Skip to main content
Top
Published in: Rare Metals 9/2021

27-08-2020 | Original Article

Self-propagating reaction mechanism of Mg–TiO2 system in preparation process of titanium powder by multi-stage reduction

Authors: Shi-Gang Fan, Zhi-He Dou, Ting-An Zhang, Ji-Sen Yan

Published in: Rare Metals | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The novel method for the preparation of titanium powder by multi-stage reduction was proposed. The primary reduction adopted self-propagating high-temperature synthesis (SHS) mode. This paper focuses on the primary reduction process of Mg–TiO2 system under the condition of off-balance reaction. The effects of different material ratios, material arrangement methods and reaction initiation modes on the SHS reaction process of Mg–TiO2 system and its reaction mechanism were systematically studied. SHS mode was used to Mg–TiO2 system, and non-stoichiometric low-valent titanium oxide intermediate including α-Ti (Ti2O type) and TiO was directly obtained (with oxygen content of 13.93 wt%). SHS reaction initiated by local ignition is more sufficient than by overall heating method. Compared with the loose setting materials, the compacts can increase the effective contact interface of the reactants, and SHS reaction proceeds more sufficiently, which is favorable for obtaining lower oxygen content product. The adiabatic temperatures of the Mg–TiO2 system at different initial conditions were calculated according to the improved calculation method. When the initial temperature is 298 K, the adiabatic temperature of Mg–TiO2 system is between 1363 and 2067 K at different material ratios. Therefore, unreacted or partially excess Mg at the reaction front will diffuse into the unreacted region in gas or liquid form, thereby preheating the material and initiating further SHS reaction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Kroll WJ. The production of ductile titanium. J Electrochem Soc. 1940;78(1):34. Kroll WJ. The production of ductile titanium. J Electrochem Soc. 1940;78(1):34.
[2]
go back to reference Chen GZ, Fray DJ, Farthing TW. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature. 2000;407(6802):361.CrossRef Chen GZ, Fray DJ, Farthing TW. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature. 2000;407(6802):361.CrossRef
[3]
go back to reference Ono K, Suzuki RO. A new concept for producing Ti sponge: calciothermie reduction. JOM. 2002;54(2):59.CrossRef Ono K, Suzuki RO. A new concept for producing Ti sponge: calciothermie reduction. JOM. 2002;54(2):59.CrossRef
[4]
go back to reference Park I, Abiko T, Okabe TH. Production of titanium powder directly from TiO2 in CaCl2 through an electronically mediated reaction (EMR). J Phys Chem Solids. 2005;66(2–4):410.CrossRef Park I, Abiko T, Okabe TH. Production of titanium powder directly from TiO2 in CaCl2 through an electronically mediated reaction (EMR). J Phys Chem Solids. 2005;66(2–4):410.CrossRef
[5]
go back to reference Zhao ZG, Lu XG, Ding WZ. A new technology using SOM to produce titanium sponge. Shanghai Met. 2005;27(2):40. Zhao ZG, Lu XG, Ding WZ. A new technology using SOM to produce titanium sponge. Shanghai Met. 2005;27(2):40.
[6]
go back to reference Pal Uday B, Powell Adam C. The use of solid-oxide-membrane technology for electrometallurgy. JOM. 2007;59(5):44.CrossRef Pal Uday B, Powell Adam C. The use of solid-oxide-membrane technology for electrometallurgy. JOM. 2007;59(5):44.CrossRef
[7]
go back to reference Chen GZ, Fray DJ, Farthing TW. Cathodic deoxygenation of the alpha-case on titanium and alloys in molten calcium chloride. Metall Mater Trans B. 2001;32(6):1041.CrossRef Chen GZ, Fray DJ, Farthing TW. Cathodic deoxygenation of the alpha-case on titanium and alloys in molten calcium chloride. Metall Mater Trans B. 2001;32(6):1041.CrossRef
[8]
