Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 18/2021

25-08-2021

Role of dysprosium in enhancing the humidity sensing performance in manganese zinc ferrites for sensor applications

Authors: A. El-Denglawey, V. Jagadeesha Angadi, K. Manjunatha, B. Chethan, Sandeep B. Somvanshi

Published in: Journal of Materials Science: Materials in Electronics | Issue 18/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present scenario, ferrites are widely used for humidity sensor applications. Aiming this, we have prepared Dy3+-doped Mn–Zn ferrites by solution combustion method combining urea and glucose as burning agent. And obtained powder was characterized by several physicochemical techniques. The phase purity was confirmed by using the techniques such as X-ray powder diffraction and infrared spectroscopy. FTIR spectra show 2 prominent absorption bands under 1000 cm−1 which confirms the formation of spinel ferrite. The dielectric studies with change in frequency exhibited remarkable changes with Dy3+ content in samples. All electrical responses were investigated as a function of frequency and Dy3+ content at room temperature. The dielectric constant and loss on the frequency of the alternating applied electric field is consistent with Maxwell–Wagner style interfacial polarization. Further Humidity sensing response were recorded for pellet samples. It is noteworthy that, as the composition of the Dysprosium (Dy3+) increases the resistance is enhanced and is maximum for the Mn0.5Zn0.5Dy0.03Fe2−0.03O4 composite. Hence our results are good enough for sensor applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Waqas, A.H. Qureshi, K. Subhan, M. Shahzad, Nanograin Mn–Zn ferrite smart cores to miniaturize electronic devices. Ceram. Int. 38, 1235–1240 (2012)CrossRef H. Waqas, A.H. Qureshi, K. Subhan, M. Shahzad, Nanograin Mn–Zn ferrite smart cores to miniaturize electronic devices. Ceram. Int. 38, 1235–1240 (2012)CrossRef
2.
go back to reference K. Praveena, K. Sadhana, S. Bharadwaj, S. Murthy, Development of nanocrystalline Mn–Zn ferrites for high frequency transformer applications. J. Magn. Magn. Mater. 321, 2433–2437 (2009)CrossRef K. Praveena, K. Sadhana, S. Bharadwaj, S. Murthy, Development of nanocrystalline Mn–Zn ferrites for high frequency transformer applications. J. Magn. Magn. Mater. 321, 2433–2437 (2009)CrossRef
3.
go back to reference K. Pubby, S.B. Narang, Influence of grain size and porosity on X-band properties of Mn-Zr substituted Ni-Co ferrites. Mater. Lett. 244, 186–191 (2019)CrossRef K. Pubby, S.B. Narang, Influence of grain size and porosity on X-band properties of Mn-Zr substituted Ni-Co ferrites. Mater. Lett. 244, 186–191 (2019)CrossRef
4.
go back to reference K. Pubby, S.B. Narang, Ka band absorption properties of substituted nickel spinel ferrites: comparison of open-circuit approach and short-circuit approach. Ceram. Int. 45, 23673–23680 (2019)CrossRef K. Pubby, S.B. Narang, Ka band absorption properties of substituted nickel spinel ferrites: comparison of open-circuit approach and short-circuit approach. Ceram. Int. 45, 23673–23680 (2019)CrossRef
5.
go back to reference K. Praveena, K. Sadhana, S. Bharadwaj, S.R. Murthy, Development of nanocrystalline Mn–Zn ferrites for forward type DC–DC converter for switching mode power supplies. Mater. Res. Innov. 14, 56–61 (2010)CrossRef K. Praveena, K. Sadhana, S. Bharadwaj, S.R. Murthy, Development of nanocrystalline Mn–Zn ferrites for forward type DC–DC converter for switching mode power supplies. Mater. Res. Innov. 14, 56–61 (2010)CrossRef
6.
