Skip to main content
Top
Published in: Quantum Information Processing 2/2024

01-02-2024

Remote state preparation by multiple observers using a single copy of a two-qubit entangled state

Authors: Shounak Datta, Shiladitya Mal, Arun K. Pati, A. S. Majumdar

Published in: Quantum Information Processing | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We consider a scenario of remote state preparation (RSP) of qubits in the context of sequential network scenario. A single copy of an entangled state is shared between Alice on one side, and several Bobs on the other, who sequentially perform unsharp single-particle measurements in order to prepare a specific state. In the given scenario without any shared randomness between the various Bobs, we first determine the classical bound of fidelity for the preparation of remote states by the Bobs. We then show that there can be at most 6 number of Bobs who can sequentially and independently prepare the remote qubit state in Alice’s lab with fidelity exceeding the classical bound in the presence of shared quantum correlations. The upper bound is achieved when the singlet state is initially shared between Alice and the first Bob and every Bob prepares a state chosen from the equatorial circle of the Bloch sphere. Then, we introduce a new RSP protocol for non-equatorial ensemble of states. The maximum number of Bobs starts to decrease from six when either the choice of remote states is shifted from the equatorial circle towards the poles of the Bloch sphere, or when the initial state shifts towards non-maximally entangled pure and mixed states.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
If Alice chooses two pure states, e.g. \(|\psi ^p_1\rangle = \cos (\frac{\theta }{2})|0\rangle +e^{i\phi ^p_1} \sin (\frac{\theta }{2})|1\rangle \) (\(0\le \phi ^p_1\le 2\pi \)) and \(|\psi ^p_2\rangle = \cos (\frac{\theta }{2})|0\rangle +e^{i\phi ^p_2} \sin (\frac{\theta }{2})|1\rangle \) (\(0\le \phi ^p_2\le 2\pi \)) randomly from the specified circle with fixed polar angle, \(\theta \) of the Bloch sphere depending upon the CC from Bob, then we have \(f_{cl} = \frac{3}{4} + \frac{\cos 2\theta }{4} + \frac{\sin ^3\theta ~\sin \theta _B}{8} [\cos (\phi _B - \phi ^p_1)-\cos (\phi _B - \phi ^p_2) ] \le \frac{3}{4} + \frac{\cos 2\theta + \sin ^3 \theta }{4}\) where the maximum occurs when \(\theta _B= \frac{\pi }{2}, \phi _B - \phi ^p_1 = 0 ~\text {or}~ 2\pi , \phi _B - \phi ^p_2 = \pm \pi \).
 
2
Let us consider that, Alice applies a general 2\(\times \)2 unitary matrix having the form, \(U=\begin{pmatrix} \cos (\frac{\zeta }{2}) ~e^{i(\frac{\iota +\kappa }{2})} &{} \sin (\frac{\zeta }{2}) ~e^{-i(\frac{\iota -\kappa }{2})}\\ -\sin (\frac{\zeta }{2}) ~e^{i(\frac{\iota -\kappa }{2})} &{} \cos (\frac{\zeta }{2}) ~e^{-i(\frac{\iota +\kappa }{2})}\\ \end{pmatrix}\) next to her prefixed chosen set of unitaries \(\lbrace \mathbb {I}_2, \sigma _z \rbrace \). Hence, the average fidelity in the given scenario between Alice and Bob\(^i\) (\(i\ge 2\)) becomes, \(f_{av}^{AB^i} \big (\rho _{A|E_{+(-)}^{\lambda _i}}^i, |\psi ^i_{(\bot )}\rangle \big ) = \frac{1}{2} + \frac{\lambda _i}{2^i} ~\prod _{k=1}^{i-1} \big (1+\sqrt{1-\lambda _k^2}\big ) ~[\cos ^2(\frac{\zeta }{2}) ~\cos (\iota +\kappa ) - \sin ^2(\frac{\zeta }{2}) ~\cos (\iota -\kappa -2\phi _i)]\), which is maximum when \(\zeta =\iota =\kappa = 0 ~\text {or} ~2\pi \), i.e., \(U=\mathbb {I}_2\).
