Skip to main content
Top
Published in: Rare Metals 1/2021

26-07-2019

Realizing simultaneously enhanced energy and power density full-cell construction using mixed hard carbon/Li4Ti5O12 electrode

Authors: Shi-Fei Huang, Yao Lv, Da Tie, Yang Yu, Yu-Feng Zhao

Published in: Rare Metals | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Practical applications of lithium-ion batteries (LIBs) with both high energy and power density are urgently demanded, which require suitable charge/discharge platform, fast charge-transfer kinetics, as well as optimal solid electrolyte interphase (SEI) layer of electrode materials. In this work, a high-performance lithium-ion battery (LIB) full cell was assembled by using commercial LiNi0.33Co0.33Mn0.33O2 (NCM111) as the positive electrode and mixed Li4Ti5O12 (LTO)/hard carbon (HC) as the negative electrode. It reveals that the component ratio between LTO and HC plays a critical role in manipulating the electric conductivity and the electro-reaction platform. The electrochemical test results show that when the content of HC is 10 wt%, the as-constructed full cell demonstrates the best electrochemical, with a maximum energy density of 149.2 Wh·kg−1 and a maximum power density of 2195 W·kg−1 at 10 A·g−1 (30C). This outperforms all the assembled systems within our work range and the state-of-the-art literatures. The NCM//Li4Ti5O12 + 10 wt% HC battery system also exhibits a good capacity retention after 1000 cycles at the current density of 1 A·g−1. This work provides a new approach to enhance the full-cell performance by mixing electrode materials with different charge potentials and reaction kinetics.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
[1]
go back to reference Huang SF, Li ZP, Wang B, Zhang JJ, Peng ZQ, Qi RJ, Wang J, Zhao YF. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv Funct Mater. 2018;28(10):1796294.CrossRef Huang SF, Li ZP, Wang B, Zhang JJ, Peng ZQ, Qi RJ, Wang J, Zhao YF. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv Funct Mater. 2018;28(10):1796294.CrossRef
[2]
go back to reference Ge MY, Fang X, Rong JP, Zhou CW. Review of porous silicon preparation and its application for lithium-ion battery anodes. Nanotechnology. 2013;24(42):422001.CrossRef Ge MY, Fang X, Rong JP, Zhou CW. Review of porous silicon preparation and its application for lithium-ion battery anodes. Nanotechnology. 2013;24(42):422001.CrossRef
[3]
go back to reference Zhang XH, Qiu XY, Kong DB, Zhou L, Li Z, Li XL, Zhi LJ. Silicene flowers: a dual stabilized silicon building block for high-performance lithium battery anodes. ACS Nano. 2017;11(7):7476.CrossRef Zhang XH, Qiu XY, Kong DB, Zhou L, Li Z, Li XL, Zhi LJ. Silicene flowers: a dual stabilized silicon building block for high-performance lithium battery anodes. ACS Nano. 2017;11(7):7476.CrossRef
[5]
go back to reference Zheng HY, Qu QT, Zhu GB, Liu G, Battaglia VS, Zheng HH. Quantitative characterization of the surface evolution for LiNi0.5Co0.2Mn0.3O2/graphite cell during long-term cycling. ACS Appl Mater Interfaces. 2017;9(14):12445.CrossRef Zheng HY, Qu QT, Zhu GB, Liu G, Battaglia VS, Zheng HH. Quantitative characterization of the surface evolution for LiNi0.5Co0.2Mn0.3O2/graphite cell during long-term cycling. ACS Appl Mater Interfaces. 2017;9(14):12445.CrossRef
[6]