go back to reference K. Praveena, K. Sadhana, S. Bharadwaj, S.R. Murthy, Fabrication of dc–dc converter using nanocrystalline Mn–Zn ferrites. Mater. Res. Innov. 14, 102–106 (2010)CrossRef K. Praveena, K. Sadhana, S. Bharadwaj, S.R. Murthy, Fabrication of dc–dc converter using nanocrystalline Mn–Zn ferrites. Mater. Res. Innov. 14, 102–106 (2010)CrossRef
7.
go back to reference R. Huang, D. Zhang, K.-J. Tseng, Determination of dimension-independent magnetic and dielectric properties for Mn–Zn ferrite cores and its EMI applications. IEEE Trans. Electromagn. Compat. 50, 597–602 (2008)CrossRef R. Huang, D. Zhang, K.-J. Tseng, Determination of dimension-independent magnetic and dielectric properties for Mn–Zn ferrite cores and its EMI applications. IEEE Trans. Electromagn. Compat. 50, 597–602 (2008)CrossRef
8.
go back to reference Z. Beji, M. Sun, L. Smiri, F. Herbst, C. Mangeney, S. Ammar, Polyol synthesis of non-stoichiometric Mn–Zn ferrite nanocrystals: structural/microstructural characterization and catalytic application. RSC Adv. 5, 65010–65022 (2015)CrossRef Z. Beji, M. Sun, L. Smiri, F. Herbst, C. Mangeney, S. Ammar, Polyol synthesis of non-stoichiometric Mn–Zn ferrite nanocrystals: structural/microstructural characterization and catalytic application. RSC Adv. 5, 65010–65022 (2015)CrossRef
9.
go back to reference T. Xie, H. Li, C. Liu, J. Yang, T. Xiao, L. Xu, Magnetic photocatalyst BiVO4/Mn-Zn ferrite/reduced graphene oxide: synthesis strategy and its highly photocatalytic activity. Nanomaterials 8, 380 (2018)CrossRef T. Xie, H. Li, C. Liu, J. Yang, T. Xiao, L. Xu, Magnetic photocatalyst BiVO4/Mn-Zn ferrite/reduced graphene oxide: synthesis strategy and its highly photocatalytic activity. Nanomaterials 8, 380 (2018)CrossRef
10.
go back to reference C.Q. Shen, H.N. Ji, J. Wu, N. Zhu, J.Q. Niu, H.D. Li, X.B. Niu, Synthesis and characterization of MnZn ferrite nanoparticles for biomedical applications, in: 2018 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD) (IEEE, 2018) pp. 1–2 C.Q. Shen, H.N. Ji, J. Wu, N. Zhu, J.Q. Niu, H.D. Li, X.B. Niu, Synthesis and characterization of MnZn ferrite nanoparticles for biomedical applications, in: 2018 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD) (IEEE, 2018) pp. 1–2
11.
go back to reference A. Anwar, S. Zulfiqar, M.A. Yousuf, S.A. Ragab, M.A. Khan, I. Shakir, M.F. Warsi, Impact of rare earth Dy+3 cations on the various parameters of nanocrystalline nickel spinel ferrite. J. Mater. Res. Technol. 9, 5313–5325 (2020)CrossRef A. Anwar, S. Zulfiqar, M.A. Yousuf, S.A. Ragab, M.A. Khan, I. Shakir, M.F. Warsi, Impact of rare earth Dy+3 cations on the various parameters of nanocrystalline nickel spinel ferrite. J. Mater. Res. Technol. 9, 5313–5325 (2020)CrossRef
12.
go back to reference V.J. Angadi, K. Manjunatha, K. Praveena, V.K. Pattar, B.J. Fernandes, S.O. Manjunatha, J. Husain, S.V. Angadi, L.D. Horakeri, K.P. Ramesh, Magnetic properties of larger ionic radii samarium and gadalonium doped manganese zinc ferrite nanoparticles prepared by solution combustion method. J. Magn. Magn. Mater. 529, 167899 (2021)CrossRef V.J. Angadi, K. Manjunatha, K. Praveena, V.K. Pattar, B.J. Fernandes, S.O. Manjunatha, J. Husain, S.V. Angadi, L.D. Horakeri, K.P. Ramesh, Magnetic properties of larger ionic radii samarium and gadalonium doped manganese zinc ferrite nanoparticles prepared by solution combustion method. J. Magn. Magn. Mater. 529, 167899 (2021)CrossRef
13.
