Skip to main content
Top

2024 | OriginalPaper | Chapter

Properties and Performance of Biopolymers in Textile Applications

Authors : Kazi Rezwan Hossain, Sharmin Akter, Muntajena Nanjeba, Md Arif Mahmud

Published in: Biopolymers in the Textile Industry

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biopolymers are created from renewable resources, and those can provide environmentally friendly alternatives to traditional synthetic polymers. Biopolymers have always been the main source in textile industries, including cellulosic and protein fibres used as raw materials for textile products. But in recent years, the textile industry has become increasingly interested in biopolymers for other applications also because of their biodegradability, low carbon footprint, and compatibility with natural fibres. In textile applications, biopolymers such as chitosan, polysaccharides, and proteins have demonstrated good qualities, including high water absorption capacity and great dyeability. The antibacterial and antifungal attributes of chitosan, which is derived from chitin, make it suitable for use in medical textiles. Biopolymers, like different polysaccharides, have demonstrated promising results in the dying, printing, finishing, medical textiles, and packaging industries. Biopolymer performance in textile applications depends on several variables, including processing conditions, blend ratios, and finishing treatments. Adjusting the proportions of natural fibres and synthetic polymers can also improve the final product's qualities. This chapter will examine the characteristics and performance of these biopolymers used in textile applications. It will discuss the origins, characteristics, and applications of biopolymers in the textile sector.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Boyle, J. (2008). Molecular biology of the cell. In B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, & P. Walter (Eds.), Biochemistry and Molecular Biology Education, (5th edn., Vol. 36, no. 4, pp. 317–318). https://doi.org/10.1002/bmb.20192. Boyle, J. (2008). Molecular biology of the cell. In B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, & P. Walter (Eds.), Biochemistry and Molecular Biology Education, (5th edn., Vol. 36, no. 4, pp. 317–318). https://​doi.​org/​10.​1002/​bmb.​20192.
5.
go back to reference Torres, F. G., Troncoso, O. P., Pisani, A., Gatto, F., & Bardi, G. (2019). Natural polysaccharide nanomaterials: An overview of their immunological properties. International Journal of Molecular Sciences, 20(20). (MDPI AG, Oct. 02, 2019). https://doi.org/10.3390/ijms20205092. Torres, F. G., Troncoso, O. P., Pisani, A., Gatto, F., & Bardi, G. (2019). Natural polysaccharide nanomaterials: An overview of their immunological properties. International Journal of Molecular Sciences, 20(20). (MDPI AG, Oct. 02, 2019). https://​doi.​org/​10.​3390/​ijms20205092.
11.
go back to reference Pilla, S. (2011). Engineering applications of bioplastics and biocomposites-an overview. Pilla, S. (2011). Engineering applications of bioplastics and biocomposites-an overview.
17.
go back to reference H. Chen, Y. Jia, and Q. Guo, “@@@Chapter 6 - Polysaccharides and polysaccharide complexes as potential sources of antidiabetic compounds: A review,” in Bioactive Natural Products, Atta-ur-Rahman, Ed., in Studies in Natural Products Chemistry, vol. 67. Elsevier, 2020, pp. 199–220. doi: https://doi.org/10.1016/B978-0-12-819483-6.00006-0. H. Chen, Y. Jia, and Q. Guo, “@@@Chapter 6 - Polysaccharides and polysaccharide complexes as potential sources of antidiabetic compounds: A review,” in Bioactive Natural Products, Atta-ur-Rahman, Ed., in Studies in Natural Products Chemistry, vol. 67. Elsevier, 2020, pp. 199–220. doi: https://​doi.​org/​10.​1016/​B978-0-12-819483-6.​00006-0.
18.
go back to reference David John Thomas, William A. Atwell, “Starches”. Eagan Press, St. Paul, Minn., 1999. ISBN: 9781891127014, 1891127012 David John Thomas, William A. Atwell, “Starches”. Eagan Press, St. Paul, Minn., 1999. ISBN: 9781891127014, 1891127012
19.
go back to reference M. Mitrus, A. Wojtowicz, and L. Moscicki, “Biodegradable Polymers and Their Practical Utility,” in Thermoplastic Starch: A Green Material for Various Industries, L. Janssen, Leon P.B.M; Moscicki, Ed., Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2010, pp. 1–33. doi: https://doi.org/10.1002/9783527628216.ch1. M. Mitrus, A. Wojtowicz, and L. Moscicki, “Biodegradable Polymers and Their Practical Utility,” in Thermoplastic Starch: A Green Material for Various Industries, L. Janssen, Leon P.B.M; Moscicki, Ed., Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2010, pp. 1–33. doi: https://​doi.​org/​10.​1002/​9783527628216.​ch1.
