Skip to main content
Top

2019 | OriginalPaper | Chapter

3. Properties of Carbon Aerogels and Their Organic Precursors

Authors : Ana Arenillas, J. Angel Menéndez, Gudrun Reichenauer, Alain Celzard, Vanessa Fierro, Francisco José Maldonado Hodar, Esther Bailόn-Garcia, Nathalie Job

Published in: Organic and Carbon Gels

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Aerogels are sol-gel derived porous solids with structural properties, such as porosity, pore size, pore and solid phase connectivity that can be tailored over a wide range to provide unique material properties for different fields of applications, such as filters and adsorbers, catalyst supports, electrodes for electrical energy storage, and materials for lightweight construction or thermal insulation.
In this context, carbon aerogels and their organic precursor represent an important class of aerogels with very different physical properties at similar structural characteristics. This is due to the different intrinsic properties of the respective backbone components: At given meso- and macrostructure carbon aerogels are characterized by high thermal and electrical conductivity, significant mechanical brittleness, high porosity of the backbone phase related to micropores (<2 nm), and thus specific surface areas up to about 2000 m2/g. In contrast, the respective organic precursors exhibit very small electrical conductivities and a significantly reduced heat transfer via the aerogel backbone phase; they furthermore may be mechanically more flexible and are limited to specific surface areas below 1000 m2/g. The chapter provides an overview over typical structural and physical properties of carbon aerogels and their precursors.
Understanding structure–property relationships and optimizing aerogels for different applications requires reliable characterization techniques. The review article addresses different characterization techniques as well as the problem of artifacts upon structural characterization; the latter is due to the unique combination of small pore sizes and large porosities characteristic for aerogels. With that in mind, the article alternative, in part even more powerful approaches.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
This effect may also create artifacts upon N2 and CO2 adsorption analysis at 77 K and 273 K, respectively, as prior to analysis the total volume of the sample holder including the pores in the specimen is quantified by helium pycnometry. Therefore, it is recommended for high-quality analysis to perform this part of the measurement after the actual nitrogen adsorption analysis.
 
2
Mass fractal materials are defined by a change of their mass m when increasing the probing volume (V∿r3) from a given center point in the fractal structure: m(r)∿rDF, with DF the mass fractal dimension.
 
3
ISO 9722: Determination of the specific surface area of solids by gas adsorption—BET method (includes recommendation for microporous solids). ISO 15901: Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption.
 
4
ISO 17867:2015: Particle size analysis—Small-angle X-ray scattering.
 
5
Definition IUPAC: mesopores: 2–50 mm, macropores >50 nm [2].
 
7
As He, typically used for the detection of the volume of the sample holder prior to the actual analysis with CO2 or N2, may be trapped in the micropores of (non-activated) carbons, it is recommended to explicitly perform this step after the analysis see Ref. [47].
 
Literature
1.
go back to reference G. Reichenauer, Aerogels, in Kirk-Othmer Encyclopedia of Chemical Technology, ed. by A. Seidel, (Wiley, Hoboken, 2008) G. Reichenauer, Aerogels, in Kirk-Othmer Encyclopedia of Chemical Technology, ed. by A. Seidel, (Wiley, Hoboken, 2008)
2.
go back to reference M. Thommes et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 87(9-10), 1051–1069 (2015)CrossRef M. Thommes et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 87(9-10), 1051–1069 (2015)CrossRef
3.
go back to reference J.B. Wang et al., The porous structures of activated carbon aerogels and their effects on electrochemical performance. J. Power Sources 185(1), 589–594 (2008)CrossRef J.B. Wang et al., The porous structures of activated carbon aerogels and their effects on electrochemical performance. J. Power Sources 185(1), 589–594 (2008)CrossRef
4.
go back to reference S.-W. Hwang, S.-H. Hyun, Synthesis and characterization of tin oxide/carbon aerogel composite electrodes for electrochemical supercapacitors. J. Power Sources 172(1), 451–459 (2007)CrossRef S.-W. Hwang, S.-H. Hyun, Synthesis and characterization of tin oxide/carbon aerogel composite electrodes for electrochemical supercapacitors. J. Power Sources 172(1), 451–459 (2007)CrossRef
5.
go back to reference T. Bordjiba, M. Mohamedi, L.H. Dao, Synthesis and electrochemical capacitance of binderless nanocomposite electrodes formed by dispersion of carbon nanotubes and carbon aerogels. J. Power Sources 172(2), 991–998 (2007)CrossRef T. Bordjiba, M. Mohamedi, L.H. Dao, Synthesis and electrochemical capacitance of binderless nanocomposite electrodes formed by dispersion of carbon nanotubes and carbon aerogels. J. Power Sources 172(2), 991–998 (2007)CrossRef
6.
go back to reference L. Ling, M. Qing-Han, Electrochemical properties of mesoporous carbon aerogel electrodes for electric double layer capacitors. J. Mater. Sci. 40, 4105–4107 (2005)CrossRef L. Ling, M. Qing-Han, Electrochemical properties of mesoporous carbon aerogel electrodes for electric double layer capacitors. J. Mater. Sci. 40, 4105–4107 (2005)CrossRef
7.
go back to reference S.J. Kim, S.W. Hwang, S.H. Hyun, Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J. Mater. Sci. 40(3), 725–731 (2005)CrossRef S.J. Kim, S.W. Hwang, S.H. Hyun, Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J. Mater. Sci. 40(3), 725–731 (2005)CrossRef
8.