go back to reference V.J. Angadi, K. Manjunatha, N.H. Ayachit, Correlation of internal strain and size with electrical and magnetic properties of Ce3+-doped manganese ferrimagnetic nanoparticles. J. Mater. Sci.: Mater. Electron. 32, 9275–9293 (2021) V.J. Angadi, K. Manjunatha, N.H. Ayachit, Correlation of internal strain and size with electrical and magnetic properties of Ce3+-doped manganese ferrimagnetic nanoparticles. J. Mater. Sci.: Mater. Electron. 32, 9275–9293 (2021)
14.
go back to reference N. Rezlescu, E. Rezlescu, The influence of Fe substitutions by R ions in a Ni-Zn Ferrite. Solid State Commun. 88, 139 (1993)CrossRef N. Rezlescu, E. Rezlescu, The influence of Fe substitutions by R ions in a Ni-Zn Ferrite. Solid State Commun. 88, 139 (1993)CrossRef
15.
go back to reference A. D’souzaa, M.D. Kumara, M. Chatima, V. Naika, P.P. Naika, R.B. Tangsali, Effect of rare-earth doping on magnetic and electrical transport properties of nanoparticle Mn–Zn ferrite. Adv. Sci. Lett. 22, 773–779 (2016)CrossRef A. D’souzaa, M.D. Kumara, M. Chatima, V. Naika, P.P. Naika, R.B. Tangsali, Effect of rare-earth doping on magnetic and electrical transport properties of nanoparticle Mn–Zn ferrite. Adv. Sci. Lett. 22, 773–779 (2016)CrossRef
16.
go back to reference M.A. Almessiere, Y. Slimani, A.D. Korkmaz, S. Güner, A. Baykal, S.E. Shirsath, I. Ercan, P. Kögerler, Sonochemical synthesis of Dy3+ substituted Mn0.5Zn0.5Fe2−xO4 nanoparticles: structural, magnetic and optical characterizations. Ultrason. Sonochem. 61, 104836 (2020)CrossRef M.A. Almessiere, Y. Slimani, A.D. Korkmaz, S. Güner, A. Baykal, S.E. Shirsath, I. Ercan, P. Kögerler, Sonochemical synthesis of Dy3+ substituted Mn0.5Zn0.5Fe2−xO4 nanoparticles: structural, magnetic and optical characterizations. Ultrason. Sonochem. 61, 104836 (2020)CrossRef
17.
go back to reference K.V. Zipare, S.S. Bandgar, G.S. Shahane, Effect of Dy-substitution on structural and magnetic properties of Mnsingle bondZn ferrite nanoparticles. J. Rare Earths 36, 86–94 (2018)CrossRef K.V. Zipare, S.S. Bandgar, G.S. Shahane, Effect of Dy-substitution on structural and magnetic properties of Mnsingle bondZn ferrite nanoparticles. J. Rare Earths 36, 86–94 (2018)CrossRef
18.
go back to reference S.I. El-Dek, M.A. Ahmed, A.A. Eltawil, M.S. Afify, Laser induced adjustment of the conductivity of rare earth doped Mn-Zn nanoferrite. Mater. Sci.-Poland 35(3), 519–527 (2017)CrossRef S.I. El-Dek, M.A. Ahmed, A.A. Eltawil, M.S. Afify, Laser induced adjustment of the conductivity of rare earth doped Mn-Zn nanoferrite. Mater. Sci.-Poland 35(3), 519–527 (2017)CrossRef
19.