 
Literature
1.
go back to reference Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetPubMedCrossRef Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetPubMedCrossRef
2.
go back to reference Pan, J.-W., Chen, Z.-B., Lu, C.-Y., Weinfurter, H., Zeilinger, A., Żukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012)ADSCrossRef Pan, J.-W., Chen, Z.-B., Lu, C.-Y., Weinfurter, H., Zeilinger, A., Żukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012)ADSCrossRef
3.
4.
go back to reference Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)ADSCrossRef Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)ADSCrossRef
5.
go back to reference Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)ADSPubMedCrossRef Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)ADSPubMedCrossRef
8.
go back to reference Peng, X., Zhu, X., Fang, X., Feng, M., Liu, M., Gao, K.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306(5), 271 (2003)ADSCrossRef Peng, X., Zhu, X., Fang, X., Feng, M., Liu, M., Gao, K.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306(5), 271 (2003)ADSCrossRef
9.
go back to reference Babichev, S.A., Brezger, B., Lvovsky, A.I.: Remote preparation of a single-mode photonic qubit by measuring field quadrature noise. Phys. Rev. Lett. 92, 047903 (2004)ADSPubMedCrossRef Babichev, S.A., Brezger, B., Lvovsky, A.I.: Remote preparation of a single-mode photonic qubit by measuring field quadrature noise. Phys. Rev. Lett. 92, 047903 (2004)ADSPubMedCrossRef
10.
go back to reference Liu, W.-T., Wu, W., Ou, B.-Q., Chen, P.-X., Li, C.-Z., Yuan, J.-M.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A 76, 022308 (2007)ADSCrossRef Liu, W.-T., Wu, W., Ou, B.-Q., Chen, P.-X., Li, C.-Z., Yuan, J.-M.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A 76, 022308 (2007)ADSCrossRef
11.
go back to reference Xiang, G.-Y., Li, J., Yu, B., Guo, G.-C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)ADSCrossRef Xiang, G.-Y., Li, J., Yu, B., Guo, G.-C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)ADSCrossRef
12.
go back to reference Christ, A., Silberhorn, C.: Limits on the deterministic creation of pure single-photon states using parametric down-conversion. Phys. Rev. A 85, 023829 (2012)ADSCrossRef Christ, A., Silberhorn, C.: Limits on the deterministic creation of pure single-photon states using parametric down-conversion. Phys. Rev. A 85, 023829 (2012)ADSCrossRef
13.
go back to reference Jiao, X.-F., Zhou, P., Lv, S.-X., Wang, Z.-Y.: Remote preparation for single-photon two-qubit hybrid state with hyperentanglement via linear-optical elements. Sci. Rep. 9, 4663 (2019)ADSPubMedPubMedCentralCrossRef Jiao, X.-F., Zhou, P., Lv, S.-X., Wang, Z.-Y.: Remote preparation for single-photon two-qubit hybrid state with hyperentanglement via linear-optical elements. Sci. Rep. 9, 4663 (2019)ADSPubMedPubMedCentralCrossRef
14.
go back to reference Rosenfeld, W., Berner, S., Volz, J., Weber, M., Weinfurter, H.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98, 050504 (2007)ADSPubMedCrossRef Rosenfeld, W., Berner, S., Volz, J., Weber, M., Weinfurter, H.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98, 050504 (2007)ADSPubMedCrossRef
15.
go back to reference Nguyen, B.A., Kim, J.: Joint remote state preparation. J. Phys. B: At. Mol. Opt. Phys. 41(9), 095501 (2008)ADSCrossRef Nguyen, B.A., Kim, J.: Joint remote state preparation. J. Phys. B: At. Mol. Opt. Phys. 41(9), 095501 (2008)ADSCrossRef
16.
go back to reference Chaudhary, M., Fadel, M., Ilo-Okeke, E.O., Pyrkov, A.N., Ivannikov, V., Byrnes, T.: Remote state preparation of two-component Bose-Einstein condensates. Phys. Rev. A 103, 062417 (2021)ADSMathSciNetCrossRef Chaudhary, M., Fadel, M., Ilo-Okeke, E.O., Pyrkov, A.N., Ivannikov, V., Byrnes, T.: Remote state preparation of two-component Bose-Einstein condensates. Phys. Rev. A 103, 062417 (2021)ADSMathSciNetCrossRef
17.