20.
go back to reference J. F. Robyt, “Starch: Structure, Properties, Chemistry and Enzymology,” in Glycoscience: Chemistry and Chemical Biology, B. O. Fraser-Reid, K. Tatsuta, and J. Thiem, Eds., Heidelberg: Springer, 2008, pp. 1437–1472.CrossRef J. F. Robyt, “Starch: Structure, Properties, Chemistry and Enzymology,” in Glycoscience: Chemistry and Chemical Biology, B. O. Fraser-Reid, K. Tatsuta, and J. Thiem, Eds., Heidelberg: Springer, 2008, pp. 1437–1472.CrossRef
28.
go back to reference R. H. Abou-Saleh et al., “Interactions between callose and cellulose revealed through the analysis of biopolymer mixtures,” Nat Commun, vol. 9, no. 1, p. 4538, 2018.CrossRefPubMedPubMedCentral R. H. Abou-Saleh et al., “Interactions between callose and cellulose revealed through the analysis of biopolymer mixtures,” Nat Commun, vol. 9, no. 1, p. 4538, 2018.CrossRefPubMedPubMedCentral
29.
go back to reference R. M. Brown Jr, “Cellulose structure and biosynthesis: what is in store for the 21st century?,” J Polym Sci A Polym Chem, vol. 42, no. 3, pp. 487–495, 2004.CrossRef R. M. Brown Jr, “Cellulose structure and biosynthesis: what is in store for the 21st century?,” J Polym Sci A Polym Chem, vol. 42, no. 3, pp. 487–495, 2004.CrossRef
30.
go back to reference D. Klemm, B. Heublein, H. Fink, and A. Bohn, “Cellulose: fascinating biopolymer and sustainable raw material,” Angewandte chemie international edition, vol. 44, no. 22, pp. 3358–3393, 2005.CrossRefPubMed D. Klemm, B. Heublein, H. Fink, and A. Bohn, “Cellulose: fascinating biopolymer and sustainable raw material,” Angewandte chemie international edition, vol. 44, no. 22, pp. 3358–3393, 2005.CrossRefPubMed
32.
go back to reference A. Brogniart, A. B. Pelonze, and R. Dumus, “Report on a Memoir of M. Payen, on the Composition of the Woody Nature,” Comptes Rendus, 1839. A. Brogniart, A. B. Pelonze, and R. Dumus, “Report on a Memoir of M. Payen, on the Composition of the Woody Nature,” Comptes Rendus, 1839.
39.
go back to reference A. Sharma, S. Nagarkar, S. Thakre, and G. Kumaraswamy, “Structure–property relations in regenerated cellulose fibres: comparison of fibres manufactured using viscose and lyocell processes,” Cellulose, vol. 0123456789, no. 1, 2019, doi: https://doi.org/10.1007/s10570-019-02352-w. A. Sharma, S. Nagarkar, S. Thakre, and G. Kumaraswamy, “Structure–property relations in regenerated cellulose fibres: comparison of fibres manufactured using viscose and lyocell processes,” Cellulose, vol. 0123456789, no. 1, 2019, doi: https://​doi.​org/​10.​1007/​s10570-019-02352-w.
40.
go back to reference R. B. Seymour and R.S. Porter, Manmade Fibres: their Origin and Development, 1993rd ed. England: ElsevierScience Publishers Ltd., 1993. R. B. Seymour and R.S. Porter, Manmade Fibres: their Origin and Development, 1993rd ed. England: ElsevierScience Publishers Ltd., 1993.
41.
go back to reference U. Javaid, Z. Ahmad, S. Iqbal, and S. Naeem, Viscose Fibre Strength and Degree of Polymerization. 2014. U. Javaid, Z. Ahmad, S. Iqbal, and S. Naeem, Viscose Fibre Strength and Degree of Polymerization. 2014.
42.
go back to reference C. R.B. and P. A.K., “Development and processing of lyocell,” Indian J Fibre Text Res, vol. 29, pp. 483–492, 2004. C. R.B. and P. A.K., “Development and processing of lyocell,” Indian J Fibre Text Res, vol. 29, pp. 483–492, 2004.
47.
go back to reference A. J. Sayyed, N. A. Deshmukh, and D. V. Pinjari, “A critical review of manufacturing processes used in regenerated cellulosic fibres: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell,” Cellulose, vol. 26, no. 4, p. 2913, 2019.CrossRef A. J. Sayyed, N. A. Deshmukh, and D. V. Pinjari, “A critical review of manufacturing processes used in regenerated cellulosic fibres: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell,” Cellulose, vol. 26, no. 4, p. 2913, 2019.CrossRef
48.
go back to reference R. Zaman and H. Ara Begum, “Regenerating Cuprammonium rayon from Various Cotton and Cotton-Polyester Mix Textile and Apparel Wastage”, 1st National Conference on Sustainable Textile and Apparel EngineeringAt: Tangail, Bangladesh, 2020. R. Zaman and H. Ara Begum, “Regenerating Cuprammonium rayon from Various Cotton and Cotton-Polyester Mix Textile and Apparel Wastage”, 1st National Conference on Sustainable Textile and Apparel EngineeringAt: Tangail, Bangladesh, 2020.
51.
go back to reference L. Rachel, “5. Applications of cellulose acetate 5.1 Cellulose acetate in textile application.,” Macromol Symp, vol. 208, pp. 255–266, 2004.CrossRef L. Rachel, “5. Applications of cellulose acetate 5.1 Cellulose acetate in textile application.,” Macromol Symp, vol. 208, pp. 255–266, 2004.CrossRef
54.
go back to reference S. et al. Rana, “Regenerated cellulosic fibres and their implications on sustainability,” In: Muthu SS, editor. Roadmap to Sustainable Textiles and Clothing: Eco-Friendly Raw Materials,Technologies, and Processing Methods. Singapore, vol. 14, pp. 239–276, 2014. S. et al. Rana, “Regenerated cellulosic fibres and their implications on sustainability,” In: Muthu SS, editor. Roadmap to Sustainable Textiles and Clothing: Eco-Friendly Raw Materials,Technologies, and Processing Methods. Singapore, vol. 14, pp. 239–276, 2014.