go back to reference H. Proebstle, M. Wiener, J. Fricke, Carbon aerogels for electrochemical double layer capacitors. J. Porous. Mater. 10(4), 213–222 (2003)CrossRef H. Proebstle, M. Wiener, J. Fricke, Carbon aerogels for electrochemical double layer capacitors. J. Porous. Mater. 10(4), 213–222 (2003)CrossRef
9.
go back to reference W.C. Li, H. Probstle, J. Fricke, Electrochemical behavior of mixed CmRF based carbon aerogels as electrode materials for supercapacitors. J. Non-Cryst. Solids 325(1-3), 1–5 (2003)CrossRef W.C. Li, H. Probstle, J. Fricke, Electrochemical behavior of mixed CmRF based carbon aerogels as electrode materials for supercapacitors. J. Non-Cryst. Solids 325(1-3), 1–5 (2003)CrossRef
10.
go back to reference R.W. Pekala et al., Carbon aerogels for electrochemical applications. J. Non-Cryst. Solids 225(1), 74–80 (1998)CrossRef R.W. Pekala et al., Carbon aerogels for electrochemical applications. J. Non-Cryst. Solids 225(1), 74–80 (1998)CrossRef
11.
go back to reference T.J. Welgemoed, C.F. Schutte, Capacitive delonization technology (TM): an alternative desalination solution. Desalination 183(1-3), 327–340 (2005)CrossRef T.J. Welgemoed, C.F. Schutte, Capacitive delonization technology (TM): an alternative desalination solution. Desalination 183(1-3), 327–340 (2005)CrossRef
12.
go back to reference M. Glora et al., Integration of carbon aerogels in PEM fuel cells. J. Non-Cryst. Solids 285(1-3), 283–287 (2001)CrossRef M. Glora et al., Integration of carbon aerogels in PEM fuel cells. J. Non-Cryst. Solids 285(1-3), 283–287 (2001)CrossRef
13.
go back to reference N.J. Cherepy et al., Carbon Aerogel and Xerogel Fuels for Fuel Cells and Batteries (The Regents of the University of California, Oakland, 2006) N.J. Cherepy et al., Carbon Aerogel and Xerogel Fuels for Fuel Cells and Batteries (The Regents of the University of California, Oakland, 2006)
14.
go back to reference H.D. Du et al., Carbon aerogel supported Pt-Ru catalysts for using as the anode of direct methanol fuel cells. Carbon 45(2), 429–435 (2007)CrossRef H.D. Du et al., Carbon aerogel supported Pt-Ru catalysts for using as the anode of direct methanol fuel cells. Carbon 45(2), 429–435 (2007)CrossRef
15.
go back to reference R. Petricevic, M. Glora, J. Fricke, Planar fibre reinforced carbon aerogels for application in PEM fuel cells. Carbon 39(6), 857–867 (2001)CrossRef R. Petricevic, M. Glora, J. Fricke, Planar fibre reinforced carbon aerogels for application in PEM fuel cells. Carbon 39(6), 857–867 (2001)CrossRef
16.
go back to reference C. Moreno-Castilla, F.J. Maldonado-Hodar, Carbon aerogels for catalysis applications: an overview. Carbon 43(3), 455–465 (2005)CrossRef C. Moreno-Castilla, F.J. Maldonado-Hodar, Carbon aerogels for catalysis applications: an overview. Carbon 43(3), 455–465 (2005)CrossRef
17.
go back to reference M. Martins et al., Preparation of macroporous alginate-based aerogels for biomedical applications. J. Supercrit. Fluids 106, 152–159 (2015)CrossRef M. Martins et al., Preparation of macroporous alginate-based aerogels for biomedical applications. J. Supercrit. Fluids 106, 152–159 (2015)CrossRef
18.
go back to reference K. Rinki et al., Chitosan aerogels exhibiting high surface area for biomedical application: preparation, characterization, and antibacterial study. Int. J. Polym. Mater. 60(12), 988–999 (2011)CrossRef K. Rinki et al., Chitosan aerogels exhibiting high surface area for biomedical application: preparation, characterization, and antibacterial study. Int. J. Polym. Mater. 60(12), 988–999 (2011)CrossRef
19.
go back to reference J. Stergar, U. Maver, Review of aerogel-based materials in biomedical applications. J. Sol-Gel Sci. Technol. 77(3), 738–752 (2016)CrossRef J. Stergar, U. Maver, Review of aerogel-based materials in biomedical applications. J. Sol-Gel Sci. Technol. 77(3), 738–752 (2016)CrossRef
20.
go back to reference N. Yan et al., Antibacterial properties and cytocompatibility of bio-based nanostructured carbon aerogels derived from silver nanoparticles deposited onto bacterial cellulose. RSC Adv. 5(118), 97467–97476 (2015)CrossRef N. Yan et al., Antibacterial properties and cytocompatibility of bio-based nanostructured carbon aerogels derived from silver nanoparticles deposited onto bacterial cellulose. RSC Adv. 5(118), 97467–97476 (2015)CrossRef
21.
go back to reference M. Wiener et al., Carbon aerogel-based high-temperature thermal insulation. Int. J. Thermophys. 30(4), 1372–1385 (2009)CrossRef M. Wiener et al., Carbon aerogel-based high-temperature thermal insulation. Int. J. Thermophys. 30(4), 1372–1385 (2009)CrossRef
22.
go back to reference M. Wiener et al., Thermal conductivity of carbon aerogels as a function of pyrolysis temperature. Int. J. Thermophys. 27(6), 1826–1843 (2006)CrossRef M. Wiener et al., Thermal conductivity of carbon aerogels as a function of pyrolysis temperature. Int. J. Thermophys. 27(6), 1826–1843 (2006)CrossRef
23.
