Skip to main content
Top
Published in: Rock Mechanics and Rock Engineering 2/2017

04-11-2016 | Original Paper

Solubility Measurements and Predictions of Gypsum, Anhydrite, and Calcite Over Wide Ranges of Temperature, Pressure, and Ionic Strength with Mixed Electrolytes

Authors: Zhaoyi Dai, Amy T. Kan, Wei Shi, Nan Zhang, Fangfu Zhang, Fei Yan, Narayan Bhandari, Zhang Zhang, Ya Liu, Gedeng Ruan, Mason B. Tomson

Published in: Rock Mechanics and Rock Engineering | Issue 2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Today’s oil and gas production from deep reservoirs permits exploitation of more oil and gas reserves but increases risks due to conditions of high temperature and high pressure. Predicting mineral solubility under such extreme conditions is critical for mitigating scaling risks, a common and costly problem. Solubility predictions use solubility products and activity coefficients, commonly from Pitzer theory virial coefficients. However, inaccurate activity coefficients and solubility data have limited accurate mineral solubility predictions and applications of the Pitzer theory. This study measured gypsum solubility under its stable phase conditions up to 1400 bar; it also confirmed the anhydrite solubility reported in the literature. Using a novel method, the virial coefficients for Ca2+ and \({\text{SO}}_{4}^{2 - }\) (i.e., \(\beta_{{{\text{CaSO}}_{4} }}^{(0)} ,\beta_{{{\text{CaSO}}_{4} }}^{(2)} ,C_{{{\text{CaSO}}_{4} }}^{\phi }\)) were calculated over wide ranges of temperature and pressure (0–250 °C and 1–1400 bar). The determination of this set of virial coefficients widely extends the applicable temperature and pressure ranges of the Pitzer theory in Ca2+ and SO 4 2− systems. These coefficients can be applied to improve the prediction of calcite solubility in the presence of high concentrations of Ca2+ and SO 4 2− ions. These new virial coefficients can also be used to predict the solubilities of gypsum and anhydrite accurately. Moreover, based on the derived \(\beta_{{{\text{CaSO}}_{4} }}^{(2)}\) values in this study, the association constants of \({\text{CaSO}}_{4}^{\left( 0 \right)}\) at 1 bar and 25 °C can be estimated by \(K_{\text{assoc}} = - 2\beta_{{{\text{CaSO}}_{4} }}^{(2)}\). These values match very well with those reported in the literature based on other methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Atkinson G, Mecik M (1997) The chemistry of scale prediction. J Petrol Sci Eng 17:113–121CrossRef Atkinson G, Mecik M (1997) The chemistry of scale prediction. J Petrol Sci Eng 17:113–121CrossRef
go back to reference Bell R, George J (1953) The incomplete dissociation of some thallous and calcium salts at different temperatures. Trans Faraday Soc 49:619–627CrossRef Bell R, George J (1953) The incomplete dissociation of some thallous and calcium salts at different temperatures. Trans Faraday Soc 49:619–627CrossRef
go back to reference Blount CW, Dickson FW (1969) The solubility of anhydrite (CaSO4) in NaCl–H2O from 100 to 450 °C and 1–1000 bar. Geochim Cosmochim Acta 33:227–245CrossRef Blount CW, Dickson FW (1969) The solubility of anhydrite (CaSO4) in NaCl–H2O from 100 to 450 °C and 1–1000 bar. Geochim Cosmochim Acta 33:227–245CrossRef
go back to reference Blount CW, Dickson FW (1973) Gypsum-anhydrite equilibria in systems CaSO4–H2O and CaCO4–NaCl–H2O. Am Mineral 58:323–331 Blount CW, Dickson FW (1973) Gypsum-anhydrite equilibria in systems CaSO4–H2O and CaCO4–NaCl–H2O. Am Mineral 58:323–331