60.
go back to reference M. A. Wsoo, S. Shahir, S. P. Mohd Bohari, N. H. M. Nayan, and S. I. A. Razak, “A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: A new perspective,” Carbohydr Res, vol. 491, no. January, p. 107978, 2020, doi: https://doi.org/10.1016/j.carres.2020.107978. M. A. Wsoo, S. Shahir, S. P. Mohd Bohari, N. H. M. Nayan, and S. I. A. Razak, “A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: A new perspective,” Carbohydr Res, vol. 491, no. January, p. 107978, 2020, doi: https://​doi.​org/​10.​1016/​j.​carres.​2020.​107978.
61.
go back to reference K. Broker, I. From, and C. Chemistry, “Cellulose Derivatives,” vol. XI, no. 4, 1976. K. Broker, I. From, and C. Chemistry, “Cellulose Derivatives,” vol. XI, no. 4, 1976.
62.
go back to reference A. Jahandideh, M. Ashkani, and N. Moini, “Biopolymers in textile industries,” in Biopolymers and Their Industrial Applications, Elsevier, 2021, pp. 193–218. A. Jahandideh, M. Ashkani, and N. Moini, “Biopolymers in textile industries,” in Biopolymers and Their Industrial Applications, Elsevier, 2021, pp. 193–218.
64.
go back to reference L. Qian, K. Zhang, X. Guo, and M. Yu, “What happens when chitin becomes chitosan? A single-molecule study,” RSC Adv, vol. 13, no. 4, pp. 2294–2300, 2023.CrossRefPubMedPubMedCentral L. Qian, K. Zhang, X. Guo, and M. Yu, “What happens when chitin becomes chitosan? A single-molecule study,” RSC Adv, vol. 13, no. 4, pp. 2294–2300, 2023.CrossRefPubMedPubMedCentral
65.
go back to reference M. N. V. R. Kumar, R. Muzzarelli, C. Muzzarelli, H. Sashiwa, and A. J. Domb, “Chitosan chemistry and pharmaceutical perspectives,” Chem Rev, vol. 104, no. 12, pp. 6017–6084, 2004.CrossRefPubMed M. N. V. R. Kumar, R. Muzzarelli, C. Muzzarelli, H. Sashiwa, and A. J. Domb, “Chitosan chemistry and pharmaceutical perspectives,” Chem Rev, vol. 104, no. 12, pp. 6017–6084, 2004.CrossRefPubMed
66.
go back to reference I. Younes and M. Rinaudo, “Chitin and chitosan preparation from marine sources. Structure, properties and applications,” Mar Drugs, vol. 13, no. 3, pp. 1133–1174, 2015.CrossRefPubMedPubMedCentral I. Younes and M. Rinaudo, “Chitin and chitosan preparation from marine sources. Structure, properties and applications,” Mar Drugs, vol. 13, no. 3, pp. 1133–1174, 2015.CrossRefPubMedPubMedCentral
67.
go back to reference J. Synowiecki and N. A. Al-Khateeb, “Production, properties, and some new applications of chitin and its derivatives,” 2003. J. Synowiecki and N. A. Al-Khateeb, “Production, properties, and some new applications of chitin and its derivatives,” 2003.
68.
go back to reference J. Lizardi-Mendoza, W. M. Argüelles Monal, and F. M. Goycoolea Valencia, “Chapter 1 - Chemical Characteristics and Functional Properties of Chitosan,” in Chitosan in the Preservation of Agricultural Commodities, S. Bautista-Baños, G. Romanazzi, and A. Jiménez-Aparicio, Eds., San Diego: Academic Press, 2016, pp. 3–31. doi: https://doi.org/10.1016/B978-0-12-802735-6.00001-X. J. Lizardi-Mendoza, W. M. Argüelles Monal, and F. M. Goycoolea Valencia, “Chapter 1 - Chemical Characteristics and Functional Properties of Chitosan,” in Chitosan in the Preservation of Agricultural Commodities, S. Bautista-Baños, G. Romanazzi, and A. Jiménez-Aparicio, Eds., San Diego: Academic Press, 2016, pp. 3–31. doi: https://​doi.​org/​10.​1016/​B978-0-12-802735-6.​00001-X.
70.
go back to reference I. Aranaz et al., “Functional characterization of chitin and chitosan,” Curr Chem Biol, vol. 3, no. 2, pp. 203–230, 2009. I. Aranaz et al., “Functional characterization of chitin and chitosan,” Curr Chem Biol, vol. 3, no. 2, pp. 203–230, 2009.
71.
go back to reference H. K. No and S. P. Meyers, “Application of Chitosan for Treatment of Wastewaters,” in Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews, G. W. Ware, Ed., New York, NY: Springer New York, 2000, pp. 1–27. doi: https://doi.org/10.1007/978-1-4757-6429-1_1. H. K. No and S. P. Meyers, “Application of Chitosan for Treatment of Wastewaters,” in Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews, G. W. Ware, Ed., New York, NY: Springer New York, 2000, pp. 1–27. doi: https://​doi.​org/​10.​1007/​978-1-4757-6429-1_​1.
76.
go back to reference M. Janarthanan and M. Senthil Kumar, “The properties of bioactive substances obtained from seaweeds and their applications in textile industries,” Journal of Industrial Textiles, vol. 48, no. 1. SAGE Publications Ltd, pp. 361–401, Jul. 01, 2018. doi: https://doi.org/10.1177/1528083717692596. M. Janarthanan and M. Senthil Kumar, “The properties of bioactive substances obtained from seaweeds and their applications in textile industries,” Journal of Industrial Textiles, vol. 48, no. 1. SAGE Publications Ltd, pp. 361–401, Jul. 01, 2018. doi: https://​doi.​org/​10.​1177/​1528083717692596​.