go back to reference Wang, M.-Y., Yan, F., Gao, T.: Remote preparation for single-photon state in two degrees of freedom with hyper-entangled states. Front. Phys. 16, 41501 (2021)ADSCrossRef Wang, M.-Y., Yan, F., Gao, T.: Remote preparation for single-photon state in two degrees of freedom with hyper-entangled states. Front. Phys. 16, 41501 (2021)ADSCrossRef
18.
go back to reference Cameron, A.R., Cheng, S.W.L., Schwarz, S., Kapahi, C., Sarenac, D., Grabowecky, M., Cory, D.G., Jennewein, T., Pushin, D.A., Resch, K.J.: Remote state preparation of single-photon orbital-angular-momentum lattices. Phys. Rev. A 104, 051701 (2021)ADSCrossRef Cameron, A.R., Cheng, S.W.L., Schwarz, S., Kapahi, C., Sarenac, D., Grabowecky, M., Cory, D.G., Jennewein, T., Pushin, D.A., Resch, K.J.: Remote state preparation of single-photon orbital-angular-momentum lattices. Phys. Rev. A 104, 051701 (2021)ADSCrossRef
19.
go back to reference Paris, M.G.A., Cola, M., Bonifacio, R.: Remote state preparation and teleportation in phase space. J. Opt. B: Quantum Semiclass. Opt. 5(3), 360 (2003)ADSCrossRef Paris, M.G.A., Cola, M., Bonifacio, R.: Remote state preparation and teleportation in phase space. J. Opt. B: Quantum Semiclass. Opt. 5(3), 360 (2003)ADSCrossRef
20.
go back to reference Dakić, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, C., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8(9), 666 (2012)CrossRef Dakić, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, C., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8(9), 666 (2012)CrossRef
22.
go back to reference Kanjilal, S., Khan, A., Jebarathinam, C., Home, D.: Remote state preparation using correlations beyond discord. Phys. Rev. A 98, 062320 (2018)ADSCrossRef Kanjilal, S., Khan, A., Jebarathinam, C., Home, D.: Remote state preparation using correlations beyond discord. Phys. Rev. A 98, 062320 (2018)ADSCrossRef
23.
go back to reference Horodecki, P., Tuziemski, J., Mazurek, P., Horodecki, R.: Can communication power of separable correlations exceed that of entanglement resource? Phys. Rev. Lett. 112, 140507 (2014)ADSPubMedCrossRef Horodecki, P., Tuziemski, J., Mazurek, P., Horodecki, R.: Can communication power of separable correlations exceed that of entanglement resource? Phys. Rev. Lett. 112, 140507 (2014)ADSPubMedCrossRef
24.
25.
go back to reference Hayashi, A., Hashimoto, T., Horibe, M.: Remote state preparation without oblivious conditions. Phys. Rev. A 67, 052302 (2003)ADSCrossRef Hayashi, A., Hashimoto, T., Horibe, M.: Remote state preparation without oblivious conditions. Phys. Rev. A 67, 052302 (2003)ADSCrossRef
26.
go back to reference Silva, R., Gisin, N., Guryanova, Y., Popescu, S.: Multiple observers can share the nonlocality of half of an entangled pair by using optimal weak measurements. Phys. Rev. Lett. 114, 250401 (2015)ADSPubMedCrossRef Silva, R., Gisin, N., Guryanova, Y., Popescu, S.: Multiple observers can share the nonlocality of half of an entangled pair by using optimal weak measurements. Phys. Rev. Lett. 114, 250401 (2015)ADSPubMedCrossRef
27.
go back to reference Mal, S., Majumdar, A.S., Home, D.: Sharing of nonlocality of a single member of an entangled pair of qubits is not possible by more than two unbiased observers on the other wing. Mathematics 4(3), 48 (2016)CrossRef Mal, S., Majumdar, A.S., Home, D.: Sharing of nonlocality of a single member of an entangled pair of qubits is not possible by more than two unbiased observers on the other wing. Mathematics 4(3), 48 (2016)CrossRef
28.