go back to reference Jung SK, Gwon H, Hong J, Park KY, Seo DH, Kim H, Hyun J, Yang W, Kang K. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv Energy Mater. 2014;4(1):1300787.CrossRef Jung SK, Gwon H, Hong J, Park KY, Seo DH, Kim H, Hyun J, Yang W, Kang K. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv Energy Mater. 2014;4(1):1300787.CrossRef
[7]
go back to reference Lou W, Gaumet JJ, Mai LQ. Antimonybased intermetallic compounds for lithiumion and sodiumion batteries: synthesis, construction and application. Rare Met. 2017;36(5):321.CrossRef Lou W, Gaumet JJ, Mai LQ. Antimonybased intermetallic compounds for lithiumion and sodiumion batteries: synthesis, construction and application. Rare Met. 2017;36(5):321.CrossRef
[8]
go back to reference Shi SS, Li ZP, Sun Y, Wang B, Liu QN, Hou YL, Huang SF, Huang JZ, Zhao YF. A covalent heterostructure of monodisperse Ni2P immobilized on N, P-co-doped carbon nanosheets for high performance sodium/lithium storage. Nano Energy. 2018;48:510.CrossRef Shi SS, Li ZP, Sun Y, Wang B, Liu QN, Hou YL, Huang SF, Huang JZ, Zhao YF. A covalent heterostructure of monodisperse Ni2P immobilized on N, P-co-doped carbon nanosheets for high performance sodium/lithium storage. Nano Energy. 2018;48:510.CrossRef
[9]
go back to reference Li S, Yang Y, Xie M, Zhang Q. Synthesis and electrochemical performances of high-voltage LiNi0.5Mn1.5O4 cathode materials prepared by hydroxide co-precipitation method. Rare Metals. 2017;36(4):277.CrossRef Li S, Yang Y, Xie M, Zhang Q. Synthesis and electrochemical performances of high-voltage LiNi0.5Mn1.5O4 cathode materials prepared by hydroxide co-precipitation method. Rare Metals. 2017;36(4):277.CrossRef
[10]
go back to reference Yun FL, Tang L, Li WC, Jin WR, Pang J, Lu SG. Thermal behavior analysis of a pouch type Li[Ni0.7Co0.15Mn0.15]O2-based lithium-ion battery. Rare Metals. 2016;35(4):309.CrossRef Yun FL, Tang L, Li WC, Jin WR, Pang J, Lu SG. Thermal behavior analysis of a pouch type Li[Ni0.7Co0.15Mn0.15]O2-based lithium-ion battery. Rare Metals. 2016;35(4):309.CrossRef
[11]
go back to reference Wu J, Lau WM, Geng DS. Recent progress in cobalt-based compounds as high-performance anode materials for lithium ion batteries. Rare Met. 2017;36(5):307.CrossRef Wu J, Lau WM, Geng DS. Recent progress in cobalt-based compounds as high-performance anode materials for lithium ion batteries. Rare Met. 2017;36(5):307.CrossRef
[12]
go back to reference Liang JJ, Wei ZX, Wang CY, Ma JM. Vacancy-induced sodium-ion storage in N-doped carbon nanofiber@MoS2 nanosheet arrays. Electrochim Acta. 2018;285(20):301.CrossRef Liang JJ, Wei ZX, Wang CY, Ma JM. Vacancy-induced sodium-ion storage in N-doped carbon nanofiber@MoS2 nanosheet arrays. Electrochim Acta. 2018;285(20):301.CrossRef
[15]
go back to reference Zuo WH, Li RZ, Zhou C, Li YY, Xia JL, Liu JP. Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci. 2017;4(7):1600539.CrossRef Zuo WH, Li RZ, Zhou C, Li YY, Xia JL, Liu JP. Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci. 2017;4(7):1600539.CrossRef
[16]
go back to reference Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? Science. 2014;343(6176):1210.CrossRef Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? Science. 2014;343(6176):1210.CrossRef
[17]
go back to reference Lukatskaya MR, Dunn B, Gogotsi Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun. 2016;7:12647.CrossRef Lukatskaya MR, Dunn B, Gogotsi Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun. 2016;7:12647.CrossRef
[18]