go back to reference Chen GZ, Fray DJ. Electro-Deoxidation of Metal Oxides. Light Metals. TMS: Warrendale; 2001. 1147. Chen GZ, Fray DJ. Electro-Deoxidation of Metal Oxides. Light Metals. TMS: Warrendale; 2001. 1147.
[9]
go back to reference Fray DJ. Emerging molten salt technologies for metals production. JOM. 2001;53(10):26.CrossRef Fray DJ. Emerging molten salt technologies for metals production. JOM. 2001;53(10):26.CrossRef
[10]
go back to reference Zhu HM, Jiao SQ, Gu XF. A production method of pure titanium by electrolysis from titanium oxide/titanium carbide soluble anode: China Patent: CN 1712571A, 2005. Zhu HM, Jiao SQ, Gu XF. A production method of pure titanium by electrolysis from titanium oxide/titanium carbide soluble anode: China Patent: CN 1712571A, 2005.
[11]
go back to reference Jiao SQ, Zhu HM. Electrolysis of Ti–C–O solid solution prepared by TiC and TiO2. J Alloys Compd. 2007;438(1–2):243.CrossRef Jiao SQ, Zhu HM. Electrolysis of Ti–C–O solid solution prepared by TiC and TiO2. J Alloys Compd. 2007;438(1–2):243.CrossRef
[12]
go back to reference Choi K, Choi H, Sohn I. Understanding the magnesiothermic reduction mechanism of TiO2 to produce Ti. Metall Mater Trans B. 2017;48(2):922.CrossRef Choi K, Choi H, Sohn I. Understanding the magnesiothermic reduction mechanism of TiO2 to produce Ti. Metall Mater Trans B. 2017;48(2):922.CrossRef
[13]
go back to reference Zhang Y, Fang ZZ, Xia Y. Hydrogen assisted magnesiothermic reduction of TiO2. Chem Eng J. 2017;308:299.CrossRef Zhang Y, Fang ZZ, Xia Y. Hydrogen assisted magnesiothermic reduction of TiO2. Chem Eng J. 2017;308:299.CrossRef
[14]
go back to reference Nersisyan HH, Lee JH, Won CW. Combustion of TiO2–Mg and TiO2–Mg–C systems in the presence of NaCl to synthesize nanocrystalline Ti and TiC powders. Mater Res Bull. 2003;38(7):1135.CrossRef Nersisyan HH, Lee JH, Won CW. Combustion of TiO2–Mg and TiO2–Mg–C systems in the presence of NaCl to synthesize nanocrystalline Ti and TiC powders. Mater Res Bull. 2003;38(7):1135.CrossRef
[15]
go back to reference Okabe TH, Oda T, Mitsuda Y. Titanium powder production by preform reduction process (PRP). J Alloys Compd. 2004;364(1–2):156.CrossRef Okabe TH, Oda T, Mitsuda Y. Titanium powder production by preform reduction process (PRP). J Alloys Compd. 2004;364(1–2):156.CrossRef
[16]
go back to reference Wan HL, Xu BQ, Dai YN. Preparation of titanium powders by calciothermic reduction of titanium dioxide. J Cent South Univ. 2012;19(9):2434.CrossRef Wan HL, Xu BQ, Dai YN. Preparation of titanium powders by calciothermic reduction of titanium dioxide. J Cent South Univ. 2012;19(9):2434.CrossRef
[17]
go back to reference Fan SG, Dou ZH, Zhang TA, Liu Y, Niu LP. Deoxidation mechanism in reduced titanium powder prepared by multistage deep reduction of TiO2. Metall Mater Trans B. 2019;50B:282.CrossRef Fan SG, Dou ZH, Zhang TA, Liu Y, Niu LP. Deoxidation mechanism in reduced titanium powder prepared by multistage deep reduction of TiO2. Metall Mater Trans B. 2019;50B:282.CrossRef
[18]
go back to reference Zhang TA, Dou ZH. Research growth mechanism of TiB2 powder prepared by SHS-metallurgy. J Inorg Mater. 2006;21(3):583. Zhang TA, Dou ZH. Research growth mechanism of TiB2 powder prepared by SHS-metallurgy. J Inorg Mater. 2006;21(3):583.
[19]
go back to reference Weimin W, Zhengyi F, Hao W. Chemistry reaction processes during combustion synthesis of B2O3–TiO2–Mg system. J Mater Process Technol. 2002;128(1–3):162.CrossRef Weimin W, Zhengyi F, Hao W. Chemistry reaction processes during combustion synthesis of B2O3–TiO2–Mg system. J Mater Process Technol. 2002;128(1–3):162.CrossRef
[20]
go back to reference Merzhanov AG. Combustion and Plasma Synthesis of High-Temperature Materials. New York: Material Neurk VCH Publisher; 1990. 1. Merzhanov AG. Combustion and Plasma Synthesis of High-Temperature Materials. New York: Material Neurk VCH Publisher; 1990. 1.
[21]