81.
go back to reference Z. Ping and Z. Chuan-jie, “Preparation and application of alginate fibre in wound dressings,” JOURNAL OF CLINICAL REHABILITATIVE TISSUE ENGINEERING RESEARCH, vol. 32, pp. 6397–6400, 2008. Z. Ping and Z. Chuan-jie, “Preparation and application of alginate fibre in wound dressings,” JOURNAL OF CLINICAL REHABILITATIVE TISSUE ENGINEERING RESEARCH, vol. 32, pp. 6397–6400, 2008.
87.
go back to reference P. Taylor, A. Shilpa, S. S. Agrawal, and A. R. Ray, “Journal of Macromolecular Science , Part C : Polymer Reviews Controlled Delivery of Drugs from Alginate Matrix Controlled Delivery of Drugs from Alginate Matrix,” no. September 2012, pp. 37–41, doi: https://doi.org/10.1081/MC-120020160. P. Taylor, A. Shilpa, S. S. Agrawal, and A. R. Ray, “Journal of Macromolecular Science , Part C : Polymer Reviews Controlled Delivery of Drugs from Alginate Matrix Controlled Delivery of Drugs from Alginate Matrix,” no. September 2012, pp. 37–41, doi: https://​doi.​org/​10.​1081/​MC-120020160.
88.
go back to reference A. Haug and O. Smidsrod, “The Effect of Divalent Metals on the Properties of Alginate Solutions,” Acta Chem Scand, vol. 19, no. 2, pp. 341–351, 1965.CrossRef A. Haug and O. Smidsrod, “The Effect of Divalent Metals on the Properties of Alginate Solutions,” Acta Chem Scand, vol. 19, no. 2, pp. 341–351, 1965.CrossRef
92.
go back to reference L. FAN et al., “Antibacterial Fibres Made of Calcium Alginate/Chitosan Derivative,” Journal of Functional Polymers, vol. 18, no. 3, pp. 488–492, 2005. L. FAN et al., “Antibacterial Fibres Made of Calcium Alginate/Chitosan Derivative,” Journal of Functional Polymers, vol. 18, no. 3, pp. 488–492, 2005.
93.
go back to reference H. Q. Li and J. X. Gong, “The application of biodegradable alginate fibre,” Journal of Textile Research, vol. 1, no. 1, pp. 34–36, 2002. H. Q. Li and J. X. Gong, “The application of biodegradable alginate fibre,” Journal of Textile Research, vol. 1, no. 1, pp. 34–36, 2002.
98.
101.
go back to reference M. Janarthanan and M. Senthil Kumar, “Extraction of alginate from brown seaweeds and evolution of bioactive alginate film coated textile fabrics for wound healing application,” Journal of Industrial Textiles, vol. 49, no. 3, pp. 328–351, 2019, doi: https://doi.org/10.1177/1528083718783331. M. Janarthanan and M. Senthil Kumar, “Extraction of alginate from brown seaweeds and evolution of bioactive alginate film coated textile fabrics for wound healing application,” Journal of Industrial Textiles, vol. 49, no. 3, pp. 328–351, 2019, doi: https://​doi.​org/​10.​1177/​1528083718783331​.
102.
go back to reference R. J. Chudzikowski, “Guar gum and its applications,” J Soc Cosmet Chem, vol. 22, no. 1, p. 43, 1971. R. J. Chudzikowski, “Guar gum and its applications,” J Soc Cosmet Chem, vol. 22, no. 1, p. 43, 1971.
103.
go back to reference G. Sharma et al., “Guar gum and its composites as potential materials for diverse applications: A review,” Carbohydr Polym, vol. 199, pp. 534–545, 2018.CrossRefPubMed G. Sharma et al., “Guar gum and its composites as potential materials for diverse applications: A review,” Carbohydr Polym, vol. 199, pp. 534–545, 2018.CrossRefPubMed
104.
go back to reference N. Thombare, U. Jha, S. Mishra, and M. Z. Siddiqui, “Guar gum as a promising starting material for diverse applications: A review,” Int J Biol Macromol, vol. 88, pp. 361–372, 2016.CrossRefPubMed N. Thombare, U. Jha, S. Mishra, and M. Z. Siddiqui, “Guar gum as a promising starting material for diverse applications: A review,” Int J Biol Macromol, vol. 88, pp. 361–372, 2016.CrossRefPubMed
105.
go back to reference C. Verma and M. A. Quraishi, “Gum Arabic as an environmentally sustainable polymeric anticorrosive material: Recent progresses and future opportunities,” Int J Biol Macromol, vol. 184, pp. 118–134, 2021.CrossRefPubMed C. Verma and M. A. Quraishi, “Gum Arabic as an environmentally sustainable polymeric anticorrosive material: Recent progresses and future opportunities,” Int J Biol Macromol, vol. 184, pp. 118–134, 2021.CrossRefPubMed
108.
109.
go back to reference S. Nagarajan et al., “Overview of Protein-Based Biopolymers for Biomedical Application,” Based Biopolymers for Biomedical Application. Macromolecular Chemistry and Physics, vol. 220, no. 14, 2019, doi: https://doi.org/10.1002/macp.201900126ï. S. Nagarajan et al., “Overview of Protein-Based Biopolymers for Biomedical Application,” Based Biopolymers for Biomedical Application. Macromolecular Chemistry and Physics, vol. 220, no. 14, 2019, doi: https://​doi.​org/​10.​1002/​macp.201900126ï.