go back to reference J. Settelein et al., The external surface area of carbon additives as key to enhance the dynamic charge acceptance of lead-carbon electrodes. J. Energy Storage 15, 196–204 (2018)CrossRef J. Settelein et al., The external surface area of carbon additives as key to enhance the dynamic charge acceptance of lead-carbon electrodes. J. Energy Storage 15, 196–204 (2018)CrossRef
24.
go back to reference E. Meyer, B. Milow, L. Ratke, Development of aerogel additives for the foundry industry. J. Supercrit. Fluids 106, 62–68 (2015)CrossRef E. Meyer, B. Milow, L. Ratke, Development of aerogel additives for the foundry industry. J. Supercrit. Fluids 106, 62–68 (2015)CrossRef
25.
go back to reference F. Carrasco-Marin, D. Fairen-Jimenez, C. Moreno-Castilla, Carbon aerogels from gallic acid-resorcinol mixtures as adsorbents of benzene, toluene and xylenes from dry and wet air under dynamic conditions. Carbon 47(2), 463–469 (2009)CrossRef F. Carrasco-Marin, D. Fairen-Jimenez, C. Moreno-Castilla, Carbon aerogels from gallic acid-resorcinol mixtures as adsorbents of benzene, toluene and xylenes from dry and wet air under dynamic conditions. Carbon 47(2), 463–469 (2009)CrossRef
26.
go back to reference H. Maleki, Recent advances in aerogels for environmental remediation applications: a review. Chem. Eng. J. 300, 98–118 (2016)CrossRef H. Maleki, Recent advances in aerogels for environmental remediation applications: a review. Chem. Eng. J. 300, 98–118 (2016)CrossRef
27.
go back to reference W.C. Li et al., High surface area, mesoporous, glassy alumina with a controllable pore size by nanocasting from carbon aerogels. Chem Eur J 11(5), 1658–1664 (2005)CrossRef W.C. Li et al., High surface area, mesoporous, glassy alumina with a controllable pore size by nanocasting from carbon aerogels. Chem Eur J 11(5), 1658–1664 (2005)CrossRef
28.
go back to reference C. Scherdel, T. Scherb, G. Reichenauer, Spherical porous carbon particles derived from suspensions and sediments of resorcinol-formaldehyde particles. Carbon 47(9), 2244–2252 (2009)CrossRef C. Scherdel, T. Scherb, G. Reichenauer, Spherical porous carbon particles derived from suspensions and sediments of resorcinol-formaldehyde particles. Carbon 47(9), 2244–2252 (2009)CrossRef
29.
go back to reference R.W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24(9), 3221–3227 (1989)CrossRef R.W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24(9), 3221–3227 (1989)CrossRef
30.
go back to reference R.W. Pekala, F.M. Kong, A synthetic route to organic aerogels - mechanism, structure, and properties. J. Phys. 50(C-4), C433–C440 (1989) R.W. Pekala, F.M. Kong, A synthetic route to organic aerogels - mechanism, structure, and properties. J. Phys. 50(C-4), C433–C440 (1989)
31.
go back to reference C.S. Ashley, C.J. Brinker, D.M. Smith, Aerogels 6 - proceedings of the sixth international symposium on aerogels (ISA-6) - Albuquerque, NM, USA 8-11 October 2000 - preface. J. Non-Cryst. Solids 285(1-3), Vii–Viii (2001)CrossRef C.S. Ashley, C.J. Brinker, D.M. Smith, Aerogels 6 - proceedings of the sixth international symposium on aerogels (ISA-6) - Albuquerque, NM, USA 8-11 October 2000 - preface. J. Non-Cryst. Solids 285(1-3), Vii–Viii (2001)CrossRef
32.
go back to reference R. Subrahmanyam et al., Preparation of biopolymer aerogels using green solvents. J. Vis. Exp. 113, 54116 (2016) R. Subrahmanyam et al., Preparation of biopolymer aerogels using green solvents. J. Vis. Exp. 113, 54116 (2016)
33.
go back to reference S.S. Kistler, Coherent expanded aerogels and jellies. Nature 127(3211), 741–741 (1931)CrossRef S.S. Kistler, Coherent expanded aerogels and jellies. Nature 127(3211), 741–741 (1931)CrossRef
34.
go back to reference S.S. Kistler, Coherent expanded aerogels. J. Phys. Chem. A 36(1), 52–64 (1932)CrossRef S.S. Kistler, Coherent expanded aerogels. J. Phys. Chem. A 36(1), 52–64 (1932)CrossRef
35.
go back to reference C.A. Garcia-Gonzalez, M. Alnaief, I. Smirnova, Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems. Carbohydr. Polym. 86(4), 1425–1438 (2011)CrossRef C.A. Garcia-Gonzalez, M. Alnaief, I. Smirnova, Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems. Carbohydr. Polym. 86(4), 1425–1438 (2011)CrossRef
36.
go back to reference M. Betz et al., Preparation of novel whey protein-based aerogels as drug carriers for life science applications. J. Supercrit. Fluids 72, 111–119 (2012)CrossRef M. Betz et al., Preparation of novel whey protein-based aerogels as drug carriers for life science applications. J. Supercrit. Fluids 72, 111–119 (2012)CrossRef
37.
go back to reference V.S.S. Goncalves et al., Alginate-based hybrid aerogel microparticles for mucosal drug delivery. Eur. J. Pharm. Biopharm. 107, 160–170 (2016)CrossRef V.S.S. Goncalves et al., Alginate-based hybrid aerogel microparticles for mucosal drug delivery. Eur. J. Pharm. Biopharm. 107, 160–170 (2016)CrossRef
38.