go back to reference Yao F, Pham DT, Lee YH. Carbon-based materials for lithium-ion batteries, electrochemical capacitors, and their hybrid devices. ChemSusChem. 2015;8(14):2284.CrossRef Yao F, Pham DT, Lee YH. Carbon-based materials for lithium-ion batteries, electrochemical capacitors, and their hybrid devices. ChemSusChem. 2015;8(14):2284.CrossRef
[19]
go back to reference Karuppiah S, Franger S, Nallathamby K. Water-soluble green binder for Li4Ti5O12 anodes: effect of binder choice on lithium storage. ChemelEctroChem. 2018;5(2):343.CrossRef Karuppiah S, Franger S, Nallathamby K. Water-soluble green binder for Li4Ti5O12 anodes: effect of binder choice on lithium storage. ChemelEctroChem. 2018;5(2):343.CrossRef
[20]
go back to reference Gockeln M, Pokhrel S, Meierhofer F, Glenneberg J, Schowalter M, Rosenauer A, Fritsching U, Busse M, Mädler L, Kun R. Fabrication and performance of Li4Ti5O12/C Li-ion battery electrodes using combined double flame spray pyrolysis and pressure-based lamination technique. J Power Sour. 2018;374:97.CrossRef Gockeln M, Pokhrel S, Meierhofer F, Glenneberg J, Schowalter M, Rosenauer A, Fritsching U, Busse M, Mädler L, Kun R. Fabrication and performance of Li4Ti5O12/C Li-ion battery electrodes using combined double flame spray pyrolysis and pressure-based lamination technique. J Power Sour. 2018;374:97.CrossRef
[21]
go back to reference Sun LN, Xiong W, Mi HW, Li YL, Zhuo HT, Zhang QL, He CX, Liu JH. In situ coating of graphene-like sheets on Li4Ti5O12 particles for lithium-ion batteries. Electrochim Acta. 2017;230:508.CrossRef Sun LN, Xiong W, Mi HW, Li YL, Zhuo HT, Zhang QL, He CX, Liu JH. In situ coating of graphene-like sheets on Li4Ti5O12 particles for lithium-ion batteries. Electrochim Acta. 2017;230:508.CrossRef
[22]
go back to reference Ruan D, Huang Y, Li LY, Yuan J, Qiao Z. A Li4Ti5O12 + AC/LiMn2O4 + AC hybrid battery capacitor with good cycle performance. J Alloys Compd. 2017;695:1685.CrossRef Ruan D, Huang Y, Li LY, Yuan J, Qiao Z. A Li4Ti5O12 + AC/LiMn2O4 + AC hybrid battery capacitor with good cycle performance. J Alloys Compd. 2017;695:1685.CrossRef
[23]
go back to reference Hu XB, Deng ZH, Suo J, Pan Z. A high rate, high capacity and long life (LiMn2O4 + AC)/Li4Ti5O12 hybrid battery–supercapacitor. J Power Sour. 2009;936(2):496. Hu XB, Deng ZH, Suo J, Pan Z. A high rate, high capacity and long life (LiMn2O4 + AC)/Li4Ti5O12 hybrid battery–supercapacitor. J Power Sour. 2009;936(2):496.
[24]
go back to reference Hu XB, Deng ZH. Study on (LiMn2O4 + AC)/Li4Ti5O12 hybrid battery-capacitor. J Chongqing Univ Technol. 2012;26:21. Hu XB, Deng ZH. Study on (LiMn2O4 + AC)/Li4Ti5O12 hybrid battery-capacitor. J Chongqing Univ Technol. 2012;26:21.
[25]
go back to reference Zhao JL, Wang JT, Chang ZH, Lu SG. Performance of Li-rich material with fluoroethylene carbonate as high-voltage electrolyte solvent. Chin J Rare Metals. 2018;42(10):1077. Zhao JL, Wang JT, Chang ZH, Lu SG. Performance of Li-rich material with fluoroethylene carbonate as high-voltage electrolyte solvent. Chin J Rare Metals. 2018;42(10):1077.
[26]
go back to reference Kasnatscheew J, Evertz M, Streipert B, Wagner R, Klöpsch R, Vortmann B, Hahn H, Nowak S, Amereller M, Gentschev AC. The truth about the 1st cycle Coulombic efficiency of LiNi1/3Co1/3Mn1/3O2 (NCM) cathodes. Phys Chem Chem Phys PCCP. 2016;18(5):3956.CrossRef Kasnatscheew J, Evertz M, Streipert B, Wagner R, Klöpsch R, Vortmann B, Hahn H, Nowak S, Amereller M, Gentschev AC. The truth about the 1st cycle Coulombic efficiency of LiNi1/3Co1/3Mn1/3O2 (NCM) cathodes. Phys Chem Chem Phys PCCP. 2016;18(5):3956.CrossRef