go back to reference Hu, M.-J., Zhou, Z.-Y., Hu, X.-M., Li, C.-F., Guo, G.-C., Zhang, Y.-S.: Observation of non-locality sharing among three observers with one entangled pair via optimal weak measurement. NPJ Quantum Inf 4(1), 63 (2018)ADSCrossRef Hu, M.-J., Zhou, Z.-Y., Hu, X.-M., Li, C.-F., Guo, G.-C., Zhang, Y.-S.: Observation of non-locality sharing among three observers with one entangled pair via optimal weak measurement. NPJ Quantum Inf 4(1), 63 (2018)ADSCrossRef
29.
go back to reference Schiavon, M., Calderaro, L., Pittaluga, M., Vallone, G., Villoresi, P.: Three-observer bell inequality violation on a two-qubit entangled state. Quantum Sci. Technol. 2(1), 015010 (2017)ADSCrossRef Schiavon, M., Calderaro, L., Pittaluga, M., Vallone, G., Villoresi, P.: Three-observer bell inequality violation on a two-qubit entangled state. Quantum Sci. Technol. 2(1), 015010 (2017)ADSCrossRef
30.
go back to reference Feng, T., Ren, C., Tian, Y., Luo, M., Shi, H., Chen, J., Zhou, X.: Observation of nonlocality sharing via not-so-weak measurements. Phys. Rev. A 102, 032220 (2020)ADSCrossRef Feng, T., Ren, C., Tian, Y., Luo, M., Shi, H., Chen, J., Zhou, X.: Observation of nonlocality sharing via not-so-weak measurements. Phys. Rev. A 102, 032220 (2020)ADSCrossRef
31.
go back to reference Das, D., Ghosal, A., Sasmal, S., Mal, S., Majumdar, A.S.: Facets of bipartite nonlocality sharing by multiple observers via sequential measurements. Phys. Rev. A 99, 022305 (2019)ADSCrossRef Das, D., Ghosal, A., Sasmal, S., Mal, S., Majumdar, A.S.: Facets of bipartite nonlocality sharing by multiple observers via sequential measurements. Phys. Rev. A 99, 022305 (2019)ADSCrossRef
33.
go back to reference Bera, A., Mal, S., Sen, A., Sen, U.: Witnessing bipartite entanglement sequentially by multiple observers. Phys. Rev. A 98, 062304 (2018)ADSCrossRef Bera, A., Mal, S., Sen, A., Sen, U.: Witnessing bipartite entanglement sequentially by multiple observers. Phys. Rev. A 98, 062304 (2018)ADSCrossRef
34.
go back to reference Maity, A.G., Das, D., Ghosal, A., Roy, A., Majumdar, A.S.: Detection of genuine tripartite entanglement by multiple sequential observers. Phys. Rev. A 101, 042340 (2020)ADSCrossRef Maity, A.G., Das, D., Ghosal, A., Roy, A., Majumdar, A.S.: Detection of genuine tripartite entanglement by multiple sequential observers. Phys. Rev. A 101, 042340 (2020)ADSCrossRef
35.
go back to reference Srivastava, C., Mal, S., Sen, A., Sen, U.: Sequential measurement-device-independent entanglement detection by multiple observers. Phys. Rev. A 103, 032408 (2021)ADSMathSciNetCrossRef Srivastava, C., Mal, S., Sen, A., Sen, U.: Sequential measurement-device-independent entanglement detection by multiple observers. Phys. Rev. A 103, 032408 (2021)ADSMathSciNetCrossRef
36.
go back to reference Sasmal, S., Das, D., Mal, S., Majumdar, A.S.: Steering a single system sequentially by multiple observers. Phys. Rev. A 98, 012305 (2018)ADSCrossRef Sasmal, S., Das, D., Mal, S., Majumdar, A.S.: Steering a single system sequentially by multiple observers. Phys. Rev. A 98, 012305 (2018)ADSCrossRef
37.
go back to reference Shenoy, H., Designolle, S., Hirsch, F., Silva, R., Gisin, N., Brunner, N.: Unbounded sequence of observers exhibiting Einstein–Podolsky–Rosen steering. Phys. Rev. A 99, 022317 (2019)ADSCrossRef Shenoy, H., Designolle, S., Hirsch, F., Silva, R., Gisin, N., Brunner, N.: Unbounded sequence of observers exhibiting Einstein–Podolsky–Rosen steering. Phys. Rev. A 99, 022317 (2019)ADSCrossRef
38.