go back to reference D. Long et al., Chemical state of nitrogen in carbon aerogels issued from phenol–melamine–formaldehyde gels. Carbon 46(9), 1259–1262 (2008)CrossRef D. Long et al., Chemical state of nitrogen in carbon aerogels issued from phenol–melamine–formaldehyde gels. Carbon 46(9), 1259–1262 (2008)CrossRef
39.
go back to reference M.H. Nguyen, L.H. Dao, Effects of processing variable on melamine-formaldehyde aerogel formation. J. Non-Cryst. Solids 225(1), 51–57 (1998)CrossRef M.H. Nguyen, L.H. Dao, Effects of processing variable on melamine-formaldehyde aerogel formation. J. Non-Cryst. Solids 225(1), 51–57 (1998)CrossRef
40.
go back to reference R.W. Pekala, Melamine-formaldehyde aerogels, in US5086085A, ed. U. US Energy (1991) R.W. Pekala, Melamine-formaldehyde aerogels, in US5086085A, ed. U. US Energy (1991)
41.
go back to reference M.A. Worsley et al., Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 132(40), 14067–14069 (2010)CrossRef M.A. Worsley et al., Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 132(40), 14067–14069 (2010)CrossRef
42.
go back to reference J.J. Mao et al., Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 11(4), 772–799 (2018)CrossRef J.J. Mao et al., Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 11(4), 772–799 (2018)CrossRef
43.
go back to reference M. Wiener, G. Reichenauer, Microstructure of porous carbons derived from phenolic resin – impact of annealing at temperatures up to 2000°C analyzed by complementary characterization methods. Microporous Mesoporous Mater. 203, 116–122 (2015)CrossRef M. Wiener, G. Reichenauer, Microstructure of porous carbons derived from phenolic resin – impact of annealing at temperatures up to 2000°C analyzed by complementary characterization methods. Microporous Mesoporous Mater. 203, 116–122 (2015)CrossRef
44.
go back to reference M. Schwan, L. Ratke, Flexibilisation of resorcinol–formaldehyde aerogels. J. Mater. Chem. A 1(43), 13462 (2013)CrossRef M. Schwan, L. Ratke, Flexibilisation of resorcinol–formaldehyde aerogels. J. Mater. Chem. A 1(43), 13462 (2013)CrossRef
45.
go back to reference R. Tannert et al., The three-dimensional structure of flexible resorcinol-formaldehyde aerogels investigated by means of holotomography. J. Sol-Gel Sci. Technol. 84(3), 391–399 (2017)CrossRef R. Tannert et al., The three-dimensional structure of flexible resorcinol-formaldehyde aerogels investigated by means of holotomography. J. Sol-Gel Sci. Technol. 84(3), 391–399 (2017)CrossRef
46.
go back to reference G. Reichenauer, Structural characterization of aerogels, in Aerogels Handbook, ed. by M. A. Aegerter, N. Leventis, M. M. Koebel, (Springer, New York, 2011), pp. 449–498CrossRef G. Reichenauer, Structural characterization of aerogels, in Aerogels Handbook, ed. by M. A. Aegerter, N. Leventis, M. M. Koebel, (Springer, New York, 2011), pp. 449–498CrossRef
47.
go back to reference J.U. Keller, M.U. Goebel, T. Seeger, Oscillometric-gravimetric measurements of pure gas adsorption equilibria without the non-adsorption of helium hypothesis. Adsorption 23(6), 753–766 (2017)CrossRef J.U. Keller, M.U. Goebel, T. Seeger, Oscillometric-gravimetric measurements of pure gas adsorption equilibria without the non-adsorption of helium hypothesis. Adsorption 23(6), 753–766 (2017)CrossRef
48.
go back to reference G. Reichenauer, C. Stumpf, J. Fricke, Characterization of Sio2, Rf and carbon aerogels by dynamic gas-expansion. J. Non-Cryst. Solids 186, 334–341 (1995)CrossRef G. Reichenauer, C. Stumpf, J. Fricke, Characterization of Sio2, Rf and carbon aerogels by dynamic gas-expansion. J. Non-Cryst. Solids 186, 334–341 (1995)CrossRef
49.
go back to reference H. Tamon, E. Ishizaka, SAXS study on gelation process in preparation of resorcinol-formaldehyde aerogel. J. Colloid Interface Sci. 206(2), 577–582 (1998)CrossRef H. Tamon, E. Ishizaka, SAXS study on gelation process in preparation of resorcinol-formaldehyde aerogel. J. Colloid Interface Sci. 206(2), 577–582 (1998)CrossRef
50.
go back to reference R.W. Pekala, D.W. Schaefer, Structure of organic aerogels. 1. Morphology and scaling. Macromolecules 26(20), 5487–5493 (1993)CrossRef R.W. Pekala, D.W. Schaefer, Structure of organic aerogels. 1. Morphology and scaling. Macromolecules 26(20), 5487–5493 (1993)CrossRef
51.
go back to reference S. Berthon et al., DLS and SAXS investigations of organic gels and aerogels. J. Non-Cryst. Solids 285(1-3), 154–161 (2001)CrossRef S. Berthon et al., DLS and SAXS investigations of organic gels and aerogels. J. Non-Cryst. Solids 285(1-3), 154–161 (2001)CrossRef
52.
go back to reference G. Reichenauer, G.W. Scherer, Nitrogen adsorption in compliant materials. J. Non-Cryst. Solids 277(2-3), 162–172 (2000)CrossRef G. Reichenauer, G.W. Scherer, Nitrogen adsorption in compliant materials. J. Non-Cryst. Solids 277(2-3), 162–172 (2000)CrossRef
53.
