Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 24/2019

13-11-2019

Spray pyrolysis deposited CuSbS2 absorber layers for thin-film solar cells

Authors: Lei Wan, Xu Guo, Yingcui Fang, Xiaoli Mao, Huier Guo, Jinzhang Xu, Ru Zhou

Published in: Journal of Materials Science: Materials in Electronics | Issue 24/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

CuSbS2 thin films were fabricated by spray pyrolysis from metal chloride aqueous solutions, followed by a post-deposition sulfurization step. The structural, chemical, optical and electrical properties of CuSbS2 and the effect of various sulfurization temperatures on CuSbS2 thin film have been systematically studied. We used a two-step sulfurization method. Step 1 at lower temperature was to encourage complete saturation of the as-deposited film with sulfur vapor. And step 2 at higher temperature was to promote the formation and crystallization of CuSbS2. The sulfurization temperature of step 2 is very important for the formation of device-grade CuSbS2 films. With the increase in sulfurization temperature, impurities such as Sb2S3 decreased and the crystallinity of CuSbS2 improved. Until 400 °C, impurities disappeared and phase-pure well-crystallinity CuSbS2 thin films were obtained. When the sulfurization temperature is higher than 400 °C, CuSbS2 gradually changes to Cu3SbS4. The CuSbS2 films sulfurized at 400 °C with optimum band gap of 1.53 eV are p type, and absorption coefficient is larger than 105 cm−1 in the visible light wavelength range. The temperature dependence of electrical conductivity of CuSbS2 has been studied for the first time. At measurement temperatures higher than 140 K the electrical conductivity of the CuSbS2 film is dominated by band conduction and nearest neighbor hopping (NNH). However, at temperatures below 140 K the conduction is predominantly affected by variable range hopping (VRH). Finally, thin-film solar cells based on the sprayed CuSbS2 absorber layers with a maximum photoelectric conversion efficiency of 0.34% have been fabricated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference J. Zhou, G.-Q. Bian, Q.-Y. Zhu, Y. Zhang, C.-Y. Li, J. Dai, J. Solid State Chem. 182, 259–264 (2009)CrossRef J. Zhou, G.-Q. Bian, Q.-Y. Zhu, Y. Zhang, C.-Y. Li, J. Dai, J. Solid State Chem. 182, 259–264 (2009)CrossRef
3.
4.
go back to reference T. Rath, A.J. MacLachlan, M.D. Brown, S.A. Haque, J. Mater. Chem. A 3, 24155–24162 (2015)CrossRef T. Rath, A.J. MacLachlan, M.D. Brown, S.A. Haque, J. Mater. Chem. A 3, 24155–24162 (2015)CrossRef
5.
go back to reference I. Grigas, N.N. Mozgova, A. Orlyukas, V. Samulenis, Sov. Phys. Crystallogr. 20, 741–742 (1976) I. Grigas, N.N. Mozgova, A. Orlyukas, V. Samulenis, Sov. Phys. Crystallogr. 20, 741–742 (1976)
6.
go back to reference A. Nagaoka, K. Yoshino, Growth of CZTS single crystals, in Copper Zinc Tin Sulfide-based Thin-film Solar Cells, ed. by K. Ito (Wiley, West Sussex, 2015), pp. 135–137 A. Nagaoka, K. Yoshino, Growth of CZTS single crystals, in Copper Zinc Tin Sulfide-based Thin-film Solar Cells, ed. by K. Ito (Wiley, West Sussex, 2015), pp. 135–137
7.
go back to reference S. Adachi, Physical properties: compiled experimental data, in Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells, ed. by K. Ito (Wiley, West Sussex, 2015), pp. 152–155 S. Adachi, Physical properties: compiled experimental data, in Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells, ed. by K. Ito (Wiley, West Sussex, 2015), pp. 152–155
8.
