Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

25-07-2021 | Original Paper

Reliability Analysis of Reinforced Slope Combining Random Forest Algorithm and Meshless SPH Algorithm

Journal:
Geotechnical and Geological Engineering
Authors:
Xu Liu, Liang Li, ShangShang Wang, Fu Chen, Ming Zhai, Zhengquan Yang, Yuan Gao
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

This paper presents a framework combining a mesh-free method called Smoothed Particle Hydrodynamics (SPH) algorithm with Random Forest (RF) algorithm to evaluate the failure probability for reinforced slope. The reinforced slope model is established in Slope/w and Monte Carlo Simulation is implemented using Win-Batch to obtain the failure samples yielding reinforced slope failure with factor of safety < 1. The run-out distances corresponding to failure samples are modeled using SPH and these distances are based to build a new limit state function of reinforced slope failure. Then, RF algorithm is used to predict the state of the reinforced slope to enhance the computation efficiency. The proposed framework is illustrated through a roadside reinforced slope of Harbin to Jiamusi Railway to investigate the influence of retaining wall height on the failure probability of slope. The computation results show that RF algorithm exhibits a relative high accuracy in predicting the state of the reinforced slope according to its factors of safety, retaining wall heights and the corresponding run-out distances. It is found that as the retaining wall height increases, the failure probability of the reinforced slope decreases significantly. The proposed framework and the research outputs provide much insight into risk assessment and risk mitigation for reinforced slopes.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article