[27]
go back to reference Mukai K. Pseudo zero-strain insertion materials for Li-ion batteries: cross-sectional observations of LiNi1/2Co1/2O2, LiNi1/3Co1/3Mn1/3O2, and LiNi0.8Co0.15Al0.05O2. Ionics. 2018;24(8):1.CrossRef Mukai K. Pseudo zero-strain insertion materials for Li-ion batteries: cross-sectional observations of LiNi1/2Co1/2O2, LiNi1/3Co1/3Mn1/3O2, and LiNi0.8Co0.15Al0.05O2. Ionics. 2018;24(8):1.CrossRef
[28]
go back to reference Ghimbeu CM, Górka J, Simone V, Simonin L, Martinet S, Vix-Guterl C. Insights on the Na+ ion storage mechanism in hard carbon: discrimination between the porosity, surface functional groups and defects. Nano Energy. 2017;44:327.CrossRef Ghimbeu CM, Górka J, Simone V, Simonin L, Martinet S, Vix-Guterl C. Insights on the Na+ ion storage mechanism in hard carbon: discrimination between the porosity, surface functional groups and defects. Nano Energy. 2017;44:327.CrossRef
[29]
go back to reference Li ZF, Bommier C, Chong ZS, Jian ZJ, Surta TW, Wang XF, Xing ZY, Neuefeind JC, Stickle WF, Dolgos M. Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping. Adv Energy Mater. 2017;7(18):1602894.CrossRef Li ZF, Bommier C, Chong ZS, Jian ZJ, Surta TW, Wang XF, Xing ZY, Neuefeind JC, Stickle WF, Dolgos M. Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping. Adv Energy Mater. 2017;7(18):1602894.CrossRef
[30]
go back to reference Gaddam RR, Yang DF, Narayan R, Raju K, Kumar NA, Zhao XS. Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy. 2016;26:346.CrossRef Gaddam RR, Yang DF, Narayan R, Raju K, Kumar NA, Zhao XS. Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy. 2016;26:346.CrossRef
[31]
go back to reference Hu XB, Deng ZH, Suo J, Pan Z. A high rate, high capacity and long life (LiMn2O4 + AC)/Li4Ti5O12 hybrid battery–supercapacitor. J Power Sour. 2009;187(2):635.CrossRef Hu XB, Deng ZH, Suo J, Pan Z. A high rate, high capacity and long life (LiMn2O4 + AC)/Li4Ti5O12 hybrid battery–supercapacitor. J Power Sour. 2009;187(2):635.CrossRef
[32]
go back to reference Ping LN, Zheng JM, Shi ZQ, Jie QI, Wang CY. Electrochemical performance of MCMB/(AC + LiFePO4) lithium-ion capacitors. Sci Bull. 2013;58(6):689.CrossRef Ping LN, Zheng JM, Shi ZQ, Jie QI, Wang CY. Electrochemical performance of MCMB/(AC + LiFePO4) lithium-ion capacitors. Sci Bull. 2013;58(6):689.CrossRef
[33]
go back to reference Sun XZ, Zhang X, Huang B, Zhang HT, Zhang DC, Ma YW. (LiNi0.5Co0.2Mn0.3O2 + AC)/graphite hybrid energy storage device with high specific energy and high rate capability. J Power Sour. 2013;243(6):361.CrossRef Sun XZ, Zhang X, Huang B, Zhang HT, Zhang DC, Ma YW. (LiNi0.5Co0.2Mn0.3O2 + AC)/graphite hybrid energy storage device with high specific energy and high rate capability. J Power Sour. 2013;243(6):361.CrossRef
Metadata
Title
Realizing simultaneously enhanced energy and power density full-cell construction using mixed hard carbon/Li4Ti5O12 electrode
Authors
Shi-Fei Huang
Yao Lv
Da Tie
Yang Yu
Yu-Feng Zhao
Publication date
26-07-2019
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 1/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-019-01312-4

Other articles of this Issue 1/2021

Rare Metals 1/2021 Go to the issue

Premium Partners