go back to reference Gupta, S., Maity, A.G., Das, D., Roy, A., Majumdar, A.S.: Genuine Einstein–Podolsky–Rosen steering of three-qubit states by multiple sequential observers. Phys. Rev. A 103, 022421 (2021)ADSMathSciNetCrossRef Gupta, S., Maity, A.G., Das, D., Roy, A., Majumdar, A.S.: Genuine Einstein–Podolsky–Rosen steering of three-qubit states by multiple sequential observers. Phys. Rev. A 103, 022421 (2021)ADSMathSciNetCrossRef
39.
go back to reference Datta, S., Majumdar, A.S.: Sharing of nonlocal advantage of quantum coherence by sequential observers. Phys. Rev. A 98, 042311 (2018)ADSCrossRef Datta, S., Majumdar, A.S.: Sharing of nonlocal advantage of quantum coherence by sequential observers. Phys. Rev. A 98, 042311 (2018)ADSCrossRef
40.
go back to reference Roy, S., Bera, A., Mal, S., Sen, A., Sen, U.: Recycling the resource: Sequential usage of shared state in quantum teleportation with weak measurements. Phys. Lett. A 392, 127143 (2021)MathSciNetCrossRef Roy, S., Bera, A., Mal, S., Sen, A., Sen, U.: Recycling the resource: Sequential usage of shared state in quantum teleportation with weak measurements. Phys. Lett. A 392, 127143 (2021)MathSciNetCrossRef
41.
go back to reference Curchod, F.J., Johansson, M., Augusiak, R., Hoban, M.J., Wittek, P., Acín, A.: Unbounded randomness certification using sequences of measurements. Phys. Rev. A 95, 020102 (2017)ADSCrossRef Curchod, F.J., Johansson, M., Augusiak, R., Hoban, M.J., Wittek, P., Acín, A.: Unbounded randomness certification using sequences of measurements. Phys. Rev. A 95, 020102 (2017)ADSCrossRef
42.
go back to reference Das, A.K., Das, D., Mal, S., Home, D., Majumdar, A.S.: Resource-theoretic efficacy of the single copy of a two-qubit entangled state in a sequential network. Quantum Inf. Process. 21, 1–29 (2022)MathSciNetCrossRef Das, A.K., Das, D., Mal, S., Home, D., Majumdar, A.S.: Resource-theoretic efficacy of the single copy of a two-qubit entangled state in a sequential network. Quantum Inf. Process. 21, 1–29 (2022)MathSciNetCrossRef
43.
go back to reference Brown, P.J., Colbeck, R.: Arbitrarily many independent observers can share the nonlocality of a single maximally entangled qubit pair. Phys. Rev. Lett. 125, 090401 (2020)ADSMathSciNetPubMedCrossRef Brown, P.J., Colbeck, R.: Arbitrarily many independent observers can share the nonlocality of a single maximally entangled qubit pair. Phys. Rev. Lett. 125, 090401 (2020)ADSMathSciNetPubMedCrossRef
45.
go back to reference Bužek, V., Hillery, M., Werner, R.F.: Optimal manipulations with qubits: Universal-not gate. Phys. Rev. A 60, 2626–2629 (1999)ADSMathSciNetCrossRef Bužek, V., Hillery, M., Werner, R.F.: Optimal manipulations with qubits: Universal-not gate. Phys. Rev. A 60, 2626–2629 (1999)ADSMathSciNetCrossRef
47.
go back to reference Wu, W., Liu, W.-T., Chen, P.-X., Li, C.-Z.: Deterministic remote preparation of pure and mixed polarization states. Phys. Rev. A 81, 042301 (2010)ADSCrossRef Wu, W., Liu, W.-T., Chen, P.-X., Li, C.-Z.: Deterministic remote preparation of pure and mixed polarization states. Phys. Rev. A 81, 042301 (2010)ADSCrossRef
48.