go back to reference E. Ateia, M.A. Ahmed, A.K. El-Aziz, Effect of rare earth radius and concentration on the structural and transport properties of doped Mn–Zn ferrit. Magn. Magn. Mater. 311, 545–554 (2007)CrossRef E. Ateia, M.A. Ahmed, A.K. El-Aziz, Effect of rare earth radius and concentration on the structural and transport properties of doped Mn–Zn ferrit. Magn. Magn. Mater. 311, 545–554 (2007)CrossRef
20.
go back to reference J. Shah, R.K. Kotnala, B. Singh, H. Kishan, Microstructure-dependent humidity sensitivity of porous MgFe2O4–CeO2 ceramic. Sens. Actuators B Chem. 128, 306–311 (2007)CrossRef J. Shah, R.K. Kotnala, B. Singh, H. Kishan, Microstructure-dependent humidity sensitivity of porous MgFe2O4–CeO2 ceramic. Sens. Actuators B Chem. 128, 306–311 (2007)CrossRef
21.
go back to reference D.I. Khomskii, Multiferroics: different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1–8 (2006)CrossRef D.I. Khomskii, Multiferroics: different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1–8 (2006)CrossRef
22.
go back to reference L. Yin, W. Mi, Progress in BiFeO3-based heterostructures: materials, properties and applications. Nanoscale 12, 477 (2020)CrossRef L. Yin, W. Mi, Progress in BiFeO3-based heterostructures: materials, properties and applications. Nanoscale 12, 477 (2020)CrossRef
23.
go back to reference X. Hou, X. Wang, W. Mi, Progress in Fe3O4-based multiferroic heterostructures. J. Alloys Compd. 765, 1127–1138 (2018)CrossRef X. Hou, X. Wang, W. Mi, Progress in Fe3O4-based multiferroic heterostructures. J. Alloys Compd. 765, 1127–1138 (2018)CrossRef
24.
go back to reference M. Back, E. Trave, R. Marin, N. Mazzucco, D. Cristofori, P. Riello, Energy transfer in Bi- and Er-codoped Y2O3 nanocrystals: an effective system for rare earth fluorescence enhancement. J. Phys. Chem. A 118, 30071–30078 (2014) M. Back, E. Trave, R. Marin, N. Mazzucco, D. Cristofori, P. Riello, Energy transfer in Bi- and Er-codoped Y2O3 nanocrystals: an effective system for rare earth fluorescence enhancement. J. Phys. Chem. A 118, 30071–30078 (2014)
25.
go back to reference M. Pal, P. Brahrma, D. Chakravorty, Magnetic and electrical properties of nickel-zinc ferrites doped with bismuth oxide. J. Magn. Magn. Mater. 152, 370–374 (1996)CrossRef M. Pal, P. Brahrma, D. Chakravorty, Magnetic and electrical properties of nickel-zinc ferrites doped with bismuth oxide. J. Magn. Magn. Mater. 152, 370–374 (1996)CrossRef
26.
go back to reference M. Pal, P. Brahrma, D. Chakravorty, AC conductivity in bismuth oxide doped nickel-zinc ferrites. J. Phys. Soc. Jpn. 67, 2847–2851 (1998)CrossRef M. Pal, P. Brahrma, D. Chakravorty, AC conductivity in bismuth oxide doped nickel-zinc ferrites. J. Phys. Soc. Jpn. 67, 2847–2851 (1998)CrossRef
27.
go back to reference V.J. Angadi, K. Manjunatha, S.P. Kubrin, A.T. Kozakov, A.G. Kochur, A.V. Nikolskii, I.D. Petrov, S.I. Shevtsova, N.H. Ayachit, Crystal structure, valence state of ions and magnetic properties of HoFeO3 and HoFe0.8Sc0.2O3 nanoparticles from X-ray diffraction, X-ray photoelectron, and Mössbauer spectroscopy data. J. Alloys Compds. 842, 155805 (2020)CrossRef V.J. Angadi, K. Manjunatha, S.P. Kubrin, A.T. Kozakov, A.G. Kochur, A.V. Nikolskii, I.D. Petrov, S.I. Shevtsova, N.H. Ayachit, Crystal structure, valence state of ions and magnetic properties of HoFeO3 and HoFe0.8Sc0.2O3 nanoparticles from X-ray diffraction, X-ray photoelectron, and Mössbauer spectroscopy data. J. Alloys Compds. 842, 155805 (2020)CrossRef
28.