go back to reference R. Saliger et al., Carbon aerogels from dilute catalysis of resorcinol with formaldehyde. J. Non-Cryst. Solids 221(2-3), 144–150 (1997)CrossRef R. Saliger et al., Carbon aerogels from dilute catalysis of resorcinol with formaldehyde. J. Non-Cryst. Solids 221(2-3), 144–150 (1997)CrossRef
54.
go back to reference R. Saliger et al., Structure of Resorcinol-Formaldehyde and Carbon Aerogels Prepared at Very Low Catalyst Concentrations (Physikalisches Institut, Universität Würzburg, Würzburg, 1996) R. Saliger et al., Structure of Resorcinol-Formaldehyde and Carbon Aerogels Prepared at Very Low Catalyst Concentrations (Physikalisches Institut, Universität Würzburg, Würzburg, 1996)
55.
go back to reference H. Giesche, Mercury porosimetry: a general (practical) overview. Part. Part. Syst. Charact. 23(1), 9–19 (2006)CrossRef H. Giesche, Mercury porosimetry: a general (practical) overview. Part. Part. Syst. Charact. 23(1), 9–19 (2006)CrossRef
56.
go back to reference G. Reichenauer, G.W. Scherer, Effects upon nitrogen sorption analysis in aerogels. J. Colloid Interface Sci. 236(2), 385–386 (2001)CrossRef G. Reichenauer, G.W. Scherer, Effects upon nitrogen sorption analysis in aerogels. J. Colloid Interface Sci. 236(2), 385–386 (2001)CrossRef
57.
go back to reference L.G. Gurvich, Physio-chemical attractive force. J. Russ. Phys. Chem. Soc. 47, 805–827 (1915) L.G. Gurvich, Physio-chemical attractive force. J. Russ. Phys. Chem. Soc. 47, 805–827 (1915)
58.
go back to reference G. Reichenauer, Characterization of aerogels – challenges and prospects. Adv. Sci. Technol. 91, 54–63 (2014)CrossRef G. Reichenauer, Characterization of aerogels – challenges and prospects. Adv. Sci. Technol. 91, 54–63 (2014)CrossRef
59.
go back to reference C. Scherdel, G. Reichenauer, The impact of residual adsorbate on the characterization of microporous carbons with small angle scattering. Carbon 50(8), 3074–3082 (2012)CrossRef C. Scherdel, G. Reichenauer, The impact of residual adsorbate on the characterization of microporous carbons with small angle scattering. Carbon 50(8), 3074–3082 (2012)CrossRef
60.
go back to reference Y. Hanzawa et al., Structural changes in carbon aerogels with high temperature treatment. Carbon 40(4), 575–581 (2002)CrossRef Y. Hanzawa et al., Structural changes in carbon aerogels with high temperature treatment. Carbon 40(4), 575–581 (2002)CrossRef
61.
go back to reference A. Ahmadpour, D.D. Do, The preparation of active carbons from coal by chemical and physical activation. Carbon 34(4), 471–479 (1996)CrossRef A. Ahmadpour, D.D. Do, The preparation of active carbons from coal by chemical and physical activation. Carbon 34(4), 471–479 (1996)CrossRef
62.
go back to reference C. Lin, J.A. Ritter, Carbonization and activation of sol-gel derived carbon xerogels. Carbon 38(6), 849–861 (2000)CrossRef C. Lin, J.A. Ritter, Carbonization and activation of sol-gel derived carbon xerogels. Carbon 38(6), 849–861 (2000)CrossRef
63.
go back to reference F. Rodríguez-Reinoso, M. Molina-Sabio, Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon 30(7), 1111–1118 (1992)CrossRef F. Rodríguez-Reinoso, M. Molina-Sabio, Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon 30(7), 1111–1118 (1992)CrossRef
64.
go back to reference R. Saliger, G. Reichenauer, J. Fricke, Evolution of microporosity upon CO2-activation of carbon aerogels, in Characterization of Porous Solids V, vol. 128, (Elsevier, Amsterdam, 2000), pp. 381–390CrossRef R. Saliger, G. Reichenauer, J. Fricke, Evolution of microporosity upon CO2-activation of carbon aerogels, in Characterization of Porous Solids V, vol. 128, (Elsevier, Amsterdam, 2000), pp. 381–390CrossRef
65.
go back to reference M. Zeller et al., Relationship between structural properties and electrochemical characteristics of monolithic carbon xerogel-based electrochemical double-layer electrodes in aqueous and organic electrolytes. Adv. Energy Mater. 2(5), 598–605 (2012)CrossRef M. Zeller et al., Relationship between structural properties and electrochemical characteristics of monolithic carbon xerogel-based electrochemical double-layer electrodes in aqueous and organic electrolytes. Adv. Energy Mater. 2(5), 598–605 (2012)CrossRef
66.
go back to reference I. Lederer, C. Balzer, G. Reichenauer, Contributions of storage sites located in micro- and meso/macropores to the capacitance of carbonaceous double layer capacitor electrodes. Electrochim. Acta 281, 753–760 (2018)CrossRef I. Lederer, C. Balzer, G. Reichenauer, Contributions of storage sites located in micro- and meso/macropores to the capacitance of carbonaceous double layer capacitor electrodes. Electrochim. Acta 281, 753–760 (2018)CrossRef
67.
go back to reference B.C. Lippens, J.H. de Boer, Studies on pore systems in catalysts V. The t method. J. Catal. 4(3), 319–323 (1965)CrossRef B.C. Lippens, J.H. de Boer, Studies on pore systems in catalysts V. The t method. J. Catal. 4(3), 319–323 (1965)CrossRef
68.