go back to reference Bradley DJ, Pitzer KS (1979) Thermodynamics of electrolytes. 12. Dielectric properties of water and Debye–Hueckel parameters to 350 °C and 1 kbar. J Phys Chem 83:1599–1603CrossRef Bradley DJ, Pitzer KS (1979) Thermodynamics of electrolytes. 12. Dielectric properties of water and Debye–Hueckel parameters to 350 °C and 1 kbar. J Phys Chem 83:1599–1603CrossRef
go back to reference Chawathe A, Ozdogan U, Glaser KS, Jalali Y, Riding M (2009) A plan for success in deep water oilfield review 21 Chawathe A, Ozdogan U, Glaser KS, Jalali Y, Riding M (2009) A plan for success in deep water oilfield review 21
go back to reference Christov C, Moller N (2004) A chemical equilibrium model of solution behavior and solubility in the H–Na–K–Ca–OH–Cl–HSO4–SO4–H2O system to high concentration and temperature. Geochim Cosmochim Acta 68:3717–3739. doi:10.1016/j.gca.2004.03.006 CrossRef Christov C, Moller N (2004) A chemical equilibrium model of solution behavior and solubility in the H–Na–K–Ca–OH–Cl–HSO4–SO4–H2O system to high concentration and temperature. Geochim Cosmochim Acta 68:3717–3739. doi:10.​1016/​j.​gca.​2004.​03.​006 CrossRef
go back to reference Dai Z, Shi W, Kan AT, Zhang N, Tomson MB (2013) Thermodynamic model improvements for common minerals at high temperature, high pressure and high TDS with mixed salts. In: SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers Dai Z, Shi W, Kan AT, Zhang N, Tomson MB (2013) Thermodynamic model improvements for common minerals at high temperature, high pressure and high TDS with mixed salts. In: SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers
go back to reference Dickson FW, Blount CW, Tunell G (1963) Use of hydrothermal solution equipment to determine solubility of anhydrite in water from 100 to 275 °C and from 1 to 1000 Bar. Bar Pressure Am J Sci 261:61CrossRef Dickson FW, Blount CW, Tunell G (1963) Use of hydrothermal solution equipment to determine solubility of anhydrite in water from 100 to 275 °C and from 1 to 1000 Bar. Bar Pressure Am J Sci 261:61CrossRef
go back to reference Djamali E, Kan AT, Tomson MB (2012) A priori prediction of thermodynamic properties of electrolytes in mixed aqueous-organic solvents to extreme temperatures. J Phys Chem B 116:9033–9042CrossRef Djamali E, Kan AT, Tomson MB (2012) A priori prediction of thermodynamic properties of electrolytes in mixed aqueous-organic solvents to extreme temperatures. J Phys Chem B 116:9033–9042CrossRef
go back to reference Duan Z, Li D (2008) Coupled phase and aqueous species equilibrium of the H2O–CO2–NaCl–CaCO3 system from 0 to 250°°C, 1–1000 bar with NaCl concentrations up to saturation of halite. Geochim Cosmochim Acta 72:5128–5145CrossRef Duan Z, Li D (2008) Coupled phase and aqueous species equilibrium of the H2O–CO2–NaCl–CaCO3 system from 0 to 250°°C, 1–1000 bar with NaCl concentrations up to saturation of halite. Geochim Cosmochim Acta 72:5128–5145CrossRef
go back to reference Fan C et al (2011) Ultra-HTHP scale control for deepwater oil and gas production. In: SPE International Symposium on Oilfield Chemistry, 2011 Fan C et al (2011) Ultra-HTHP scale control for deepwater oil and gas production. In: SPE International Symposium on Oilfield Chemistry, 2011