go back to reference I.C. Sathisha, K. Manjunatha, V.J. Angadi, R.K. Reddy, Structural, microstructural, electrical, and magnetic properties of CuFe2-(x+ y)EuxScyO4 (where x and y vary from 0 to 0.03) nanoparticles. J. Supercond. Nov. Magn. 33, 3963–3973 (2020)CrossRef I.C. Sathisha, K. Manjunatha, V.J. Angadi, R.K. Reddy, Structural, microstructural, electrical, and magnetic properties of CuFe2-(x+ y)EuxScyO4 (where x and y vary from 0 to 0.03) nanoparticles. J. Supercond. Nov. Magn. 33, 3963–3973 (2020)CrossRef
29.
go back to reference K. Manjunatha, V.J. Angadi, R. Rajaramakrishna, U.M. Pasha, Role of 5 mol% Mg-Ni on the structural and magnetic properties of cobalt chromates crystallites prepared by solution combustion technique. J. Supercond. Nov. Magn. 33, 2861–2866 (2020)CrossRef K. Manjunatha, V.J. Angadi, R. Rajaramakrishna, U.M. Pasha, Role of 5 mol% Mg-Ni on the structural and magnetic properties of cobalt chromates crystallites prepared by solution combustion technique. J. Supercond. Nov. Magn. 33, 2861–2866 (2020)CrossRef
30.
go back to reference F. Ding, J. Lin, T. Wu, H. Zhong, Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy and nuclear radiation shielding properties of [α-Fe3+O(OH)]-doped lithium borate glasses. Appl. Phys. A 126, 221 (2020)CrossRef F. Ding, J. Lin, T. Wu, H. Zhong, Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy and nuclear radiation shielding properties of [α-Fe3+O(OH)]-doped lithium borate glasses. Appl. Phys. A 126, 221 (2020)CrossRef
31.
go back to reference P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur, A review on MnZn ferrites: synthesis, characterization and applications. Ceram. Int. 46(10), 15740–15763 (2020)CrossRef P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur, A review on MnZn ferrites: synthesis, characterization and applications. Ceram. Int. 46(10), 15740–15763 (2020)CrossRef
32.
go back to reference K. Manjunatha, K.M. Srininivasamurthy, C.S. Naveen, Y.T. Ravikiran, E.I. Sitalo, S.P. Kubrin, S. Matteppanavar, N.S. Reddy, V.J. Angadi, Observation of enhanced humidity sensing performance and structure, dielectric, optical and DC conductivity studies of scandium doped cobalt chromate. J. Mater. Sci.: Mater. Electron. 30, 17202–17217 (2019) K. Manjunatha, K.M. Srininivasamurthy, C.S. Naveen, Y.T. Ravikiran, E.I. Sitalo, S.P. Kubrin, S. Matteppanavar, N.S. Reddy, V.J. Angadi, Observation of enhanced humidity sensing performance and structure, dielectric, optical and DC conductivity studies of scandium doped cobalt chromate. J. Mater. Sci.: Mater. Electron. 30, 17202–17217 (2019)
33.
go back to reference H.R. Lakshmiprasanna, K. Manjunatha, V.J. Angadi, U.M. Pasha, J. Husain, Effect of cerium on structural, microstructural, magnetic and humidity sensing properties of Mn–Bi ferrites. Nano-Struct. Nano-Objects 24, 100608 (2020)CrossRef H.R. Lakshmiprasanna, K. Manjunatha, V.J. Angadi, U.M. Pasha, J. Husain, Effect of cerium on structural, microstructural, magnetic and humidity sensing properties of Mn–Bi ferrites. Nano-Struct. Nano-Objects 24, 100608 (2020)CrossRef
34.