go back to reference W. Septina, S. Ikeda, Y. Iga, T. Harada, M. Matsumura, Thin Solid Films 550, 700–704 (2014)CrossRef W. Septina, S. Ikeda, Y. Iga, T. Harada, M. Matsumura, Thin Solid Films 550, 700–704 (2014)CrossRef
9.
go back to reference A.W. Welch, L.L. Baranowski, P. Zawadzki, C. DeHart, S. Johnston, S. Lany, C.A. Wolden, A. Zakutayev, Prog. Photovoltaics Res. Appl. 24, 929–939 (2016)CrossRef A.W. Welch, L.L. Baranowski, P. Zawadzki, C. DeHart, S. Johnston, S. Lany, C.A. Wolden, A. Zakutayev, Prog. Photovoltaics Res. Appl. 24, 929–939 (2016)CrossRef
10.
go back to reference F.W. de Souza Lucas, A.W. Welch, L.L. Baranowski, P.C. Dippo, H. Hempel, T. Unold, R. Eichberger, B. Blank, U. Rau, L.H. Mascaro, A. Zakutayev, J. Phys. Chem. C 120, 18377–18385 (2016)CrossRef F.W. de Souza Lucas, A.W. Welch, L.L. Baranowski, P.C. Dippo, H. Hempel, T. Unold, R. Eichberger, B. Blank, U. Rau, L.H. Mascaro, A. Zakutayev, J. Phys. Chem. C 120, 18377–18385 (2016)CrossRef
11.
go back to reference A.D. Saragih, D.-H. Kuo, T.T.A. Tuan, J. Mater. Sci. 28, 2996–3003 (2017) A.D. Saragih, D.-H. Kuo, T.T.A. Tuan, J. Mater. Sci. 28, 2996–3003 (2017)
12.
go back to reference S. Banu, S.J. Ahn, S.K. Ahn, K. Yoon, A. Cho, Sol. Energy Mater. Sol. Cells 151, 14–23 (2016)CrossRef S. Banu, S.J. Ahn, S.K. Ahn, K. Yoon, A. Cho, Sol. Energy Mater. Sol. Cells 151, 14–23 (2016)CrossRef
13.
go back to reference B. Yang, L. Wang, J. Han, Y. Zhou, H. Song, S. Chen, J. Zhong, L. Lv, D. Niu, J. Tang, Chem. Mater. 26, 3135–3143 (2014)CrossRef B. Yang, L. Wang, J. Han, Y. Zhou, H. Song, S. Chen, J. Zhong, L. Lv, D. Niu, J. Tang, Chem. Mater. 26, 3135–3143 (2014)CrossRef
14.
go back to reference Y. Xu, Q. Ye, W. Chen, X. Pan, L. Hu, S. Yang, T. Hayat, A. Alsaedi, J. Zhu, S. Dai, J. Mater. Sci. 53, 2016–2025 (2018)CrossRef Y. Xu, Q. Ye, W. Chen, X. Pan, L. Hu, S. Yang, T. Hayat, A. Alsaedi, J. Zhu, S. Dai, J. Mater. Sci. 53, 2016–2025 (2018)CrossRef
15.
go back to reference L. Wan, C. Ma, K. Hu, R. Zhou, X. Mao, S. Pan, L.H. Wong, J. Xu, J. Alloys Compd. 680, 182–190 (2016)CrossRef L. Wan, C. Ma, K. Hu, R. Zhou, X. Mao, S. Pan, L.H. Wong, J. Xu, J. Alloys Compd. 680, 182–190 (2016)CrossRef
16.
go back to reference M.I. Medina-Montes, E. Campos-González, M. Morales-Luna, T.G. Sánchez, M. Becerril-Silva, S.A. Mayén-Hernández, F. de Moure-Flores, J. Santos-Cruz, Mater. Sci. Semicond. Process. 80, 74–84 (2018)CrossRef M.I. Medina-Montes, E. Campos-González, M. Morales-Luna, T.G. Sánchez, M. Becerril-Silva, S.A. Mayén-Hernández, F. de Moure-Flores, J. Santos-Cruz, Mater. Sci. Semicond. Process. 80, 74–84 (2018)CrossRef
17.
go back to reference Y. Rodríguez-Lazcano, M.T.S. Nair, P.K. Nair, J. Electrochem. Soc. 152, G635 (2005)CrossRef Y. Rodríguez-Lazcano, M.T.S. Nair, P.K. Nair, J. Electrochem. Soc. 152, G635 (2005)CrossRef
18.
go back to reference B. Krishnan, S. Shaji, R. Ernesto Ornelas, J. Mater. Sci. Mater. Electron. 26, 4770–4781 (2015)CrossRef B. Krishnan, S. Shaji, R. Ernesto Ornelas, J. Mater. Sci. Mater. Electron. 26, 4770–4781 (2015)CrossRef
19.
go back to reference C. Macías, S. Lugo, Á. Benítez, I. López, B. Kharissov, A. Vázquez, Y. Peña, Mater. Res. Bull. 87, 161–166 (2017)CrossRef C. Macías, S. Lugo, Á. Benítez, I. López, B. Kharissov, A. Vázquez, Y. Peña, Mater. Res. Bull. 87, 161–166 (2017)CrossRef
20.
go back to reference V. Vinayakumar, S. Shaji, D. Avellaneda, T.K. Das Roy, G.A. Castillo, J.A.A. Martinez, B. Krishnan, Sol. Energy Mater. Sol. Cells 164, 19–27 (2017)CrossRef V. Vinayakumar, S. Shaji, D. Avellaneda, T.K. Das Roy, G.A. Castillo, J.A.A. Martinez, B. Krishnan, Sol. Energy Mater. Sol. Cells 164, 19–27 (2017)CrossRef