go back to reference Costa, A.C.S., Beims, M.W., Angelo, R.M.: Generalized discord, entanglement, Einstein–Podolsky–Rosen steering, and bell nonlocality in two-qubit systems under (non-)markovian channels: Hierarchy of quantum resources and chronology of deaths and births. Phys. A: Stat. Mech. App. 461, 469 (2016)MathSciNetCrossRef Costa, A.C.S., Beims, M.W., Angelo, R.M.: Generalized discord, entanglement, Einstein–Podolsky–Rosen steering, and bell nonlocality in two-qubit systems under (non-)markovian channels: Hierarchy of quantum resources and chronology of deaths and births. Phys. A: Stat. Mech. App. 461, 469 (2016)MathSciNetCrossRef
49.
go back to reference Busch, P., Lahti, P.J., Mittelstaedt, P.: The Quantum Theory of Measurement. Springer, New York (1996) Busch, P., Lahti, P.J., Mittelstaedt, P.: The Quantum Theory of Measurement. Springer, New York (1996)
50.
51.
go back to reference Dakić, B., Vedral, V., Brukner, V.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)ADSPubMedCrossRef Dakić, B., Vedral, V., Brukner, V.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)ADSPubMedCrossRef
53.
go back to reference Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)ADSCrossRef Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)ADSCrossRef
54.
go back to reference Hill, S.A., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997)ADSCrossRef Hill, S.A., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997)ADSCrossRef
56.
go back to reference Bennett, C.H., Brassard, G., Crepeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995)MathSciNetCrossRef Bennett, C.H., Brassard, G., Crepeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995)MathSciNetCrossRef
57.
go back to reference Brassard, G., Cleve, R., Tapp, A.: Cost of exactly simulating quantum entanglement with classical communication. Phys. Rev. Lett. 83, 1874–1877 (1999)ADSCrossRef Brassard, G., Cleve, R., Tapp, A.: Cost of exactly simulating quantum entanglement with classical communication. Phys. Rev. Lett. 83, 1874–1877 (1999)ADSCrossRef
58.
go back to reference Bowles, J., Hirsch, F., Quintino, M.T., Brunner, N.: Local hidden variable models for entangled quantum states using finite shared randomness. Phys. Rev. Lett. 114, 120401 (2015)ADSPubMedCrossRef Bowles, J., Hirsch, F., Quintino, M.T., Brunner, N.: Local hidden variable models for entangled quantum states using finite shared randomness. Phys. Rev. Lett. 114, 120401 (2015)ADSPubMedCrossRef
59.
go back to reference Guha, T., Alimuddin, M., Rout, S., Mukherjee, A., Bhattacharya, S.S., Banik, M.: Quantum advantage for shared randomness generation. Quantum 5, 569 (2021)CrossRef Guha, T., Alimuddin, M., Rout, S., Mukherjee, A., Bhattacharya, S.S., Banik, M.: Quantum advantage for shared randomness generation. Quantum 5, 569 (2021)CrossRef
60.
go back to reference An, N.B., Kim, J.: Collective remote state preparation. Int. J. Quant. Inf. 06(05), 1051 (2008)CrossRef An, N.B., Kim, J.: Collective remote state preparation. Int. J. Quant. Inf. 06(05), 1051 (2008)CrossRef
61.
go back to reference Yang, R.-Y., Liu, J.-M.: Enhancing the fidelity of remote state preparation by partial measurements. Quantum Inf. Process. 16, 1 (2017)ADSMathSciNetCrossRef Yang, R.-Y., Liu, J.-M.: Enhancing the fidelity of remote state preparation by partial measurements. Quantum Inf. Process. 16, 1 (2017)ADSMathSciNetCrossRef
62.
go back to reference Peters, N.A., Wei, T.-C., Kwiat, P.G.: Mixed-state sensitivity of several quantum-information benchmarks. Phys. Rev. A 70, 052309 (2004)ADSCrossRef Peters, N.A., Wei, T.-C., Kwiat, P.G.: Mixed-state sensitivity of several quantum-information benchmarks. Phys. Rev. A 70, 052309 (2004)ADSCrossRef
Metadata
Title
Remote state preparation by multiple observers using a single copy of a two-qubit entangled state
Authors
Shounak Datta
Shiladitya Mal
Arun K. Pati
A. S. Majumdar
Publication date
01-02-2024
Publisher
Springer US
Published in
Quantum Information Processing / Issue 2/2024
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-024-04263-7

Other articles of this Issue 2/2024

Quantum Information Processing 2/2024 Go to the issue