temperature-and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil Tillage Res 112(2):159–166
51.
go back to reference Guedes RE, Luna AS, Torres AR (2018) Operating parameters for bio-oil production in biomass pyrolysis: a review. J Anal Appl Pyrolysis 129:134–149CrossRef Guedes RE, Luna AS, Torres AR (2018) Operating parameters for bio-oil production in biomass pyrolysis: a review. J Anal Appl Pyrolysis 129:134–149CrossRef
52.
go back to reference Zhang Q, Yang Z, Wu W (2008) Role of crop residue management in sustainable agricultural development in the North China Plain. J. Sustain. Agric. 32(1):137–148 Zhang Q, Yang Z, Wu W (2008) Role of crop residue management in sustainable agricultural development in the North China Plain. J. Sustain. Agric. 32(1):137–148
53.
go back to reference Brebu M, Ucar S, Vasile C, Yanik J (2010) Co-pyrolysis of pine cone with synthetic polymers. Fuel 89(8):1911–1918CrossRef Brebu M, Ucar S, Vasile C, Yanik J (2010) Co-pyrolysis of pine cone with synthetic polymers. Fuel 89(8):1911–1918CrossRef
54.
go back to reference Krutof A, Hawboldt KA (2018) Upgrading of biomass sourced pyrolysis oil review: focus on co-pyrolysis and vapour upgrading during pyrolysis. Biomass Convers Bioref 8(3):775–787CrossRef Krutof A, Hawboldt KA (2018) Upgrading of biomass sourced pyrolysis oil review: focus on co-pyrolysis and vapour upgrading during pyrolysis. Biomass Convers Bioref 8(3):775–787CrossRef
55.
go back to reference Chen D, Liu D, Zhang H, Chen Y, Li Q (2015) Bamboo pyrolysis using TG–FTIR and a lab-scale reactor: analysis of pyrolysis behavior, product properties, and carbon and energy yields. Fuel 148:79–86CrossRef Chen D, Liu D, Zhang H, Chen Y, Li Q (2015) Bamboo pyrolysis using TG–FTIR and a lab-scale reactor: analysis of pyrolysis behavior, product properties, and carbon and energy yields. Fuel 148:79–86CrossRef
56.
go back to reference Greenhalf CE, Nowakowski DJ, Harms AB, Titiloye JO, Bridgwater AV (2013) A comparative study of straw, perennial grasses and hardwoods in terms of fast pyrolysis products. Fuel 108:216–230CrossRef Greenhalf CE, Nowakowski DJ, Harms AB, Titiloye JO, Bridgwater AV (2013) A comparative study of straw, perennial grasses and hardwoods in terms of fast pyrolysis products. Fuel 108:216–230CrossRef
57.
go back to reference Fahmi R, Bridgwater AV, Donnison I, Yates N, Jones JM (2008) The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 87(7):1230–1240CrossRef Fahmi R, Bridgwater AV, Donnison I, Yates N, Jones JM (2008) The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 87(7):1230–1240CrossRef
Metadata
Title
Prediction of pyrolytic product composition and yield for various grass biomass feedstocks
Authors
Pathy Abhijeet
G. Swagathnath
S. Rangabhashiyam
M. Asok Rajkumar
P. Balasubramanian
Publication date
17-07-2019
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 3/2020
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-019-00475-5

Other articles of this Issue 3/2020

Biomass Conversion and Biorefinery 3/2020 Go to the issue