go back to reference A. Sunilkumar, S. Manjunatha, T. Machappa, B. Chethan, Y.T. Ravikiran, A tungsten disulphide–polypyrrole composite-based humidity sensor at room temperature. Bull. Mater. Sci. 42, 271 (2019)CrossRef A. Sunilkumar, S. Manjunatha, T. Machappa, B. Chethan, Y.T. Ravikiran, A tungsten disulphide–polypyrrole composite-based humidity sensor at room temperature. Bull. Mater. Sci. 42, 271 (2019)CrossRef
35.
go back to reference S. Pratibha, B. Chethan, Y.T. Ravikiran, N. Dhananjaya, V.J. Angadi, Enhanced humidity sensing performance of Samarium doped Lanthanum Aluminate at room temperature. Sens. Actuators A Phys. 304, 111903 (2020)CrossRef S. Pratibha, B. Chethan, Y.T. Ravikiran, N. Dhananjaya, V.J. Angadi, Enhanced humidity sensing performance of Samarium doped Lanthanum Aluminate at room temperature. Sens. Actuators A Phys. 304, 111903 (2020)CrossRef
36.
go back to reference A.T. Ramaprasad, V. Rao, Chitin-polyaniline blend as humidity sensor. Sens. Actuators B Chem. 148, 117–125 (2010)CrossRef A.T. Ramaprasad, V. Rao, Chitin-polyaniline blend as humidity sensor. Sens. Actuators B Chem. 148, 117–125 (2010)CrossRef
37.
go back to reference I.C. Athisha, K. Manjunatha, A. Bajorek, B.R. Babu, B. Chethan, T.R. Reddy, Y.T. Ravikiran, V.J. Angadi, Enhanced humidity sensing and magnetic properties of bismuth doped copper ferrites for humidity sensor applications. J. Alloys Compd. 848, 156577 (2020)CrossRef I.C. Athisha, K. Manjunatha, A. Bajorek, B.R. Babu, B. Chethan, T.R. Reddy, Y.T. Ravikiran, V.J. Angadi, Enhanced humidity sensing and magnetic properties of bismuth doped copper ferrites for humidity sensor applications. J. Alloys Compd. 848, 156577 (2020)CrossRef
38.
go back to reference J. Shah, M. Arora, L.P. Purohit, R.K. Kotnala, Significant increase in humidity sensing characteristics of praseodymium doped magnesium ferrite. Sens. Actuators A Phys. 167, 332–337 (2011)CrossRef J. Shah, M. Arora, L.P. Purohit, R.K. Kotnala, Significant increase in humidity sensing characteristics of praseodymium doped magnesium ferrite. Sens. Actuators A Phys. 167, 332–337 (2011)CrossRef
39.
go back to reference K. Manjunatha, V.J. Angadi, M.C. Oliveira, S.R. de Lazaro, E. Longo, R.A.P. Ribeiro, S.O. Manjunatha, N.H. Ayachit, Towards shape-oriented Bi-doped CoCr2O4 nanoparticles from theoretical and experimental perspective: structural, morphological, optical, electrical and magnetic properties. J. Mater. Chem. C 9, 6452–6469 (2021)CrossRef K. Manjunatha, V.J. Angadi, M.C. Oliveira, S.R. de Lazaro, E. Longo, R.A.P. Ribeiro, S.O. Manjunatha, N.H. Ayachit, Towards shape-oriented Bi-doped CoCr2O4 nanoparticles from theoretical and experimental perspective: structural, morphological, optical, electrical and magnetic properties. J. Mater. Chem. C 9, 6452–6469 (2021)CrossRef
40.