go back to reference Fan CF, Kan AT, Zhang P, Lu HP, Work S, Yu J, Tomson MB (2012) Scale prediction and inhibition for oil and gas production at high temperature/high pressure. SPE J 17:379–392CrossRef Fan CF, Kan AT, Zhang P, Lu HP, Work S, Yu J, Tomson MB (2012) Scale prediction and inhibition for oil and gas production at high temperature/high pressure. SPE J 17:379–392CrossRef
go back to reference Haarberg T (1989) Mineral deposition during oil recovery : an equilibrium model. Institutt for uorganisk kjemi, Norges tekniske høgskole, Universitetet i Trondheim Haarberg T (1989) Mineral deposition during oil recovery : an equilibrium model. Institutt for uorganisk kjemi, Norges tekniske høgskole, Universitetet i Trondheim
go back to reference Haarberg T, Selm I, Granbakken D, Ostvold T, Read P, Schmidt T (1992) Scale formation in reservoir and production equipment during oil recovery: an equilibrium model. SPE Prod Engineering 7:75–84CrossRef Haarberg T, Selm I, Granbakken D, Ostvold T, Read P, Schmidt T (1992) Scale formation in reservoir and production equipment during oil recovery: an equilibrium model. SPE Prod Engineering 7:75–84CrossRef
go back to reference Hardie LA (1967) The gypsum-anhydrite equilibrium at one atmosphere pressure. Am Mineral 52:171–200 Hardie LA (1967) The gypsum-anhydrite equilibrium at one atmosphere pressure. Am Mineral 52:171–200
go back to reference Harvie CE, Moller N, Weare JH (1984) The prediction of mineral solubilities in natural-waters—the Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO2–H2O system to high ionic strengths at 25 °C. Geochim Cosmochim Ac 48:723–751. doi:10.1016/0016-7037(84)90098-X CrossRef Harvie CE, Moller N, Weare JH (1984) The prediction of mineral solubilities in natural-waters—the Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO2–H2O system to high ionic strengths at 25 °C. Geochim Cosmochim Ac 48:723–751. doi:10.​1016/​0016-7037(84)90098-X CrossRef
go back to reference He S (1992) The carbonic acid system and solubility of calcium carbonate and sulfate in aqueous solutions over a wide range of solution composition, temperature and pressure. Texas A & M University, College Station He S (1992) The carbonic acid system and solubility of calcium carbonate and sulfate in aqueous solutions over a wide range of solution composition, temperature and pressure. Texas A & M University, College Station
go back to reference He S, Morse JW (1993) Prediction of halite gypsum, and anhydrite solubility in natural brines under subsurface conditions. Comput Geosci 19:1–22CrossRef He S, Morse JW (1993) Prediction of halite gypsum, and anhydrite solubility in natural brines under subsurface conditions. Comput Geosci 19:1–22CrossRef
go back to reference Helgeson HC, Kirkham DH (1974) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: II Debye-Huckel parameters for activity coefficients and relative partial molal properties. Am J Sci 274:1199–1261CrossRef Helgeson HC, Kirkham DH (1974) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: II Debye-Huckel parameters for activity coefficients and relative partial molal properties. Am J Sci 274:1199–1261CrossRef
go back to reference Helgeson HC, Kirkham DH, Flowers GC (1981) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 °C and 5 kb. Am J Sci 281:1249–1516CrossRef Helgeson HC, Kirkham DH, Flowers GC (1981) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 °C and 5 kb. Am J Sci 281:1249–1516CrossRef