21.
go back to reference S.C. Riha, A.A. Koegel, J.D. Emery, M.J. Pellin, A.B.F. Martinson, A.C.S. Appl, Mater. Interfaces 9, 4667–4673 (2017)CrossRef S.C. Riha, A.A. Koegel, J.D. Emery, M.J. Pellin, A.B.F. Martinson, A.C.S. Appl, Mater. Interfaces 9, 4667–4673 (2017)CrossRef
22.
go back to reference S. Liu, L. Chen, L. Nie, X. Wang, R. Yuan, Chalcogenide Lett. 11, 639–644 (2014) S. Liu, L. Chen, L. Nie, X. Wang, R. Yuan, Chalcogenide Lett. 11, 639–644 (2014)
24.
go back to reference C.J. Hibberd, E. Chassaing, W. Liu, D.B. Mitzi, D. Lincot, A.N. Tiwari, Prog. Photovoltaics Res. Appl. 18, 434–452 (2010)CrossRef C.J. Hibberd, E. Chassaing, W. Liu, D.B. Mitzi, D. Lincot, A.N. Tiwari, Prog. Photovoltaics Res. Appl. 18, 434–452 (2010)CrossRef
25.
go back to reference A.T. Barrows, A.J. Pearson, C.K. Kwak, A.D.F. Dunbar, A.R. Buckley, D.G. Lidzey, Energy Environ. Sci. 7, 2944–2950 (2014)CrossRef A.T. Barrows, A.J. Pearson, C.K. Kwak, A.D.F. Dunbar, A.R. Buckley, D.G. Lidzey, Energy Environ. Sci. 7, 2944–2950 (2014)CrossRef
26.
27.
28.
go back to reference S.S. Chen, L. Brown, M. Levendorf, W.W. Cai, S.Y. Ju, J. Edgeworth, X.S. Li, C.W. Magnuson, A. Velamakanni, R.D. Piner, J.Y. Kang, J. Park, R.S. Ruoff, ACS Nano 5, 1321–1327 (2011)CrossRef S.S. Chen, L. Brown, M. Levendorf, W.W. Cai, S.Y. Ju, J. Edgeworth, X.S. Li, C.W. Magnuson, A. Velamakanni, R.D. Piner, J.Y. Kang, J. Park, R.S. Ruoff, ACS Nano 5, 1321–1327 (2011)CrossRef
29.
go back to reference R.E. Ornelas-Acosta, D. Avellaneda, S. Shaji, G.A. Castillo, T.K. Das Roy, B. Krishnan, J. Mater. Sci. Mater. Electron. 25, 4356–4362 (2014)CrossRef R.E. Ornelas-Acosta, D. Avellaneda, S. Shaji, G.A. Castillo, T.K. Das Roy, B. Krishnan, J. Mater. Sci. Mater. Electron. 25, 4356–4362 (2014)CrossRef
30.
go back to reference G.H. Albuquerque, K.-J. Kim, J.I. Lopez, A. Devaraj, S. Manandhar, Y.-S. Liu, J. Guo, C.-H. Chang, G.S. Herman, J. Mater. Chem. A 6, 8682–8692 (2018)CrossRef G.H. Albuquerque, K.-J. Kim, J.I. Lopez, A. Devaraj, S. Manandhar, Y.-S. Liu, J. Guo, C.-H. Chang, G.S. Herman, J. Mater. Chem. A 6, 8682–8692 (2018)CrossRef
32.
go back to reference S.K. Swami, N. Chaturvedi, A. Kumar, V. Dutta, Sol. Energy 122, 508–516 (2015)CrossRef S.K. Swami, N. Chaturvedi, A. Kumar, V. Dutta, Sol. Energy 122, 508–516 (2015)CrossRef
33.
go back to reference F.W. de Souza Lucas, H. Peng, S. Johnston, P.C. Dippo, S. Lany, L.H. Mascaro, A. Zakutayev, J. Mater. Chem. A 5, 21986 (2017)CrossRef F.W. de Souza Lucas, H. Peng, S. Johnston, P.C. Dippo, S. Lany, L.H. Mascaro, A. Zakutayev, J. Mater. Chem. A 5, 21986 (2017)CrossRef
34.
go back to reference J.C. Gonzalez, G.M. Ribeiro, E.R. Viana, P.A. Fernandes, P.M.P. Salome, K. Gutierrez, A. Abelenda, F.M. Matinaga, J.P. Leitao, A.F. da Cunha, J. Phys. D 46, 155107 (2013)CrossRef J.C. Gonzalez, G.M. Ribeiro, E.R. Viana, P.A. Fernandes, P.M.P. Salome, K. Gutierrez, A. Abelenda, F.M. Matinaga, J.P. Leitao, A.F. da Cunha, J. Phys. D 46, 155107 (2013)CrossRef
Metadata
Title
Spray pyrolysis deposited CuSbS2 absorber layers for thin-film solar cells
Authors
Lei Wan
Xu Guo
Yingcui Fang
Xiaoli Mao
Huier Guo
Jinzhang Xu
Ru Zhou
Publication date
13-11-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 24/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02531-2

Other articles of this Issue 24/2019

Journal of Materials Science: Materials in Electronics 24/2019 Go to the issue