Skip to main content
Top
Published in: Optical and Quantum Electronics 11/2017

01-11-2017

Sensitivity maximization of leaky and weaky radiation micro/nano fiber sensors

Authors: Seif eldin A. Zaghloul, Bedir Yousif, Mahmoud Elzalabani, Nehal Fayez Areed

Published in: Optical and Quantum Electronics | Issue 11/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The maximization of sensitivities of both leaky and weakly radiation micro/nano fiber sensors based on the refractive index occurred by choose the suitable core material (nf) for each environmental material (ne) with a specific wavelength (λmax) at which the highest sensitivity is achieved. Where the refractive indices nf and ne are wavelength dependent. For the leaky radiation microfiber sensor, the value of nf less than and getting close to the value of ne. The core material can be available with environmental material at some wavelengths and not suitable with other wavelengths. Such as, the core (BK7 glass) unsuitable with styrene within band rejected wavelengths (λ = 0.783–1.033) from the transmittance range of styrene (λ = 0.4386–1.052 μm). The radiation angle sensitivity (Sθ) becomes very high with wavelength (λSθmax) at which nf ≈ ne. Such as, core (BK7 glass) and environmental (styrene) at λmax = 0.8 μm, the value of Sθ = 13759. In the weakly radiation, the value of nf greater than the value of ne. The sensitivity is evaluated by measurement the mode field radius (SW) or the fiber core power (SP). For core (BK7) and environmental (toluene) with core radius a = 1 μm, the sensitivity Sw = 2556 (μm/RIU) at λ = 1.75 μm and the sensitivity SP = 22.3 Pi (power unit/RIU) at λ = 1.05 μm (Pi is the fiber input power). The numerical evaluation of leaky radiation angle (θ) and sensitivity (Sθ) are excellent if they are compared with the published experimental measured results. The leaky and weakly sensors has potential applications due to their high sensitivity and simple constructions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Chen, G.Y., Ding, M., Newson, T.P., Brambilla, G.: A Review of Microfiber and Nanofiber Based Optical Sensors. Open Opt. J. 7, 32–57 (2013)CrossRef Chen, G.Y., Ding, M., Newson, T.P., Brambilla, G.: A Review of Microfiber and Nanofiber Based Optical Sensors. Open Opt. J. 7, 32–57 (2013)CrossRef
go back to reference Ghatak, A., Thyagarajan, K.: An Introduction to Fiber Optics. Cambridge University Press, Cambridge (1998)CrossRef Ghatak, A., Thyagarajan, K.: An Introduction to Fiber Optics. Cambridge University Press, Cambridge (1998)CrossRef
go back to reference Ghosh, M.K.: Optoelectronics Sensors and Instrumentation, pp. 311–317. Scientific International Pvt Ltd (2014) Ghosh, M.K.: Optoelectronics Sensors and Instrumentation, pp. 311–317. Scientific International Pvt Ltd (2014)
go back to reference Goure, J.P., Verrier, I.: Optical Fibre Devices. CRC Press, New York (2001)CrossRef Goure, J.P., Verrier, I.: Optical Fibre Devices. CRC Press, New York (2001)CrossRef
go back to reference Harun, S.W., Lim, K.S., Damanhuri, S.S.A., Ahmad, H.: Microfiber loop resonator based temperature sensor. J. Eur. Opt. Soc. Rapid Publ. 6(6), 11026.1–11026.4 (2011). doi:10.2971/jeos.2011.11026 Harun, S.W., Lim, K.S., Damanhuri, S.S.A., Ahmad, H.: Microfiber loop resonator based temperature sensor. J. Eur. Opt. Soc. Rapid Publ. 6(6), 11026.1–11026.4 (2011). doi:10.​2971/​jeos.​2011.​11026