go back to reference Hill AE (1937) The transition temperature of gypsum to anhydrite. J Am Chem Soc 59:2242–2244CrossRef Hill AE (1937) The transition temperature of gypsum to anhydrite. J Am Chem Soc 59:2242–2244CrossRef
go back to reference Holmes HF, Busey RH, Simonson JM, Mesmer RE (1994) CaCl2(aq) at elevated temperatures enthalpies of dilution, isopiestic molalities, and thermodynamic properties. JChTh 26:271–298. doi:10.1016/0021-9614(94)90005-1 Holmes HF, Busey RH, Simonson JM, Mesmer RE (1994) CaCl2(aq) at elevated temperatures enthalpies of dilution, isopiestic molalities, and thermodynamic properties. JChTh 26:271–298. doi:10.​1016/​0021-9614(94)90005-1
go back to reference Hulett GA, Allen LE (1902) The solubility of gypsum. J Am Chem Soc 24:667–679CrossRef Hulett GA, Allen LE (1902) The solubility of gypsum. J Am Chem Soc 24:667–679CrossRef
go back to reference Kaasa B (1998) Prediction of pH, mineral precipitation and multiphase equilibria during oil recovery. Institutt for unorganisk kjemi, Norges teknisk-naturvitenskapelige universitet (NTNU) Kaasa B (1998) Prediction of pH, mineral precipitation and multiphase equilibria during oil recovery. Institutt for unorganisk kjemi, Norges teknisk-naturvitenskapelige universitet (NTNU)
go back to reference Kalyanaraman R, Yeatts LB, Marshall WL (1973) Solubility of calcium sulfate and association equilibria in CaSO4 + Na2SO4 + NaClO4 + H2O at 273–623 K. JChTh 5:899–909 Kalyanaraman R, Yeatts LB, Marshall WL (1973) Solubility of calcium sulfate and association equilibria in CaSO4 + Na2SO4 + NaClO4 + H2O at 273–623 K. JChTh 5:899–909
go back to reference Kan AT, Tomson MB (2012) Scale prediction for oil and gas production. SPE J 17:362–378CrossRef Kan AT, Tomson MB (2012) Scale prediction for oil and gas production. SPE J 17:362–378CrossRef
go back to reference Kharaka YK, Gunter WD, Aggarwal PK, Perkins EH, DeBraal JD (1989) SOLMINEQ. 88: A computer program for geochemical modeling of water-rock interactions. Department of the Interior, US Geological Survey Kharaka YK, Gunter WD, Aggarwal PK, Perkins EH, DeBraal JD (1989) SOLMINEQ. 88: A computer program for geochemical modeling of water-rock interactions. Department of the Interior, US Geological Survey
go back to reference Lu HP, Kan AT, Zhang P, Yu J, Fan CF, Work S, Tomson MB (2012) Phase stability and inhibition of calcium sulfate in the system NaCl/monoethylene glycol/H2O. Spe J 17:187–197CrossRef Lu HP, Kan AT, Zhang P, Yu J, Fan CF, Work S, Tomson MB (2012) Phase stability and inhibition of calcium sulfate in the system NaCl/monoethylene glycol/H2O. Spe J 17:187–197CrossRef
go back to reference Miller L, Newman P (2011) Deepwater service: The world deepwater market report 2011–2015 Miller L, Newman P (2011) Deepwater service: The world deepwater market report 2011–2015
go back to reference Moller N (1988) The prediction of mineral solubilities in natural-waters—a chemical-equilibrium model for the Na–Ca–Cl–SO4–H2O system, to high-temperature and concentration. Geochim Cosmochim Acta 52:821–837. doi:10.1016/0016-7037(88)90354-7 CrossRef Moller N (1988) The prediction of mineral solubilities in natural-waters—a chemical-equilibrium model for the Na–Ca–Cl–SO4–H2O system, to high-temperature and concentration. Geochim Cosmochim Acta 52:821–837. doi:10.​1016/​0016-7037(88)90354-7 CrossRef
go back to reference Pitzer KS (1995) Thermodynamics. McGraw-Hill Inc., New York Pitzer KS (1995) Thermodynamics. McGraw-Hill Inc., New York