go back to reference C. Scherdel, G. Reichenauer, M. Wiener, Relationship between pore volumes and surface areas derived from the evaluation of N2-sorption data by DR-, BET- and t-plot. Microporous Mesoporous Mater. 132(3), 572–575 (2010)CrossRef C. Scherdel, G. Reichenauer, M. Wiener, Relationship between pore volumes and surface areas derived from the evaluation of N2-sorption data by DR-, BET- and t-plot. Microporous Mesoporous Mater. 132(3), 572–575 (2010)CrossRef
69.
go back to reference R.W. Magee, Evaluation of the external surface area of carbon black by nitrogen adsorption. Rubber Chem. Technol. 68, 590–600 (1994)CrossRef R.W. Magee, Evaluation of the external surface area of carbon black by nitrogen adsorption. Rubber Chem. Technol. 68, 590–600 (1994)CrossRef
70.
go back to reference C. Balzer, M. Seitz, G. Reichenauer (ZAE Bayern, 2017) unpublished work C. Balzer, M. Seitz, G. Reichenauer (ZAE Bayern, 2017) unpublished work
71.
go back to reference S. Braxmeier, G. Reichenauer (ZAE Bayern, 2018) unpublished work S. Braxmeier, G. Reichenauer (ZAE Bayern, 2018) unpublished work
72.
go back to reference C. Scherdel, G. Reichenauer, Microstructure and morphology of porous carbons derived from sucrose. Carbon 47(4), 1102–1111 (2009)CrossRef C. Scherdel, G. Reichenauer, Microstructure and morphology of porous carbons derived from sucrose. Carbon 47(4), 1102–1111 (2009)CrossRef
73.
go back to reference G. Porod, Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. I. Teil. Colloid Polym. Sci. 124(2), 83–114 (1951) G. Porod, Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. I. Teil. Colloid Polym. Sci. 124(2), 83–114 (1951)
74.
go back to reference G. Porod, Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. II.Teil. Kolloid-Z. Z. Fur Polym. 125(2), 108–122 (1952)CrossRef G. Porod, Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. II.Teil. Kolloid-Z. Z. Fur Polym. 125(2), 108–122 (1952)CrossRef
75.
go back to reference A. Emmerling, J. Fricke, Small-angle scattering and the structure of aerogels. J. Non-Cryst. Solids 145(1-3), 113–120 (1992)CrossRef A. Emmerling, J. Fricke, Small-angle scattering and the structure of aerogels. J. Non-Cryst. Solids 145(1-3), 113–120 (1992)CrossRef
76.
go back to reference H. Lu, H. Luo, N. Leventis, Mechanical characterization of aerogels, in Aeroogels Handbook, ed. by M. A. Aegerter, N. Leventis, M. M. Koebel, (Springer, New York, 2011), pp. 499–535CrossRef H. Lu, H. Luo, N. Leventis, Mechanical characterization of aerogels, in Aeroogels Handbook, ed. by M. A. Aegerter, N. Leventis, M. M. Koebel, (Springer, New York, 2011), pp. 499–535CrossRef
77.
go back to reference J. Gross et al., Elastic nonlinearity of aerogels. Phys. Rev. B 45(22), 12774–12777 (1992)CrossRef J. Gross et al., Elastic nonlinearity of aerogels. Phys. Rev. B 45(22), 12774–12777 (1992)CrossRef
78.
go back to reference P. Xhonneux et al., Scaling nonlinear elasticity in silica aerogels. Europhys. Lett. 10(8), 733–738 (1989)CrossRef P. Xhonneux et al., Scaling nonlinear elasticity in silica aerogels. Europhys. Lett. 10(8), 733–738 (1989)CrossRef
79.
go back to reference J. Gross, G. Reichenauer, J. Fricke, Mechanical-properties of SiO2 aerogels. J. Phys. D Appl. Phys. 21(9), 1447–1451 (1988)CrossRef J. Gross, G. Reichenauer, J. Fricke, Mechanical-properties of SiO2 aerogels. J. Phys. D Appl. Phys. 21(9), 1447–1451 (1988)CrossRef
80.
go back to reference T.M. Atanackovic, A. Guran, Theory of Elasticity for Scientists and Engineers (Birkhäuser, Boston, 2000)CrossRef T.M. Atanackovic, A. Guran, Theory of Elasticity for Scientists and Engineers (Birkhäuser, Boston, 2000)CrossRef
81.
go back to reference C. Kittel, Introduction to Solid State Physics (Wiley, Hoboken, 1995) C. Kittel, Introduction to Solid State Physics (Wiley, Hoboken, 1995)
82.
go back to reference J. Gross, J. Fricke, Ultrasonic velocity-measurements in silica, carbon and organic aerogels. J. Non-Cryst. Solids 145(1-3), 217–222 (1992)CrossRef J. Gross, J. Fricke, Ultrasonic velocity-measurements in silica, carbon and organic aerogels. J. Non-Cryst. Solids 145(1-3), 217–222 (1992)CrossRef
83.
go back to reference R.W. Pekala, C.T. Alviso, J.D. Lemay, Organic aerogels - microstructural dependence of mechanical-properties in compression. J. Non-Cryst. Solids 125(1-2), 67–75 (1990)CrossRef R.W. Pekala, C.T. Alviso, J.D. Lemay, Organic aerogels - microstructural dependence of mechanical-properties in compression. J. Non-Cryst. Solids 125(1-2), 67–75 (1990)CrossRef
84.
go back to reference G. Hasegawa et al., Highly flexible hybrid polymer aerogels and xerogels based on resorcinol-formaldehyde with enhanced elastic stiffness and recoverability: insights into the origin of their mechanical properties. Chem. Mater. 29(5), 2122–2134 (2017)CrossRef G. Hasegawa et al., Highly flexible hybrid polymer aerogels and xerogels based on resorcinol-formaldehyde with enhanced elastic stiffness and recoverability: insights into the origin of their mechanical properties. Chem. Mater. 29(5), 2122–2134 (2017)CrossRef
85.