110.
go back to reference I. N. Amirrah, Y. Lokanathan, I. Zulkiflee, M. F. M. R. Wee, A. Motta, and M. B. Fauzi, “A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From Biosynthesis to Bioscaffold,” Biomedicines, vol. 10, no. 9. MDPI, Sep. 01, 2022. doi: https://doi.org/10.3390/biomedicines10092307. I. N. Amirrah, Y. Lokanathan, I. Zulkiflee, M. F. M. R. Wee, A. Motta, and M. B. Fauzi, “A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From Biosynthesis to Bioscaffold,” Biomedicines, vol. 10, no. 9. MDPI, Sep. 01, 2022. doi: https://​doi.​org/​10.​3390/​biomedicines1009​2307.
113.
go back to reference M. Nikkhah, M. Akbari, A. Paul, A. Memic, A. Dolatshahi‐Pirouz, and A. Khademhosseini, “Gelatin-Based Biomaterials For Tissue Engineering And Stem Cell Bioengineering,” in Biomaterials from Nature for Advanced Devices and Therapies, 2016, pp. 37–62. doi: https://doi.org/10.1002/9781119126218.ch3. M. Nikkhah, M. Akbari, A. Paul, A. Memic, A. Dolatshahi‐Pirouz, and A. Khademhosseini, “Gelatin-Based Biomaterials For Tissue Engineering And Stem Cell Bioengineering,” in Biomaterials from Nature for Advanced Devices and Therapies, 2016, pp. 37–62. doi: https://​doi.​org/​10.​1002/​9781119126218.​ch3.
120.
go back to reference L. Day, “10 - Wheat gluten: production, properties and application,” in Handbook of Food Proteins, G. O. Phillips and P. A. Williams, Eds., in Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead Publishing, 2011, pp. 267–288. doi: https://doi.org/10.1533/9780857093639.267. L. Day, “10 - Wheat gluten: production, properties and application,” in Handbook of Food Proteins, G. O. Phillips and P. A. Williams, Eds., in Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead Publishing, 2011, pp. 267–288. doi: https://​doi.​org/​10.​1533/​9780857093639.​267.
125.
go back to reference Mathangi Ramakrishnan K, Babu M, Mathivanan, Jayaraman V, Shankar J. Advantages of collagen based biological dressings in the management of superficial and superficial partial thickness burns in children. Ann Burns Fire Disasters. 2013 Jun 30;26(2):98-104. PMID: 24133405; PMCID: PMC3793887. Mathangi Ramakrishnan K, Babu M, Mathivanan, Jayaraman V, Shankar J. Advantages of collagen based biological dressings in the management of superficial and superficial partial thickness burns in children. Ann Burns Fire Disasters. 2013 Jun 30;26(2):98-104. PMID: 24133405; PMCID: PMC3793887.
132.
go back to reference H. Idrees, S. Z. J. Zaidi, A. Sabir, R. U. Khan, X. Zhang, and S. U. Hassan, “A review of biodegradable natural polymer-based nanoparticles for drug delivery applications,” Nanomaterials, vol. 10, no. 10. MDPI AG, pp. 1–22, Oct. 01, 2020. doi: https://doi.org/10.3390/nano10101970. H. Idrees, S. Z. J. Zaidi, A. Sabir, R. U. Khan, X. Zhang, and S. U. Hassan, “A review of biodegradable natural polymer-based nanoparticles for drug delivery applications,” Nanomaterials, vol. 10, no. 10. MDPI AG, pp. 1–22, Oct. 01, 2020. doi: https://​doi.​org/​10.​3390/​nano10101970.
157.
go back to reference M. Parvinzadeh Gashti, “Surface modification of synthetic fibres to improve performance: Recent approaches,” Global Journal of Physical Chemistry, vol. 3, pp. 1–10, May 2012. M. Parvinzadeh Gashti, “Surface modification of synthetic fibres to improve performance: Recent approaches,” Global Journal of Physical Chemistry, vol. 3, pp. 1–10, May 2012.
158.
go back to reference T. Bawazeer and M. Alsoufi, “Surface Characterization and Properties of Raw and Degummed (Bombyx mori) Silk Fibroin Fibre toward High Performance Applications of ‘Kisswa Al-Kabba,’” Int J Curr Res, vol. 9, pp. 48335–48343, May 2017. T. Bawazeer and M. Alsoufi, “Surface Characterization and Properties of Raw and Degummed (Bombyx mori) Silk Fibroin Fibre toward High Performance Applications of ‘Kisswa Al-Kabba,’” Int J Curr Res, vol. 9, pp. 48335–48343, May 2017.
164.
go back to reference A. Shankar, A.-F. M. Seyam, and S. M. Hudson, “Electrospinning of Soy Protein Fibres and their Compatibility with Synthetic Polymers,” 2013. [Online]. Available: www.electrosols.com A. Shankar, A.-F. M. Seyam, and S. M. Hudson, “Electrospinning of Soy Protein Fibres and their Compatibility with Synthetic Polymers,” 2013. [Online]. Available: www.​electrosols.​com
165.
go back to reference F. H. H. Abdellatif and M. M. Abdellatif, “Chapter 30 - Utilization of sustainable biopolymers in textile processing,” in Green Chemistry for Sustainable Textiles, N. Ibrahim and C. M. Hussain, Eds., in The Textile Institute Book Series. Woodhead Publishing, 2021, pp. 453–469. doi: https://doi.org/10.1016/B978-0-323-85204-3.00013-0. F. H. H. Abdellatif and M. M. Abdellatif, “Chapter 30 - Utilization of sustainable biopolymers in textile processing,” in Green Chemistry for Sustainable Textiles, N. Ibrahim and C. M. Hussain, Eds., in The Textile Institute Book Series. Woodhead Publishing, 2021, pp. 453–469. doi: https://​doi.​org/​10.​1016/​B978-0-323-85204-3.​00013-0.
