Skip to main content
Top
Published in:

28-12-2023

Real-Time Multi-Class Classification of Respiratory Diseases Through Dimensional Data Combinations

Authors: Yejin Kim, David Camacho, Chang Choi

Published in: Cognitive Computation | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent times, there has been active research on multi-disease classification that aim to diagnose lung diseases and respiratory conditions using respiratory data. Recorded respiratory data can be used to diagnose various chronic diseases, such as asthma and pneumonia by applying different feature extraction methods. Previous studies have primarily focused on respiratory disease classification using 2D image conversion techniques, such as spectrograms and mel frequency cepstral coefficients (MFCC) for respiratory data. However, as the number of respiratory disease classes increased, the classification accuracy tended to decrease. To address this challenge, this study proposes a novel approach that combines 1D and 2D data to enhance the multi-classification performance regarding respiratory disease. We incorporated widely used 2D representations such as spectrograms, gammatone-based spectrograms, and MFCC images, along with raw data. The proposed respiratory disease classification method comprises 2D data conversion, combined data generation, classification model development, and multi-disease classification steps. Our method achieved high classification accuracies of 92.93%, 91.30%, and 88.58% using the TCN, Wavenet, and BiLSTM models, respectively. Compared to using solely 1D data, our approach demonstrated a 4.89% improvement in accuracy and more than 3 times better training speed when using only 2D data. These results confirmed the superiority of the proposed method. This allows us to leverage the advantages of fast learning provided by time-series models, as well as the high classification accuracy demonstrated by 2D image approaches.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ma Y, Xu X, Yu Q, et al. LungBRN: a smart digital stethoscope for detecting respiratory disease using bi-resnet deep learning algorithm. In: 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE; 2019. p 1–4. Ma Y, Xu X, Yu Q, et al. LungBRN: a smart digital stethoscope for detecting respiratory disease using bi-resnet deep learning algorithm. In: 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE; 2019. p 1–4.
2.
go back to reference Naqvi SZH, Choudhry MA. An automated system for classification of chronic obstructive pulmonary disease and pneumonia patients using lung sound analysis. Sensors. 2020;20(22):6512.CrossRef Naqvi SZH, Choudhry MA. An automated system for classification of chronic obstructive pulmonary disease and pneumonia patients using lung sound analysis. Sensors. 2020;20(22):6512.CrossRef
3.
go back to reference Gairola S, Tom F, Kwatra N, et al. Respirenet: a deep neural network for accurately detecting abnormal lung sounds in limited data setting. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE; 2021. p. 527–30. Gairola S, Tom F, Kwatra N, et al. Respirenet: a deep neural network for accurately detecting abnormal lung sounds in limited data setting. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE; 2021. p. 527–30.
4.
go back to reference Pham L, McLoughlin I, Phan H, et al. Robust deep learning framework for predicting respiratory anomalies and diseases. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE; 2020. p. 164–7. Pham L, McLoughlin I, Phan H, et al. Robust deep learning framework for predicting respiratory anomalies and diseases. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE; 2020. p. 164–7.
5.
go back to reference Fraiwan L, Hassanin O, Fraiwan M, et al. Automatic identification of respiratory diseases from stethoscopic lung sound signals using ensemble classifiers. Biocybern Biomed Eng. 2021;41(1):1–14.CrossRef Fraiwan L, Hassanin O, Fraiwan M, et al. Automatic identification of respiratory diseases from stethoscopic lung sound signals using ensemble classifiers. Biocybern Biomed Eng. 2021;41(1):1–14.CrossRef
6.