go back to reference X. Lu et al., Thermal conductivity of monolithic organic aerogels. Science 255(5047), 971–972 (1992)CrossRef X. Lu et al., Thermal conductivity of monolithic organic aerogels. Science 255(5047), 971–972 (1992)CrossRef
86.
go back to reference X. Lu et al., Thermal and electrical conductivity of monolithic carbon aerogels. J. Appl. Phys. 73(2), 581–584 (1993)CrossRef X. Lu et al., Thermal and electrical conductivity of monolithic carbon aerogels. J. Appl. Phys. 73(2), 581–584 (1993)CrossRef
87.
go back to reference A. Emmerling, J. Fricke, Scaling properties and structure of aerogels. J. Sol-Gel Sci. Technol. 8(1-3), 781–788 (1997)CrossRef A. Emmerling, J. Fricke, Scaling properties and structure of aerogels. J. Sol-Gel Sci. Technol. 8(1-3), 781–788 (1997)CrossRef
88.
go back to reference K. Swimm et al., Gas pressure dependence of the heat transport in porous solids with pores smaller than 10 μm. Int. J. Thermophys. 30(4), 1329–1342 (2009)CrossRef K. Swimm et al., Gas pressure dependence of the heat transport in porous solids with pores smaller than 10 μm. Int. J. Thermophys. 30(4), 1329–1342 (2009)CrossRef
89.
go back to reference K. Swimm et al., Impact of thermal coupling effects on the effective thermal conductivity of aerogels. J. Sol-Gel Sci. Technol. 84(3), 466–474 (2017)CrossRef K. Swimm et al., Impact of thermal coupling effects on the effective thermal conductivity of aerogels. J. Sol-Gel Sci. Technol. 84(3), 466–474 (2017)CrossRef
90.
go back to reference K. Swimm et al., Coupling of gaseous and solid thermal conduction in porous solids. J. Non-Cryst. Solids 456, 114–124 (2017)CrossRef K. Swimm et al., Coupling of gaseous and solid thermal conduction in porous solids. J. Non-Cryst. Solids 456, 114–124 (2017)CrossRef
91.
go back to reference K. Swimm, H. Weinlader, H.P. Ebert, Influence of spacer systems on heat transfer in evacuated glazing. Int. J. Thermophys. 30(3), 934–948 (2009)CrossRef K. Swimm, H. Weinlader, H.P. Ebert, Influence of spacer systems on heat transfer in evacuated glazing. Int. J. Thermophys. 30(3), 934–948 (2009)CrossRef
92.
go back to reference H.-P. Ebert, Thermal properties of aerogels, in Aerogels Handbook, ed. by M. A. Aegerter, N. Leventis, M. M. Koebel, (Springer, New York, 2011), pp. 537–564CrossRef H.-P. Ebert, Thermal properties of aerogels, in Aerogels Handbook, ed. by M. A. Aegerter, N. Leventis, M. M. Koebel, (Springer, New York, 2011), pp. 537–564CrossRef
93.
go back to reference J.G. Hust, A Fine-Grained, Isotropic Graphite for Use as NBS Thermophysical Property RM’s from 5 to 2500 K (National Bureau of Standards, Gaithersburg, 1984) J.G. Hust, A Fine-Grained, Isotropic Graphite for Use as NBS Thermophysical Property RM’s from 5 to 2500 K (National Bureau of Standards, Gaithersburg, 1984)
94.
go back to reference L. Soukup et al., Raman-spectra and electrical-conductivity of glassy-carbon. Mater. Sci. Eng. B 11(1-4), 355–357 (1992)CrossRef L. Soukup et al., Raman-spectra and electrical-conductivity of glassy-carbon. Mater. Sci. Eng. B 11(1-4), 355–357 (1992)CrossRef
95.
go back to reference F. Hemberger et al., Thermal transport properties of functionally graded carbon aerogels. Int. J. Thermophys. 30(4), 1357–1371 (2009)CrossRef F. Hemberger et al., Thermal transport properties of functionally graded carbon aerogels. Int. J. Thermophys. 30(4), 1357–1371 (2009)CrossRef
96.
go back to reference L. Weigold, G. Reichenauer, Correlation between mechanical stiffness and thermal transport along the solid framework of a uniaxially compressed polyurea aerogel. J. Non-Cryst. Solids 406, 73–78 (2014)CrossRef L. Weigold, G. Reichenauer, Correlation between mechanical stiffness and thermal transport along the solid framework of a uniaxially compressed polyurea aerogel. J. Non-Cryst. Solids 406, 73–78 (2014)CrossRef
97.
go back to reference S. Weis, Technische Wärmedämmung mit Kohlenstoffaerogel, in Physikalisches Institut, (Bayerische Julius-Maximilians-Universität Würzburg, Würzburg, 2007) S. Weis, Technische Wärmedämmung mit Kohlenstoffaerogel, in Physikalisches Institut, (Bayerische Julius-Maximilians-Universität Würzburg, Würzburg, 2007)
98.
go back to reference W. Behr et al., Self and transport diffusion of fluids in SiO2 alcogels studied by NMR pulsed gradient spin echo and NMR imaging. J. Non-Cryst. Solids 225(1), 91–95 (1998)CrossRef W. Behr et al., Self and transport diffusion of fluids in SiO2 alcogels studied by NMR pulsed gradient spin echo and NMR imaging. J. Non-Cryst. Solids 225(1), 91–95 (1998)CrossRef
99.