go back to reference Hu, H., Li, J., Li, H., Lv, R.: Research on the glucose-sensing characteristics of gold microparticle-doped silica microfiber based on refractive index measurement. Appl. Phys. B 122, 281–287 (2016). doi:10.1007/s00340-016-6560-3 ADSCrossRef Hu, H., Li, J., Li, H., Lv, R.: Research on the glucose-sensing characteristics of gold microparticle-doped silica microfiber based on refractive index measurement. Appl. Phys. B 122, 281–287 (2016). doi:10.​1007/​s00340-016-6560-3 ADSCrossRef
go back to reference Ji, W.B., Tjin, S.C., Lin, B., Ng, C.L.: Highly Sensitive Refractive Index Sensor Based on Adiabatically Tapered Microfiber Long Period Gratings. Sensors (Basel). 13, 14055–14063 (2013). doi:10.3390/s131014055 CrossRef Ji, W.B., Tjin, S.C., Lin, B., Ng, C.L.: Highly Sensitive Refractive Index Sensor Based on Adiabatically Tapered Microfiber Long Period Gratings. Sensors (Basel). 13, 14055–14063 (2013). doi:10.​3390/​s131014055 CrossRef
go back to reference Kedenburg, S., Vieweg, M., Gissibl, T., Giessen, H.: Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Opt. Mater. Express. 2, 1588–1611 (2012). doi:10.1364/OME.2.001588 CrossRef Kedenburg, S., Vieweg, M., Gissibl, T., Giessen, H.: Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Opt. Mater. Express. 2, 1588–1611 (2012). doi:10.​1364/​OME.​2.​001588 CrossRef
go back to reference Kozma, I.Z., Krok, P., Riedle, E.: Direct measurement of the group-velocity mismatch and derivation of the refractive-index dispersion for a variety of solvents in the ultraviolet. J. Opt. Soc. Am. B. 22, 1479–1485 (2005). doi:10.1364/JOSAB.22.001479 ADSCrossRef Kozma, I.Z., Krok, P., Riedle, E.: Direct measurement of the group-velocity mismatch and derivation of the refractive-index dispersion for a variety of solvents in the ultraviolet. J. Opt. Soc. Am. B. 22, 1479–1485 (2005). doi:10.​1364/​JOSAB.​22.​001479 ADSCrossRef
go back to reference Luo, H., Sun, Q., Li, X., Yan, Z., Li, Y., Liu, D., Zhang, L.: Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach-Zehnder interferometer. Opt. Lett. 40, 5042–5045 (2015). doi:10.1364/OL.40.005042 ADSCrossRef Luo, H., Sun, Q., Li, X., Yan, Z., Li, Y., Liu, D., Zhang, L.: Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach-Zehnder interferometer. Opt. Lett. 40, 5042–5045 (2015). doi:10.​1364/​OL.​40.​005042 ADSCrossRef
go back to reference Luo, H., Sun, Q., Xu, Z., Liu, D., Zhang, L.: Simultaneous measurement of refractive index and temperature using multimode microfiber-based dual Mach-Zehnder interferometer. Opt. Lett. 39, 4049–4052 (2014). doi:10.1364/OL.39.004049 ADSCrossRef Luo, H., Sun, Q., Xu, Z., Liu, D., Zhang, L.: Simultaneous measurement of refractive index and temperature using multimode microfiber-based dual Mach-Zehnder interferometer. Opt. Lett. 39, 4049–4052 (2014). doi:10.​1364/​OL.​39.​004049 ADSCrossRef
go back to reference Mahlke, G., Gössing, P.: Fiber Optic Cables: Fundamentals, Cable Engineering, Systems Planning. Siemens Aktiengesellschaft, Berlin (1993) Mahlke, G., Gössing, P.: Fiber Optic Cables: Fundamentals, Cable Engineering, Systems Planning. Siemens Aktiengesellschaft, Berlin (1993)
go back to reference Moutzouris, K., Papamichael, M., Betsis, S.C., Stavrakas, I., Hloupis, G., Triantis, D.: Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared. Appl. Phys. B Lasers Opt. 116, 617–622 (2014). doi:10.1007/s00340-013-5744-3 ADSCrossRef Moutzouris, K., Papamichael, M., Betsis, S.C., Stavrakas, I., Hloupis, G., Triantis, D.: Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared. Appl. Phys. B Lasers Opt. 116, 617–622 (2014). doi:10.​1007/​s00340-013-5744-3 ADSCrossRef