go back to reference Mossino P. Some aspects in self-propagating high-temperature synthesis. Ceram Int. 2004;30(3):311.CrossRef Mossino P. Some aspects in self-propagating high-temperature synthesis. Ceram Int. 2004;30(3):311.CrossRef
[22]
go back to reference Cheng C, Dou ZH, Zhang TA, Su JM, Zhang HJ, Liu Y, Niu LP. Oxygen content of high ferrotitanium prepared by thermite method with different melt separation temperatures. Rare Met. 2019;38(9):892.CrossRef Cheng C, Dou ZH, Zhang TA, Su JM, Zhang HJ, Liu Y, Niu LP. Oxygen content of high ferrotitanium prepared by thermite method with different melt separation temperatures. Rare Met. 2019;38(9):892.CrossRef
[23]
go back to reference Yeh CL, Shen YG. Formation of TiAl–Ti2AlC in situ composites by combustion synthesis. Intermetallics. 2009;17(3):169.CrossRef Yeh CL, Shen YG. Formation of TiAl–Ti2AlC in situ composites by combustion synthesis. Intermetallics. 2009;17(3):169.CrossRef
[24]
go back to reference Atong D, Clark DE. Ignition behavior and characteristics of microwave-combustion synthesized Al2O3–TiC powders. Ceram Int. 2004;30(7):1909.CrossRef Atong D, Clark DE. Ignition behavior and characteristics of microwave-combustion synthesized Al2O3–TiC powders. Ceram Int. 2004;30(7):1909.CrossRef
[25]
go back to reference Zhan L, Shen P, Yang Y. Self-propagating high-temperature synthesis of TiCxNy–TiB ceramics from a Ti–BC–BN system. Int J Refract Met Hard Mater. 2009;27(5):829.CrossRef Zhan L, Shen P, Yang Y. Self-propagating high-temperature synthesis of TiCxNy–TiB ceramics from a Ti–BC–BN system. Int J Refract Met Hard Mater. 2009;27(5):829.CrossRef
[26]
go back to reference Yeh CL, Kuo CW, Wu FS. Formation of Ti2AlC0.5N0.5, solid solutions by combustion synthesis of Al4C3-containing samples in nitrogen. J Alloys Compd. 2010;508(2):324.CrossRef Yeh CL, Kuo CW, Wu FS. Formation of Ti2AlC0.5N0.5, solid solutions by combustion synthesis of Al4C3-containing samples in nitrogen. J Alloys Compd. 2010;508(2):324.CrossRef
[27]
go back to reference Sharifitabar M, Khaki JV, Sabzevar MH. Effects of Fe additions on self-propagating high temperature synthesis characteristics of TiO2–Al–C system. Int J Refract Met Hard Mater. 2014;47:93.CrossRef Sharifitabar M, Khaki JV, Sabzevar MH. Effects of Fe additions on self-propagating high temperature synthesis characteristics of TiO2–Al–C system. Int J Refract Met Hard Mater. 2014;47:93.CrossRef
[28]
go back to reference Su X, Fu F, Yan Y. Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing. Nat Commun. 2014;5(1):4908.CrossRef Su X, Fu F, Yan Y. Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing. Nat Commun. 2014;5(1):4908.CrossRef
[29]
go back to reference Ying GB, He XD, Du SY, Zhu CC, Zheng YT, Wu YP, Wang C. Formation of Mn+1AXn phases in Ti–Cr–Al–C systems by self-propagating high-temperature synthesis. Rare Met. 2013;33(4):419.CrossRef Ying GB, He XD, Du SY, Zhu CC, Zheng YT, Wu YP, Wang C. Formation of Mn+1AXn phases in Ti–Cr–Al–C systems by self-propagating high-temperature synthesis. Rare Met. 2013;33(4):419.CrossRef
[30]
go back to reference Ying G, He X, Du SY, Hu CC, Wu YP, Wang C. Kinetics and numerical simulation of self-propagating high-temperature synthesis in Ti–Cr–Al–C systems. Rare Met. 2014;33(5):527.CrossRef Ying G, He X, Du SY, Hu CC, Wu YP, Wang C. Kinetics and numerical simulation of self-propagating high-temperature synthesis in Ti–Cr–Al–C systems. Rare Met. 2014;33(5):527.CrossRef
Metadata
Title
Self-propagating reaction mechanism of Mg–TiO2 system in preparation process of titanium powder by multi-stage reduction
Authors
Shi-Gang Fan
Zhi-He Dou
Ting-An Zhang
Ji-Sen Yan
Publication date
27-08-2020
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 9/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01554-7

Other articles of this Issue 9/2021

Rare Metals 9/2021 Go to the issue

Premium Partners