go back to reference Chen H, Yuan X, Pei Z, et al. Triple-classification of respiratory sounds using optimized s-transform and deep residual networks. IEEE Access. 2019;7:32845–52.CrossRef Chen H, Yuan X, Pei Z, et al. Triple-classification of respiratory sounds using optimized s-transform and deep residual networks. IEEE Access. 2019;7:32845–52.CrossRef
7.
go back to reference Zhao X, Shao Y, Mai J, et al. Respiratory sound classification based on bigru-attention network with xgboost. In: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE; 2020. p. 915–20. Zhao X, Shao Y, Mai J, et al. Respiratory sound classification based on bigru-attention network with xgboost. In: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE; 2020. p. 915–20.
8.
go back to reference Vyshedskiy A, Alhashem RM, Paciej R, et al. Mechanism of inspiratory and expiratory crackles. Chest. 2009;135(1):156–64.CrossRef Vyshedskiy A, Alhashem RM, Paciej R, et al. Mechanism of inspiratory and expiratory crackles. Chest. 2009;135(1):156–64.CrossRef
9.
go back to reference Kim Y, Hyon Y, Jung SS, et al. Respiratory sound classification for crackles, wheezes, and rhonchi in the clinical field using deep learning. Sci Rep. 2021;11(1):17186.CrossRef Kim Y, Hyon Y, Jung SS, et al. Respiratory sound classification for crackles, wheezes, and rhonchi in the clinical field using deep learning. Sci Rep. 2021;11(1):17186.CrossRef
10.
go back to reference Rocha BM, Filos D, Mendes L, et al. An open access database for the evaluation of respiratory sound classification algorithms. Physiol Meas. 2019;40(3):035001.CrossRef Rocha BM, Filos D, Mendes L, et al. An open access database for the evaluation of respiratory sound classification algorithms. Physiol Meas. 2019;40(3):035001.CrossRef
11.
go back to reference Ntalampiras S. Collaborative framework for automatic classification of respiratory sounds. IET Signal Proc. 2020;14(4):223–8.CrossRef Ntalampiras S. Collaborative framework for automatic classification of respiratory sounds. IET Signal Proc. 2020;14(4):223–8.CrossRef
12.
go back to reference Zulfiqar R, Majeed F, Irfan R, et al. Abnormal respiratory sounds classification using deep CNN through artificial noise addition. Front Med. 2021;8:714811.CrossRef Zulfiqar R, Majeed F, Irfan R, et al. Abnormal respiratory sounds classification using deep CNN through artificial noise addition. Front Med. 2021;8:714811.CrossRef
13.
go back to reference Li C, Du H, Zhu B. Classification of lung sounds using CNN-attention. EasyChair Preprint (4356). 2020. Li C, Du H, Zhu B. Classification of lung sounds using CNN-attention. EasyChair Preprint (4356). 2020.
14.
go back to reference Kim HS, Park HS. Ensemble learning model for classification of respiratory anomalies. J Electr Eng Technol. 2023. p. 1–8. Kim HS, Park HS. Ensemble learning model for classification of respiratory anomalies. J Electr Eng Technol. 2023. p. 1–8.
15.
go back to reference Demir F, Ismael AM, Sengur A. Classification of lung sounds with CNN model using parallel pooling structure. IEEE Access. 2020;8:105376–83.CrossRef Demir F, Ismael AM, Sengur A. Classification of lung sounds with CNN model using parallel pooling structure. IEEE Access. 2020;8:105376–83.CrossRef
16.
go back to reference Gupta S, Agrawal M, Deepak D. Gammatonegram based triple classification of lung sounds using deep convolutional neural network with transfer learning. Biomed Signal Process Control. 2021;70:102947.CrossRef Gupta S, Agrawal M, Deepak D. Gammatonegram based triple classification of lung sounds using deep convolutional neural network with transfer learning. Biomed Signal Process Control. 2021;70:102947.CrossRef
17.
go back to reference Jayalakshmy S, Sudha GF. Scalogram based prediction model for respiratory disorders using optimized convolutional neural networks. Artif Intell Med. 2020;103:101809.CrossRef Jayalakshmy S, Sudha GF. Scalogram based prediction model for respiratory disorders using optimized convolutional neural networks. Artif Intell Med. 2020;103:101809.CrossRef
18.
go back to reference Neili Z, Fezari M, Redjati A. ELM and K-NN machine learning in classification of breath sounds signals. Int J Electr Comput Eng. 2020;10(4):3528–36. Neili Z, Fezari M, Redjati A. ELM and K-NN machine learning in classification of breath sounds signals. Int J Electr Comput Eng. 2020;10(4):3528–36.
19.