169.
go back to reference S. Lei, C. Jianwei, and Z. Meiling, “A Study of Wearabilities of Milk Protein Fibre Fabric,” Journal of Applied Science and Engineering Innovation, vol. 4, no. 4, pp. 141–143, 2017. S. Lei, C. Jianwei, and Z. Meiling, “A Study of Wearabilities of Milk Protein Fibre Fabric,” Journal of Applied Science and Engineering Innovation, vol. 4, no. 4, pp. 141–143, 2017.
171.
go back to reference N. B. Guerra, G. Sant’Ana Pegorin, M. H. Boratto, N. R. de Barros, C. F. de Oliveira Graeff, and R. D. Herculano, “Biomedical applications of natural rubber latex from the rubber tree Hevea brasiliensis,” Materials Science and Engineering C, vol. 126. Elsevier Ltd, Jul. 01, 2021. doi: https://doi.org/10.1016/j.msec.2021.112126. N. B. Guerra, G. Sant’Ana Pegorin, M. H. Boratto, N. R. de Barros, C. F. de Oliveira Graeff, and R. D. Herculano, “Biomedical applications of natural rubber latex from the rubber tree Hevea brasiliensis,” Materials Science and Engineering C, vol. 126. Elsevier Ltd, Jul. 01, 2021. doi: https://​doi.​org/​10.​1016/​j.​msec.​2021.​112126.
174.
go back to reference D. Vadicherla Thilak and Saravanan, “Textiles and Apparel Development Using Recycled and Reclaimed Fibres,” in Roadmap to Sustainable Textiles and Clothing: Eco-friendly Raw Materials, Technologies, and Processing Methods, S. S. Muthu, Ed., Singapore: Springer Singapore, 2014, pp. 139–160. doi: https://doi.org/10.1007/978-981-287-065-0_5. D. Vadicherla Thilak and Saravanan, “Textiles and Apparel Development Using Recycled and Reclaimed Fibres,” in Roadmap to Sustainable Textiles and Clothing: Eco-friendly Raw Materials, Technologies, and Processing Methods, S. S. Muthu, Ed., Singapore: Springer Singapore, 2014, pp. 139–160. doi: https://​doi.​org/​10.​1007/​978-981-287-065-0_​5.
175.
go back to reference D. G. K. Dissanayake, D. U. Weerasinghe, L. M. Thebuwanage, and U. A. A. N. Bandara, “An environmentally friendly sound insulation material from post-industrial textile waste and natural rubber,” Journal of Building Engineering, vol. 33, p. 101606, 2021, doi: https://doi.org/https://doi.org/10.1016/j.jobe.2020.101606.CrossRef D. G. K. Dissanayake, D. U. Weerasinghe, L. M. Thebuwanage, and U. A. A. N. Bandara, “An environmentally friendly sound insulation material from post-industrial textile waste and natural rubber,” Journal of Building Engineering, vol. 33, p. 101606, 2021, doi: https://​doi.​org/​https://​doi.​org/​10.​1016/​j.​jobe.​2020.​101606.CrossRef
179.
go back to reference B. Moonlek, E. Wimolmala, T. Markpin, N. Sombatsompop, and K. Saenboonruang, “Enhancing electromagnetic interference shielding effectiveness for radiation vulcanized natural rubber latex composites containing multiwalled carbon nanotubes and silk textile,” Polym Compos, vol. 41, no. 10, pp. 3996–4009, 2020, doi: https://doi.org/https://doi.org/10.1002/pc.25687.CrossRef B. Moonlek, E. Wimolmala, T. Markpin, N. Sombatsompop, and K. Saenboonruang, “Enhancing electromagnetic interference shielding effectiveness for radiation vulcanized natural rubber latex composites containing multiwalled carbon nanotubes and silk textile,” Polym Compos, vol. 41, no. 10, pp. 3996–4009, 2020, doi: https://​doi.​org/​https://​doi.​org/​10.​1002/​pc.​25687.CrossRef
184.
go back to reference S. Lin and C. Dence, “Methods in Lignin Chemistry,” Berlin Heidelberg: Springer, vol. 53, 1989. S. Lin and C. Dence, “Methods in Lignin Chemistry,” Berlin Heidelberg: Springer, vol. 53, 1989.
185.
go back to reference E. Adler, “Lignin chemistry? Past, present and future.,” Wood Sci Technol, vol. 11, no. 3, pp. 169–218, 1977.CrossRef E. Adler, “Lignin chemistry? Past, present and future.,” Wood Sci Technol, vol. 11, no. 3, pp. 169–218, 1977.CrossRef
193.
199.
go back to reference J. Marton and T. Marton, “Molecular weight of kraft lignin.,” Tappi J, vol. 47, no. 8, pp. 471–476, 1964. J. Marton and T. Marton, “Molecular weight of kraft lignin.,” Tappi J, vol. 47, no. 8, pp. 471–476, 1964.