go back to reference K. Manjunatha, V.J. Angadi, R.A.P. Ribeiro, M.C. Oliveira, S.R. de Lázaro, M.R.D. Bomio, S. Matteppanavar, S. Rayaprol, P.D. Babu, U.M. Pasha, Structural, electronic and magnetic properties of Sc3+ doped CoCr2O4 nanoparticles. New J. Chem. 44, 14246–14255 (2020)CrossRef K. Manjunatha, V.J. Angadi, R.A.P. Ribeiro, M.C. Oliveira, S.R. de Lázaro, M.R.D. Bomio, S. Matteppanavar, S. Rayaprol, P.D. Babu, U.M. Pasha, Structural, electronic and magnetic properties of Sc3+ doped CoCr2O4 nanoparticles. New J. Chem. 44, 14246–14255 (2020)CrossRef
41.
go back to reference Y. Li, K. Fan, H. Ban, M. Yang, Detection of very low humidity using polyelectrolyte/graphene bilayer humidity sensors. Sens. Actuators B Chem. 222, 151–158 (2016)CrossRef Y. Li, K. Fan, H. Ban, M. Yang, Detection of very low humidity using polyelectrolyte/graphene bilayer humidity sensors. Sens. Actuators B Chem. 222, 151–158 (2016)CrossRef
42.
go back to reference K. Manjunatha, V.J. Angadi, K.M. Srinivasamurthy, S. Matteppanavar, V.K. Pattar, U.M. Pasha, Exploring the structural, dielectric and magnetic properties of 5 Mol% Bi3+-substituted CoCr2O4 nanoparticles. J. Supercond. Nov. Magn. 33, 1747–1757 (2020)CrossRef K. Manjunatha, V.J. Angadi, K.M. Srinivasamurthy, S. Matteppanavar, V.K. Pattar, U.M. Pasha, Exploring the structural, dielectric and magnetic properties of 5 Mol% Bi3+-substituted CoCr2O4 nanoparticles. J. Supercond. Nov. Magn. 33, 1747–1757 (2020)CrossRef
43.
go back to reference A. Sunilkumar, S. Manjunatha, B. Chethan, Y.T. Ravikiran, T. Machappa, M. Masuelli, Polypyrrole-Tantalum disulfide composite: an efficient material for fabrication of room temperature operable humidity sensor. Sens. Actuators A Phys. 298, 111593 (2019)CrossRef A. Sunilkumar, S. Manjunatha, B. Chethan, Y.T. Ravikiran, T. Machappa, M. Masuelli, Polypyrrole-Tantalum disulfide composite: an efficient material for fabrication of room temperature operable humidity sensor. Sens. Actuators A Phys. 298, 111593 (2019)CrossRef
44.
go back to reference D. Zhang, D. Wang, P. Li, X. Zhou, X. Zong, G. Dong, Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film. Sens. Actuators B Chem. 255, 1869–1877 (2018)CrossRef D. Zhang, D. Wang, P. Li, X. Zhou, X. Zong, G. Dong, Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film. Sens. Actuators B Chem. 255, 1869–1877 (2018)CrossRef
45.
go back to reference D. Ravinder, K.V. Kumar, Dielectric behaviour of erbium substituted Mn-Zn ferrites. Bull. Mater. Sci. 24, 505–509 (2001)CrossRef D. Ravinder, K.V. Kumar, Dielectric behaviour of erbium substituted Mn-Zn ferrites. Bull. Mater. Sci. 24, 505–509 (2001)CrossRef
Metadata
Title
Role of dysprosium in enhancing the humidity sensing performance in manganese zinc ferrites for sensor applications
Authors
A. El-Denglawey
V. Jagadeesha Angadi
K. Manjunatha
B. Chethan
Sandeep B. Somvanshi
Publication date
25-08-2021
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 18/2021
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-06842-1

Other articles of this Issue 18/2021

Journal of Materials Science: Materials in Electronics 18/2021 Go to the issue