go back to reference Aykanat M, Kılıç Ö, Kurt B, et al. Classification of lung sounds using convolutional neural networks. EURASIP J Image Video Process. 2017;2017(1):1–9.CrossRef Aykanat M, Kılıç Ö, Kurt B, et al. Classification of lung sounds using convolutional neural networks. EURASIP J Image Video Process. 2017;2017(1):1–9.CrossRef
20.
go back to reference Neili Z, Sundaraj K. Gammatonegram based pulmonary pathologies classification using convolutional neural networks. In: 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD), IEEE; 2022. p. 1112–8. Neili Z, Sundaraj K. Gammatonegram based pulmonary pathologies classification using convolutional neural networks. In: 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD), IEEE; 2022. p. 1112–8.
21.
go back to reference Shi L, Du K, Zhang C, et al. Lung sound recognition algorithm based on VGGISH-BIGRU. IEEE Access. 2019;7:139438–49.CrossRef Shi L, Du K, Zhang C, et al. Lung sound recognition algorithm based on VGGISH-BIGRU. IEEE Access. 2019;7:139438–49.CrossRef
22.
go back to reference Yuming Z, Wenlong X. Research on classification of respiratory diseases based on multi-features fusion cascade neural network. In: 2021 11th International Conference on Information Technology in Medicine and Education (ITME). IEEE; 2021. p. 298–301. Yuming Z, Wenlong X. Research on classification of respiratory diseases based on multi-features fusion cascade neural network. In: 2021 11th International Conference on Information Technology in Medicine and Education (ITME). IEEE; 2021. p. 298–301.
23.
go back to reference Hazra R, Majhi S. Detecting respiratory diseases from recorded lung sounds by 2D CNN. In: 2020 5th International Conference on Computing. IEEE: Communication and Security (ICCCS); 2020. p. 1–6. Hazra R, Majhi S. Detecting respiratory diseases from recorded lung sounds by 2D CNN. In: 2020 5th International Conference on Computing. IEEE: Communication and Security (ICCCS); 2020. p. 1–6.
24.
go back to reference Kiranyaz S, Avci O, Abdeljaber O, et al. 1D convolutional neural networks and applications: a survey. Mech Syst Signal Process. 2021;151:107398.CrossRef Kiranyaz S, Avci O, Abdeljaber O, et al. 1D convolutional neural networks and applications: a survey. Mech Syst Signal Process. 2021;151:107398.CrossRef
25.
go back to reference Asatani N, Kamiya T, Mabu S, et al. Classification of respiratory sounds using improved convolutional recurrent neural network. Comput Electr Eng. 2021;94: 107367.CrossRef Asatani N, Kamiya T, Mabu S, et al. Classification of respiratory sounds using improved convolutional recurrent neural network. Comput Electr Eng. 2021;94: 107367.CrossRef
26.
go back to reference Park C, Lee D. Classification of respiratory states using spectrogram with convolutional neural network. Applied Sciences. 2022;12(4):1895. Park C, Lee D. Classification of respiratory states using spectrogram with convolutional neural network. Applied Sciences. 2022;12(4):1895.
27.
go back to reference Kranthi Kumar L, Alphonse P. COVID-19: respiratory disease diagnosis with regularized deep convolutional neural network using human respiratory sounds. The European Physical Journal Special Topics. 2022;231(18–20):3673–96.CrossRef Kranthi Kumar L, Alphonse P. COVID-19: respiratory disease diagnosis with regularized deep convolutional neural network using human respiratory sounds. The European Physical Journal Special Topics. 2022;231(18–20):3673–96.CrossRef
28.
go back to reference Zakaria N, Mohamed F, Abdelghani R, et al. Three resnet deep learning architectures applied in pulmonary pathologies classification. In: 2021 International Conference on Artificial Intelligence for Cyber Security Systems and Privacy (AI-CSP). IEEE; 2021a. p. 1–8. Zakaria N, Mohamed F, Abdelghani R, et al. Three resnet deep learning architectures applied in pulmonary pathologies classification. In: 2021 International Conference on Artificial Intelligence for Cyber Security Systems and Privacy (AI-CSP). IEEE; 2021a. p. 1–8.
29.
go back to reference Zakaria N, Mohamed F, Abdelghani R, et al. Vgg16, resnet-50, and googlenet deep learning architecture for breathing sound classification: a comparative study. In: 2021 International Conference on Artificial Intelligence for Cyber Security Systems and Privacy (AI-CSP). IEEE; 2021b. p. 1–6. Zakaria N, Mohamed F, Abdelghani R, et al. Vgg16, resnet-50, and googlenet deep learning architecture for breathing sound classification: a comparative study. In: 2021 International Conference on Artificial Intelligence for Cyber Security Systems and Privacy (AI-CSP). IEEE; 2021b. p. 1–6.