210.
go back to reference B. Alvarez Chavez, V. Raghavan, and B. Tartakovsky, “A comparative analysis of biopolymer production by microbial and bioelectrochemical technologies,” RSC Advances, vol. 12, no. 25. Royal Society of Chemistry, pp. 16105–16118, Jun. 01, 2022. doi: https://doi.org/10.1039/d1ra08796g. B. Alvarez Chavez, V. Raghavan, and B. Tartakovsky, “A comparative analysis of biopolymer production by microbial and bioelectrochemical technologies,” RSC Advances, vol. 12, no. 25. Royal Society of Chemistry, pp. 16105–16118, Jun. 01, 2022. doi: https://​doi.​org/​10.​1039/​d1ra08796g.
220.
go back to reference D. W. Farrington, J. Lunt, S. Davies, and R. S. Blackburn, “6 - Poly(lactic acid) fibres,” in Biodegradable and Sustainable Fibres, R. S. Blackburn, Ed., in Woodhead Publishing Series in Textiles. Woodhead Publishing, 2005, pp. 191–220. doi: https://doi.org/10.1533/9781845690991.191. D. W. Farrington, J. Lunt, S. Davies, and R. S. Blackburn, “6 - Poly(lactic acid) fibres,” in Biodegradable and Sustainable Fibres, R. S. Blackburn, Ed., in Woodhead Publishing Series in Textiles. Woodhead Publishing, 2005, pp. 191–220. doi: https://​doi.​org/​10.​1533/​9781845690991.​191.
227.
go back to reference A. Z. Naser, I. Deiab, and B. M. Darras, “Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review,” RSC Advances, vol. 11, no. 28. Royal Society of Chemistry, pp. 17151–17196, May 02, 2021. doi: https://doi.org/10.1039/d1ra02390j. A. Z. Naser, I. Deiab, and B. M. Darras, “Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review,” RSC Advances, vol. 11, no. 28. Royal Society of Chemistry, pp. 17151–17196, May 02, 2021. doi: https://​doi.​org/​10.​1039/​d1ra02390j.
230.
go back to reference E. T. H. Vink et al., “The sustainability of nature worksTM polylactide polymers and ingeoTM polylactide fibres: An update of the future. Initiated by the 1st International Conference on Bio-based Polymers (ICBP 2003), November 12–14 2003, Saitama, Japan,” in Macromolecular Bioscience, Jun. 2004, pp. 551–564. doi: https://doi.org/10.1002/mabi.200400023. E. T. H. Vink et al., “The sustainability of nature worksTM polylactide polymers and ingeoTM polylactide fibres: An update of the future. Initiated by the 1st International Conference on Bio-based Polymers (ICBP 2003), November 12–14 2003, Saitama, Japan,” in Macromolecular Bioscience, Jun. 2004, pp. 551–564. doi: https://​doi.​org/​10.​1002/​mabi.​200400023.
236.
241.
go back to reference I. Chodák and R. S. Blackburn, “7 - Poly(hydroxyalkanoates) and poly(caprolactone),” in Biodegradable and Sustainable Fibres, R. S. Blackburn, Ed., in Woodhead Publishing Series in Textiles. Woodhead Publishing, 2005, pp. 221–244. doi: https://doi.org/10.1533/9781845690991.221. I. Chodák and R. S. Blackburn, “7 - Poly(hydroxyalkanoates) and poly(caprolactone),” in Biodegradable and Sustainable Fibres, R. S. Blackburn, Ed., in Woodhead Publishing Series in Textiles. Woodhead Publishing, 2005, pp. 221–244. doi: https://​doi.​org/​10.​1533/​9781845690991.​221.
244.
go back to reference B.D.Ratner, “An Introduction to Materials in Medicine,” in Biomaterials Science, 2nd ed.London: Elsevier Academic Press, 2020, pp. 1616–1651. B.D.Ratner, “An Introduction to Materials in Medicine,” in Biomaterials Science, 2nd ed.London: Elsevier Academic Press, 2020, pp. 1616–1651.
246.
go back to reference P. A. Holmes, Developments in Crystalline Polymers-2. London, UK,: Elsevier Applied Science, 1987. P. A. Holmes, Developments in Crystalline Polymers-2. London, UK,: Elsevier Applied Science, 1987.
248.
go back to reference K. Kuntanoo, S. Promkotra, P. Kaewkannetra, and a Material, “Biodegradation of Polyhydroxybutyrate-Co- Hydroxyvalerate ( PHBV ) Blended with Natural Rubber in Soil Environment,” World Acad Sci Eng Technol, vol. 7, no. 12, pp. 1799–1803, 2013. K. Kuntanoo, S. Promkotra, P. Kaewkannetra, and a Material, “Biodegradation of Polyhydroxybutyrate-Co- Hydroxyvalerate ( PHBV ) Blended with Natural Rubber in Soil Environment,” World Acad Sci Eng Technol, vol. 7, no. 12, pp. 1799–1803, 2013.
252.
go back to reference M. Avella, E. Martuscelli, and M. Raimo, “Properties of blends and composites based on poly ( 3-hydroxy ) butyrate ( PHB ) and poly ( 3-hydroxybutyrate-hydroxyvalerate ) ( PHBV ) copolymers,” vol. 5, pp. 523–545, 2000. M. Avella, E. Martuscelli, and M. Raimo, “Properties of blends and composites based on poly ( 3-hydroxy ) butyrate ( PHB ) and poly ( 3-hydroxybutyrate-hydroxyvalerate ) ( PHBV ) copolymers,” vol. 5, pp. 523–545, 2000.