go back to reference W. Behr, V.C. Behr, G. Reichenauer, Self diffusion coefficients of organic solvents and their binary mixtures with CO2 in silica alcogels at pressures up to 6 MPa derived by NMR pulsed gradient spin echo. J. Supercrit. Fluids 106, 50–56 (2015)CrossRef W. Behr, V.C. Behr, G. Reichenauer, Self diffusion coefficients of organic solvents and their binary mixtures with CO2 in silica alcogels at pressures up to 6 MPa derived by NMR pulsed gradient spin echo. J. Supercrit. Fluids 106, 50–56 (2015)CrossRef
100.
go back to reference G. Reichenauer, J. Fricke, Gas transport in Sol-Gel derived porous carbon aerogels, in Fall Meeting of the Material Research Society, Boston, 1996 G. Reichenauer, J. Fricke, Gas transport in Sol-Gel derived porous carbon aerogels, in Fall Meeting of the Material Research Society, Boston, 1996
101.
go back to reference P.K.C. Wiggs, The relation between gas permeability and pore structure of solids, in Proc., Int. Conf., Structure and Properties of Porous Materials, London P.K.C. Wiggs, The relation between gas permeability and pore structure of solids, in Proc., Int. Conf., Structure and Properties of Porous Materials, London
102.
go back to reference M. Mündlein, S. Braxmeier, G. Reichenauer (ZAE Bayern, 2018) unpublished work M. Mündlein, S. Braxmeier, G. Reichenauer (ZAE Bayern, 2018) unpublished work
103.
go back to reference K. Guo et al., Graphene oxide as an anti-shrinkage additive for resorcinol-formaldehyde composite aerogels. Phys. Chem. Chem. Phys. 16(23), 11603–11608 (2014)CrossRef K. Guo et al., Graphene oxide as an anti-shrinkage additive for resorcinol-formaldehyde composite aerogels. Phys. Chem. Chem. Phys. 16(23), 11603–11608 (2014)CrossRef
104.
go back to reference T. Bordjiba, M. Mohamedi, L.H. Dao, New class of carbon-nanotube aerogel electrodes for electrochemical power sources. Adv. Mater. 20(4), 815–819 (2008)CrossRef T. Bordjiba, M. Mohamedi, L.H. Dao, New class of carbon-nanotube aerogel electrodes for electrochemical power sources. Adv. Mater. 20(4), 815–819 (2008)CrossRef
105.
go back to reference S.A. Steiner et al., Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes. Langmuir 23(9), 5161–5166 (2006)CrossRef S.A. Steiner et al., Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes. Langmuir 23(9), 5161–5166 (2006)CrossRef
106.
go back to reference J. Wang et al., Carbon cloth reinforced carbon aerogel films derived from resorcinol formaldehyde. J. Porous. Mater. 8(2), 159–165 (2001)CrossRef J. Wang et al., Carbon cloth reinforced carbon aerogel films derived from resorcinol formaldehyde. J. Porous. Mater. 8(2), 159–165 (2001)CrossRef
107.
go back to reference J. Feng, C. Zhang, J. Feng, Carbon fiber reinforced carbon aerogel composites for thermal insulation prepared by soft reinforcement. Mater. Lett. 67(1), 266–268 (2012)CrossRef J. Feng, C. Zhang, J. Feng, Carbon fiber reinforced carbon aerogel composites for thermal insulation prepared by soft reinforcement. Mater. Lett. 67(1), 266–268 (2012)CrossRef
108.
go back to reference R. Petricevic et al., SAXS investigation of fiber reinforced carbon aerogels, in Hasylab Annual Report, (Physikalisches Institut der Universität Würzburg, Würzburg, 2000) R. Petricevic et al., SAXS investigation of fiber reinforced carbon aerogels, in Hasylab Annual Report, (Physikalisches Institut der Universität Würzburg, Würzburg, 2000)
109.
go back to reference C. Schmitt, H. Probstle, J. Fricke, Carbon cloth-reinforced and activated aerogel films for supercapacitors. J. Non-Cryst. Solids 285(1-3), 277–282 (2001)CrossRef C. Schmitt, H. Probstle, J. Fricke, Carbon cloth-reinforced and activated aerogel films for supercapacitors. J. Non-Cryst. Solids 285(1-3), 277–282 (2001)CrossRef
110.
go back to reference A. Shaid, L.J. Wang, R. Padhye, The thermal protection and comfort properties of aerogel and PCM-coated fabric for firefighter garment. J. Ind. Text. 45(4), 611–625 (2016)CrossRef A. Shaid, L.J. Wang, R. Padhye, The thermal protection and comfort properties of aerogel and PCM-coated fabric for firefighter garment. J. Ind. Text. 45(4), 611–625 (2016)CrossRef
111.
go back to reference M. Reuss, L. Ratke, Drying of aerogel-bonded sands. J. Mater. Sci. 45(15), 3974–3980 (2010)CrossRef M. Reuss, L. Ratke, Drying of aerogel-bonded sands. J. Mater. Sci. 45(15), 3974–3980 (2010)CrossRef
112.
go back to reference N. Job et al., Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43(12), 2481–2494 (2005)CrossRef N. Job et al., Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43(12), 2481–2494 (2005)CrossRef
Metadata
Title
Properties of Carbon Aerogels and Their Organic Precursors
Authors
Ana Arenillas
J. Angel Menéndez
Gudrun Reichenauer
Alain Celzard
Vanessa Fierro
Francisco José Maldonado Hodar
Esther Bailόn-Garcia
Nathalie Job
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-13897-4_3

Premium Partners