Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Applicable Algebra in Engineering, Communication and Computing 1/2022

27-04-2020 | Original Paper

Self-dual cyclic codes over \({\mathbb {Z}}_4\) of length 4n

Authors: Yuan Cao, Yonglin Cao, Fang-Wei Fu, Guidong Wang

Published in: Applicable Algebra in Engineering, Communication and Computing | Issue 1/2022

Login to get access
share
SHARE

Abstract

For any odd positive integer n, we express cyclic codes over \({\mathbb {Z}}_4\) of length 4n in a new way. Based on the expression of each cyclic code \({\mathcal {C}}\), we provide an efficient encoder and determine the type of \({\mathcal {C}}\). In particular, we give an explicit representation and enumeration for all distinct self-dual cyclic codes over \({\mathbb {Z}}_4\) of length 4n and correct a mistake in the paper “Concatenated structure of cyclic codes over \({\mathbb {Z}}_4\) of length 4n” (Cao et al. in Appl Algebra Eng Commun Comput 10:279–302, 2016). In addition, we obtain 50 new self-dual cyclic codes over \({\mathbb {Z}}_4\) of length 28.
Literature
1.
go back to reference Abualrub, T., Oehmke, R.: On the generators of \({\mathbb{Z}}_4\) cyclic codes of length \(2^e\). IEEE Trans. Inform. Theory 49, 2126–2133 (2003) MathSciNetCrossRef Abualrub, T., Oehmke, R.: On the generators of \({\mathbb{Z}}_4\) cyclic codes of length \(2^e\). IEEE Trans. Inform. Theory 49, 2126–2133 (2003) MathSciNetCrossRef
2.
go back to reference Blackford, T.: Cyclic codes over \({\mathbb{Z}}_4\) of oddly even length. Discrete Appl. Math. 128, 27–46 (2003) MathSciNetCrossRef Blackford, T.: Cyclic codes over \({\mathbb{Z}}_4\) of oddly even length. Discrete Appl. Math. 128, 27–46 (2003) MathSciNetCrossRef
3.
4.
go back to reference Calderbank, A.R., Sloane, N.J.A.: Double circulant codes over \({\mathbb{Z}}_4\) and even unimodular lattices. J. Algebraic Combin. 6, 119–131 (1997) MathSciNetCrossRef Calderbank, A.R., Sloane, N.J.A.: Double circulant codes over \({\mathbb{Z}}_4\) and even unimodular lattices. J. Algebraic Combin. 6, 119–131 (1997) MathSciNetCrossRef
5.
go back to reference Cao, Y., Cao, Y., Li, Q.: Concatenated structure of cyclic codes over \({\mathbb{Z}}_4\) of length \(4n\). Appl. Algebra Eng. Commun. Comput. 10, 279–302 (2016) CrossRef Cao, Y., Cao, Y., Li, Q.: Concatenated structure of cyclic codes over \({\mathbb{Z}}_4\) of length \(4n\). Appl. Algebra Eng. Commun. Comput. 10, 279–302 (2016) CrossRef
6.
go back to reference Cao, Y., Cao, Y., Dougherty, S.T., Ling, S.: Construction and enumeration for self-dual cyclic codes over \({\mathbb{Z}}_4\) of oddly even length. Des. Codes Cryptogr. 87, 2419–2446 (2019) MathSciNetCrossRef Cao, Y., Cao, Y., Dougherty, S.T., Ling, S.: Construction and enumeration for self-dual cyclic codes over \({\mathbb{Z}}_4\) of oddly even length. Des. Codes Cryptogr. 87, 2419–2446 (2019) MathSciNetCrossRef
7.
9.
go back to reference Cao, Y., Cao, Y.: Negacyclic codes over the local ring \({\mathbb{Z}}_4[v]/\langle v^2+2v\rangle \) of oddly even length and their Gray images. Finite Fields Appl. 52, 67–93 (2018) MathSciNetCrossRef Cao, Y., Cao, Y.: Negacyclic codes over the local ring \({\mathbb{Z}}_4[v]/\langle v^2+2v\rangle \) of oddly even length and their Gray images. Finite Fields Appl. 52, 67–93 (2018) MathSciNetCrossRef
10.
go back to reference Cao, Y., Cao, Y.: Complete classification for simple root cyclic codes over the local ring \({\mathbb{Z}}_4[v]/\langle v^2+2v\rangle \). Cryptogr. Commun. 12, 301–319 (2020) MathSciNetCrossRef Cao, Y., Cao, Y.: Complete classification for simple root cyclic codes over the local ring \({\mathbb{Z}}_4[v]/\langle v^2+2v\rangle \). Cryptogr. Commun. 12, 301–319 (2020) MathSciNetCrossRef
11.
go back to reference Dougherty, S.T., Ling, S.: Cyclic codes over \({\mathbb{Z}}_4\) of even length. Des. Codes Cryptogr. 39, 127–153 (2006) MathSciNetCrossRef Dougherty, S.T., Ling, S.: Cyclic codes over \({\mathbb{Z}}_4\) of even length. Des. Codes Cryptogr. 39, 127–153 (2006) MathSciNetCrossRef
12.