253.
go back to reference H. Mitomo, Y. Watanabe, and I. Ishigaki, “Radiation-induced degradation of poly ( 3- hydroxybutyrate ) and the copolymer poly ( 3-,” vol. 45, pp. 11–17, 1994. H. Mitomo, Y. Watanabe, and I. Ishigaki, “Radiation-induced degradation of poly ( 3- hydroxybutyrate ) and the copolymer poly ( 3-,” vol. 45, pp. 11–17, 1994.
255.
go back to reference M. A. Vigil Fuentes, S. Thakur, F. Wu, M. Misra, S. Gregori, and A. K. Mohanty, “Study on the 3D printability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(lactic acid) blends with chain extender using fused filament fabrication,” Sci Rep, vol. 10, no. 1, pp. 1–12, 2020, doi: https://doi.org/10.1038/s41598-020-68331-5. M. A. Vigil Fuentes, S. Thakur, F. Wu, M. Misra, S. Gregori, and A. K. Mohanty, “Study on the 3D printability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(lactic acid) blends with chain extender using fused filament fabrication,” Sci Rep, vol. 10, no. 1, pp. 1–12, 2020, doi: https://​doi.​org/​10.​1038/​s41598-020-68331-5.
260.
go back to reference M. Cunha, B. D. Fernandes, J. A. Covas, A. A. Vicente, and L. Hilliou, “Film blowing of PHBV blends and PHBV-based multilayers for the production of biodegradable packages,” J Appl Polym Sci, vol. 133, no. 2, pp. 1–11, 2016.CrossRef M. Cunha, B. D. Fernandes, J. A. Covas, A. A. Vicente, and L. Hilliou, “Film blowing of PHBV blends and PHBV-based multilayers for the production of biodegradable packages,” J Appl Polym Sci, vol. 133, no. 2, pp. 1–11, 2016.CrossRef
261.
go back to reference A. Antunes, A. Popelka, O. Aljarod, M. K. Hassan, P. Kasak, and A. S. Luyt, “Accelerated Weathering E ff ects on nanocomposites,” 2020. A. Antunes, A. Popelka, O. Aljarod, M. K. Hassan, P. Kasak, and A. S. Luyt, “Accelerated Weathering E ff ects on nanocomposites,” 2020.
263.
go back to reference M. L. Tebaldi, A. L. C. Maia, F. Poletto, F. V. de Andrade, and D. C. F. Soares, “Poly(-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Current advances in synthesis methodologies, antitumor applications and biocompatibility,” J Drug Deliv Sci Technol, vol. 51, no. August 2018, pp. 115–126, 2019, doi: https://doi.org/10.1016/j.jddst.2019.02.007. M. L. Tebaldi, A. L. C. Maia, F. Poletto, F. V. de Andrade, and D. C. F. Soares, “Poly(-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Current advances in synthesis methodologies, antitumor applications and biocompatibility,” J Drug Deliv Sci Technol, vol. 51, no. August 2018, pp. 115–126, 2019, doi: https://​doi.​org/​10.​1016/​j.​jddst.​2019.​02.​007.
266.
go back to reference G. Valdés-García, C. Millan-Pacheco, and N. Pastor, “Convergent mechanisms favor fast amyloid formation in two lambda 6a Ig light chain mutants,” Biopolymers, 2017. G. Valdés-García, C. Millan-Pacheco, and N. Pastor, “Convergent mechanisms favor fast amyloid formation in two lambda 6a Ig light chain mutants,” Biopolymers, 2017.
269.
go back to reference D. Sabarinathan, S. P. Chandrika, P. Venkatraman, M. Easwaran, C. S. Sureka, and K. Preethi, “Production of polyhydroxybutyrate (PHB) from Pseudomonas plecoglossicida and its application towards cancer detection,” Inform Med Unlocked, vol. 11, pp. 61–67, 2018, doi: https://doi.org/https://doi.org/10.1016/j.imu.2018.04.009.CrossRef D. Sabarinathan, S. P. Chandrika, P. Venkatraman, M. Easwaran, C. S. Sureka, and K. Preethi, “Production of polyhydroxybutyrate (PHB) from Pseudomonas plecoglossicida and its application towards cancer detection,” Inform Med Unlocked, vol. 11, pp. 61–67, 2018, doi: https://​doi.​org/​https://​doi.​org/​10.​1016/​j.​imu.​2018.​04.​009.CrossRef
271.
go back to reference C. Thapa, P. Shakya, R. Shrestha, S. Pal, and P. Manandhar, “Isolation of Polyhydroxybutyrate (PHB) Producing Bacteria, Optimization of Culture Conditions for PHB production, Extraction and Characterization of PHB,” Nepal Journal of Biotechnology, vol. 6, no. 1, pp. 62–68, 2019, doi: https://doi.org/10.3126/njb.v6i1.22339.CrossRef C. Thapa, P. Shakya, R. Shrestha, S. Pal, and P. Manandhar, “Isolation of Polyhydroxybutyrate (PHB) Producing Bacteria, Optimization of Culture Conditions for PHB production, Extraction and Characterization of PHB,” Nepal Journal of Biotechnology, vol. 6, no. 1, pp. 62–68, 2019, doi: https://​doi.​org/​10.​3126/​njb.​v6i1.​22339.CrossRef
Metadata
Title
Properties and Performance of Biopolymers in Textile Applications
Authors
Kazi Rezwan Hossain
Sharmin Akter
Muntajena Nanjeba
Md Arif Mahmud
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0684-6_3

Premium Partners