go back to reference Polyanskiy, M.N.: Refractive index database, 3–23 (2017) Polyanskiy, M.N.: Refractive index database, 3–23 (2017)
go back to reference Raman, K., Srinivasa Murthy, T.R., Hegde, G.M.: Fabrication of refractive index tunable Polydimethylsiloxane photonic crystal for biosensor application. Phys. Procedia 19, 146–151 (2011)ADSCrossRef Raman, K., Srinivasa Murthy, T.R., Hegde, G.M.: Fabrication of refractive index tunable Polydimethylsiloxane photonic crystal for biosensor application. Phys. Procedia 19, 146–151 (2011)ADSCrossRef
go back to reference Reyes, M., Monzón-Hernández, D., Martínez-Ríos, A., Silvestre, E., Díez, A., Cruz, J.L., Andres, M.V.: A refractive index sensor based on the resonant coupling to cladding modes in a fiber loop. Sensors 13, 11260–11270 (2013). doi:10.3390/s130911260 CrossRef Reyes, M., Monzón-Hernández, D., Martínez-Ríos, A., Silvestre, E., Díez, A., Cruz, J.L., Andres, M.V.: A refractive index sensor based on the resonant coupling to cladding modes in a fiber loop. Sensors 13, 11260–11270 (2013). doi:10.​3390/​s130911260 CrossRef
go back to reference Shi, L., Xu, Y., Tan, W., Chen, X.: Simulation of Optical Microfiber Loop Resonators for Ambient Refractive Index Sensing. Sensors. 7, 689–696 (2007). doi:10.3390/s7050689 CrossRef Shi, L., Xu, Y., Tan, W., Chen, X.: Simulation of Optical Microfiber Loop Resonators for Ambient Refractive Index Sensing. Sensors. 7, 689–696 (2007). doi:10.​3390/​s7050689 CrossRef
go back to reference Sultanovaa, N., Kasarovaa, S., Nikolov, I.: Dispersion Properties of Optical Polymers. Acta Phys. Pol. 116, 585–587 (2009)ADSCrossRef Sultanovaa, N., Kasarovaa, S., Nikolov, I.: Dispersion Properties of Optical Polymers. Acta Phys. Pol. 116, 585–587 (2009)ADSCrossRef
go back to reference Weber, M.J.: Handbook of optical materials. CRC Press, New York (2003) Weber, M.J.: Handbook of optical materials. CRC Press, New York (2003)
go back to reference Yu, H., Xiong, L., Chen, Z., Li, Q., Yi, X., Ding, Y., Wang, F., Lv, H., Ding, Y.: Solution concentration and refractive index sensing based on polymer microfiber knot resonator. Appl. Phys. Express. 7, 022051 (2014). doi:10.7567/APEX.7.022501 Yu, H., Xiong, L., Chen, Z., Li, Q., Yi, X., Ding, Y., Wang, F., Lv, H., Ding, Y.: Solution concentration and refractive index sensing based on polymer microfiber knot resonator. Appl. Phys. Express. 7, 022051 (2014). doi:10.​7567/​APEX.​7.​022501
go back to reference Zhang, J., Shi, L., Zhu, S., Xu, X., Zhang, X.: Modeling of a single-notch microfiber coupler for high-sensitivity and low detection-limit refractive index sensing. Sensors 16, 11–16 (2016). doi:10.3390/s16050672 Zhang, J., Shi, L., Zhu, S., Xu, X., Zhang, X.: Modeling of a single-notch microfiber coupler for high-sensitivity and low detection-limit refractive index sensing. Sensors 16, 11–16 (2016). doi:10.​3390/​s16050672
Metadata
Title
Sensitivity maximization of leaky and weaky radiation micro/nano fiber sensors
Authors
Seif eldin A. Zaghloul
Bedir Yousif
Mahmoud Elzalabani
Nehal Fayez Areed
Publication date
01-11-2017
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 11/2017
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-017-1180-7

Other articles of this Issue 11/2017

Optical and Quantum Electronics 11/2017 Go to the issue