go back to reference Gaborit, P., Natividad, A.M., Solé, P.: Eisenstein lattices, Galois rings and quaternary codes. Int. J. Number Theory 2, 289–303 (2006) MathSciNetCrossRef Gaborit, P., Natividad, A.M., Solé, P.: Eisenstein lattices, Galois rings and quaternary codes. Int. J. Number Theory 2, 289–303 (2006) MathSciNetCrossRef
13.
go back to reference Hammons Jr., A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The \({\mathbb{Z}}_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994) MathSciNetCrossRef Hammons Jr., A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The \({\mathbb{Z}}_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994) MathSciNetCrossRef
14.
15.
go back to reference Harada, M., Kitazume, M., Munemasa, A., Venkov, B.: On some self-dual codes and unimodular lattices in dimension 48. Eur. J. Combin. 26, 543–557 (2005) MathSciNetCrossRef Harada, M., Kitazume, M., Munemasa, A., Venkov, B.: On some self-dual codes and unimodular lattices in dimension 48. Eur. J. Combin. 26, 543–557 (2005) MathSciNetCrossRef
16.
17.
go back to reference Harada M., Solé P., Gaborit P.: Self-dual codes over \({\mathbb{Z}}_4\) and unimodular lattices: a survey. In: Algebras and Combinatorics, Hong Kong, 1997, pp. 255–275. Springer, Singapore (1999) Harada M., Solé P., Gaborit P.: Self-dual codes over \({\mathbb{Z}}_4\) and unimodular lattices: a survey. In: Algebras and Combinatorics, Hong Kong, 1997, pp. 255–275. Springer, Singapore (1999)
18.
go back to reference Kiah, H.M., Leung, K.H., Ling, S.: A note on cyclic codes over \({{\rm GR}}(p^2, m)\) of length \(p^k\). Des. Codes Cryptogr. 63, 105–112 (2012) MathSciNetCrossRef Kiah, H.M., Leung, K.H., Ling, S.: A note on cyclic codes over \({{\rm GR}}(p^2, m)\) of length \(p^k\). Des. Codes Cryptogr. 63, 105–112 (2012) MathSciNetCrossRef
19.
go back to reference Jitman, S., Ling, S., Sangwisut, E.: On self-dual cyclic codes of length \(p^a\) over \({{\rm GR}}(p^2, s)\). Adv. Math. Commun. 10, 255–273 (2016) MathSciNetCrossRef Jitman, S., Ling, S., Sangwisut, E.: On self-dual cyclic codes of length \(p^a\) over \({{\rm GR}}(p^2, s)\). Adv. Math. Commun. 10, 255–273 (2016) MathSciNetCrossRef
20.
go back to reference Pless, V.S., Qian, Z.: Cyclic codes and quadratic residue codes over \({\mathbb{Z}}_4\). IEEE Trans. Inform. Theory 42, 1594–1600 (1996) MathSciNetCrossRef Pless, V.S., Qian, Z.: Cyclic codes and quadratic residue codes over \({\mathbb{Z}}_4\). IEEE Trans. Inform. Theory 42, 1594–1600 (1996) MathSciNetCrossRef
21.
go back to reference Pless, V.S., Solé, P., Qian, Z.: Cyclic self-dual \({\mathbb{Z}}_4\)-codes. Finite Fields Appl. 3, 48–69 (1997) MathSciNetCrossRef Pless, V.S., Solé, P., Qian, Z.: Cyclic self-dual \({\mathbb{Z}}_4\)-codes. Finite Fields Appl. 3, 48–69 (1997) MathSciNetCrossRef
22.
go back to reference Shi, M., Qian, L., Sok, L., Aydin, N., Solé, P.: On constacyclic codes over \({\mathbb{Z}}_4[u]/\langle u^2-1\rangle \) and their Gray images. Finite Fields Appl. 45, 86–95 (2017) MathSciNetCrossRef Shi, M., Qian, L., Sok, L., Aydin, N., Solé, P.: On constacyclic codes over \({\mathbb{Z}}_4[u]/\langle u^2-1\rangle \) and their Gray images. Finite Fields Appl. 45, 86–95 (2017) MathSciNetCrossRef
23.
go back to reference Wan, Z.-X.: Quaternary Codes. World Scientific Pub Co Inc., Singapore (1997) CrossRef Wan, Z.-X.: Quaternary Codes. World Scientific Pub Co Inc., Singapore (1997) CrossRef
24.
go back to reference Wan, Z.-X.: Lectures on Finite Fields and Galois Rings. World Scientific Pub Co Inc., Singapore (2003) CrossRef Wan, Z.-X.: Lectures on Finite Fields and Galois Rings. World Scientific Pub Co Inc., Singapore (2003) CrossRef
Metadata
Title
Self-dual cyclic codes over of length 4n
Authors
Yuan Cao
Yonglin Cao
Fang-Wei Fu
Guidong Wang
Publication date
27-04-2020
Publisher
Springer Berlin Heidelberg
Published in
Applicable Algebra in Engineering, Communication and Computing / Issue 1/2022
Print ISSN: 0938-1279
Electronic ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-020-00424-0

Other articles of this Issue 1/2022

Applicable Algebra in Engineering, Communication and Computing 1/2022 Go to the issue

Acknowledgment

Acknowledgment

Premium Partner