go back to reference Pitzer KS, Mayorga G (1974) Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2–2 electrolytes. J Solution Chem 3:539–546CrossRef Pitzer KS, Mayorga G (1974) Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2–2 electrolytes. J Solution Chem 3:539–546CrossRef
go back to reference Pitzer KS, Peiper JC, Busey RH (1984) Thermodynamic properties of aqueous sodium-chloride solutions. J Phys Chem Ref Data 13:1–102CrossRef Pitzer KS, Peiper JC, Busey RH (1984) Thermodynamic properties of aqueous sodium-chloride solutions. J Phys Chem Ref Data 13:1–102CrossRef
go back to reference Posnjak E (1938) The system CaSO4–H2O. Am J Sci 247 Posnjak E (1938) The system CaSO4–H2O. Am J Sci 247
go back to reference Rolnick LS (1954) The stability of gypsum and anhydrite in the geologic environment. Massachusetts Institute of Technology Rolnick LS (1954) The stability of gypsum and anhydrite in the geologic environment. Massachusetts Institute of Technology
go back to reference Serafeimidis K, Anagnostou G (2015) The solubilities and thermodynamic equilibrium of anhydrite and gypsum. Rock Mech Rock Eng 48:15–31CrossRef Serafeimidis K, Anagnostou G (2015) The solubilities and thermodynamic equilibrium of anhydrite and gypsum. Rock Mech Rock Eng 48:15–31CrossRef
go back to reference Shi W, Kan AT, Fan CF, Tomson MB (2012) Solubility of Barite up to 250 °C and 1500 bar in up to 6 m NaCl Solution. Ind Eng Chem Res 51:3119–3128. doi:10.1021/Ie2020558 CrossRef Shi W, Kan AT, Fan CF, Tomson MB (2012) Solubility of Barite up to 250 °C and 1500 bar in up to 6 m NaCl Solution. Ind Eng Chem Res 51:3119–3128. doi:10.​1021/​Ie2020558 CrossRef
go back to reference Shi W, Kan AT, Zhang N, Tomson M (2013) Dissolution of calcite at Up to 250 °C and 1450 bar and the presence of mixed salts. Ind Eng Chem Res 52:2439–2448CrossRef Shi W, Kan AT, Zhang N, Tomson M (2013) Dissolution of calcite at Up to 250 °C and 1450 bar and the presence of mixed salts. Ind Eng Chem Res 52:2439–2448CrossRef
go back to reference Van’t Hoff J, Armstrong E, Hinrichsen W, Weigert F, Just G (1903) Gips und anhydrit. Z phys Chem 45:257–306 Van’t Hoff J, Armstrong E, Hinrichsen W, Weigert F, Just G (1903) Gips und anhydrit. Z phys Chem 45:257–306
go back to reference Voigt W (2011) Chemistry of salts in aqueous solutions: applications, experiments, and theory. Pure Appl Chem 83:1015–1030CrossRef Voigt W (2011) Chemistry of salts in aqueous solutions: applications, experiments, and theory. Pure Appl Chem 83:1015–1030CrossRef
go back to reference Zen E-a (1965) Solubility measurements in the system CaSO4–NaCl–H2O at 35, 50, and 70 °C and one atmosphere Pressure. J Petrol 6:124–164CrossRef Zen E-a (1965) Solubility measurements in the system CaSO4–NaCl–H2O at 35, 50, and 70 °C and one atmosphere Pressure. J Petrol 6:124–164CrossRef
Metadata
Title
Solubility Measurements and Predictions of Gypsum, Anhydrite, and Calcite Over Wide Ranges of Temperature, Pressure, and Ionic Strength with Mixed Electrolytes
Authors
Zhaoyi Dai
Amy T. Kan
Wei Shi
Nan Zhang
Fangfu Zhang
Fei Yan
Narayan Bhandari
Zhang Zhang
Ya Liu
Gedeng Ruan
Mason B. Tomson
Publication date
04-11-2016
Publisher
Springer Vienna
Published in
Rock Mechanics and Rock Engineering / Issue 2/2017
Print ISSN: 0723-2632
Electronic ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-016-1123-9

Other articles of this Issue 2/2017

Rock Mechanics and Rock Engineering 2/2017 Go to the issue