30.
go back to reference Revathi A, Sasikaladevi N, Arunprasanth D, et al. Robust respiratory disease classification using breathing sounds (RRDCBS) multiple features and models. Neural Comput Appl. 2022;34(10):8155–72.CrossRef Revathi A, Sasikaladevi N, Arunprasanth D, et al. Robust respiratory disease classification using breathing sounds (RRDCBS) multiple features and models. Neural Comput Appl. 2022;34(10):8155–72.CrossRef
31.
go back to reference Mridha K, Sarkar S, Kumar D. Respiratory disease classification by CNN using MFCC. In: 2021 IEEE 6th International Conference on Computing. IEEE: Communication and Automation (ICCCA); 2021. p. 517–23. Mridha K, Sarkar S, Kumar D. Respiratory disease classification by CNN using MFCC. In: 2021 IEEE 6th International Conference on Computing. IEEE: Communication and Automation (ICCCA); 2021. p. 517–23.
32.
go back to reference Paraschiv EA, Rotaru CM. Machine learning approaches based on wearable devices for respiratory diseases diagnosis. In: 2020 International Conference on e-Health and Bioengineering (EHB). IEEE; 2020. p. 1–4. Paraschiv EA, Rotaru CM. Machine learning approaches based on wearable devices for respiratory diseases diagnosis. In: 2020 International Conference on e-Health and Bioengineering (EHB). IEEE; 2020. p. 1–4.
33.
go back to reference Dhavala A, Ahmed A, Periyasamy R, et al. An MFCC features-driven subject-independent convolution neural network for detection of chronic and non-chronic pulmonary diseases. In: 2022 3rd International Conference for Emerging Technology (INCET). IEEE; 2022. p. 1–9. Dhavala A, Ahmed A, Periyasamy R, et al. An MFCC features-driven subject-independent convolution neural network for detection of chronic and non-chronic pulmonary diseases. In: 2022 3rd International Conference for Emerging Technology (INCET). IEEE; 2022. p. 1–9.
34.
go back to reference Sunitha G, Arunachalam R, Abd-Elnaby M, et al. A comparative analysis of deep neural network architectures for the dynamic diagnosis of COVID-19 based on acoustic cough features. Int J Imaging Syst Technol. 2022;32(5):1433–46.CrossRef Sunitha G, Arunachalam R, Abd-Elnaby M, et al. A comparative analysis of deep neural network architectures for the dynamic diagnosis of COVID-19 based on acoustic cough features. Int J Imaging Syst Technol. 2022;32(5):1433–46.CrossRef
35.
go back to reference Zhao Z, Gong Z, Niu M, et al. Automatic respiratory sound classification via multi-branch temporal convolutional network. In: ICASSP 2022–2022 IEEE international conference on acoustics. IEEE: Speech and Signal Processing (ICASSP); 2022. p. 9102–6. Zhao Z, Gong Z, Niu M, et al. Automatic respiratory sound classification via multi-branch temporal convolutional network. In: ICASSP 2022–2022 IEEE international conference on acoustics. IEEE: Speech and Signal Processing (ICASSP); 2022. p. 9102–6.
36.
go back to reference Gopali S, Abri F, Siami-Namini S, et al. A comparison of TCN and LSTM models in detecting anomalies in time series data. In: 2021 IEEE International Conference on Big Data (Big Data). IEEE; 2021. p 2415–20. Gopali S, Abri F, Siami-Namini S, et al. A comparison of TCN and LSTM models in detecting anomalies in time series data. In: 2021 IEEE International Conference on Big Data (Big Data). IEEE; 2021. p 2415–20.
37.
go back to reference Lee S, Lee C. Revisiting spatial dropout for regularizing convolutional neural networks. Multimed Tools Appl. 2020;79(45–46):34195–207.CrossRef Lee S, Lee C. Revisiting spatial dropout for regularizing convolutional neural networks. Multimed Tools Appl. 2020;79(45–46):34195–207.CrossRef
Metadata
Title
Real-Time Multi-Class Classification of Respiratory Diseases Through Dimensional Data Combinations
Authors
Yejin Kim
David Camacho
Chang Choi
Publication date
28-12-2023
Publisher
Springer US
Published in
Cognitive Computation / Issue 2/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10228-2

Other articles of this Issue 2/2024

Cognitive Computation 2/2024 Go to the issue

Premium Partner