Skip to main content
Top

2013 | OriginalPaper | Chapter

2. State of the Art

Authors : Vahid Majidzadeh Bafar, Alexandre Schmid

Published in: Wireless Cortical Implantable Systems

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chronic monitoring of action potentials associated with the electrical activity of the motor cortex in an enriched environment is an emerging health care technology. Feature extraction of the action potentials recorded from a large number of neurons enables the successful functional mapping of the motor cortex which can be used to develop an autonomous system replacing some cognitive functions of the brain [1]. However, extensive recording in vivo requires full compliance with strict safety requirements.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wessberg J, Stambaugh C, Kralik J, Beck P, Laubach M, Chapin J, Kim J, Biggs S, Srinivasan M, Nicolelis M (2000) Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408:361–365CrossRef Wessberg J, Stambaugh C, Kralik J, Beck P, Laubach M, Chapin J, Kim J, Biggs S, Srinivasan M, Nicolelis M (2000) Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408:361–365CrossRef
2.
go back to reference IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, IEEE Std, C95.1-2005, 2006 IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, IEEE Std, C95.1-2005, 2006
3.
go back to reference Nicolelis M, Dimitrov D, Carmena J, Crist R, Lehew G, Kralik J, Wise S (2003) Chronic, multisite, multielectrode recordings in macaque monkeys. Proc Nat Acad Sci 100(19): 11041–11046 Nicolelis M, Dimitrov D, Carmena J, Crist R, Lehew G, Kralik J, Wise S (2003) Chronic, multisite, multielectrode recordings in macaque monkeys. Proc Nat Acad Sci 100(19): 11041–11046
5.
go back to reference Nordhausen CT, Maynard EM, Normann RA (1996) Single unit recording capabilities of a 100 microelectrode array. Brain Res 726:129–140 Nordhausen CT, Maynard EM, Normann RA (1996) Single unit recording capabilities of a 100 microelectrode array. Brain Res 726:129–140
6.
go back to reference Rousche PJ, Pellinen DS, Williams JC, Vetterand RJ, Kipke DR (2001) Flexible polyimide-based intracortical electrode arrays with bio-active capability. IEEE Trans Biomed Eng 48(3):361–371CrossRef Rousche PJ, Pellinen DS, Williams JC, Vetterand RJ, Kipke DR (2001) Flexible polyimide-based intracortical electrode arrays with bio-active capability. IEEE Trans Biomed Eng 48(3):361–371CrossRef
7.
go back to reference Kim S, Bhandari R, Klein M, Negi S, Rieth L, Tathireddy P, Topper M, Oppermann H (2009) Integrated wireless neural interface based on the Utah electrode array. J Springer Biomed Microdevices 11:453–466CrossRef Kim S, Bhandari R, Klein M, Negi S, Rieth L, Tathireddy P, Topper M, Oppermann H (2009) Integrated wireless neural interface based on the Utah electrode array. J Springer Biomed Microdevices 11:453–466CrossRef
9.
go back to reference Hu Y, Najafi K (2003) Low-power interface circuits for bio-implantable microsystems. ISSCC digest of technical papers, pp 194–487 Hu Y, Najafi K (2003) Low-power interface circuits for bio-implantable microsystems. ISSCC digest of technical papers, pp 194–487
10.
go back to reference Hu Y, Sawan M (2003) A 900 mV 25 \(\mu \)W high PSRR CMOS voltage reference dedicated to implantable micro-devices. In: Proceedings of IEEE international symposium circuits and systems (ISCAS), pp. 373–376 Hu Y, Sawan M (2003) A 900 mV 25 \(\mu \)W high PSRR CMOS voltage reference dedicated to implantable micro-devices. In: Proceedings of IEEE international symposium circuits and systems (ISCAS), pp. 373–376
11.
go back to reference Sodagar AM, Amiri P (2009) Capacitive coupling for power and data telemetry to implantable biomedical microsystems. In: Proceedings of the 2009 IEEE international neural engineering conference, pp 411–414 Sodagar AM, Amiri P (2009) Capacitive coupling for power and data telemetry to implantable biomedical microsystems. In: Proceedings of the 2009 IEEE international neural engineering conference, pp 411–414
12.
go back to reference Yeager D, Biederman W, Narevsky N, Alon E, Rabaey J (2012) A Fully-integrated 10.5 \(\mu \)W miniaturized (0.125 \(\mu \)m\(^{2}\)) wireless neural sensor. VLSI symposium, digest of technical papers, 2012 (in press) Yeager D, Biederman W, Narevsky N, Alon E, Rabaey J (2012) A Fully-integrated 10.5 \(\mu \)W miniaturized (0.125 \(\mu \)m\(^{2}\)) wireless neural sensor. VLSI symposium, digest of technical papers, 2012 (in press)
13.
go back to reference Sawan M, Hu Y, Coulombe J (2005) Wireless smart implants dedicated to multichannel monitoring and microstimulation. IEEE Circ Syst Mag 5:21–39, first quarter Sawan M, Hu Y, Coulombe J (2005) Wireless smart implants dedicated to multichannel monitoring and microstimulation. IEEE Circ Syst Mag 5:21–39, first quarter
14.
go back to reference Ghovanloo M, Alturi S (2007) Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission. IEEE Trans Biomed Circ Syst 1(3):193–202 Ghovanloo M, Alturi S (2007) Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission. IEEE Trans Biomed Circ Syst 1(3):193–202
15.
go back to reference Vaillancourt P, Djemouai A, Harvey JF, Sawan M (1997) EM radiation behavior upon biological tissues in a radio-frequency power transfer link for a cortical visual implant. In: Proceedings IEEE EMBC’97, pp 2499–2502, Nov 1997 Vaillancourt P, Djemouai A, Harvey JF, Sawan M (1997) EM radiation behavior upon biological tissues in a radio-frequency power transfer link for a cortical visual implant. In: Proceedings IEEE EMBC’97, pp 2499–2502, Nov 1997
18.
go back to reference Silay KM, Dehollain C, Declercq M (2011) Numerical thermal analysis of a wireless cortical implant with two-body packaging. J BioNanoSci Springer 1(3):78–88CrossRef Silay KM, Dehollain C, Declercq M (2011) Numerical thermal analysis of a wireless cortical implant with two-body packaging. J BioNanoSci Springer 1(3):78–88CrossRef
19.
go back to reference Ibrahim TS, Abraham D, Rennaker RL (2007) Electromagnetic power absorption and temperature changes due to brain machine interface operation. Ann Biomed Eng 35:825–834CrossRef Ibrahim TS, Abraham D, Rennaker RL (2007) Electromagnetic power absorption and temperature changes due to brain machine interface operation. Ann Biomed Eng 35:825–834CrossRef
20.
go back to reference Harrison RR, Charles C (2003) A low-power low-noise CMOS amplifier for neural recording applications. IEEE J Solid-State Circ 38(6):958–965CrossRef Harrison RR, Charles C (2003) A low-power low-noise CMOS amplifier for neural recording applications. IEEE J Solid-State Circ 38(6):958–965CrossRef
21.
go back to reference Wattanapanitch W, Fee M, Sarpeshkar R (2007) An energy-efficient micropower neural recording amplifier. IEEE Trans Biomed Circ Syst 1(2):136–147CrossRef Wattanapanitch W, Fee M, Sarpeshkar R (2007) An energy-efficient micropower neural recording amplifier. IEEE Trans Biomed Circ Syst 1(2):136–147CrossRef
22.
go back to reference Kim J, Chae M, Liu W (2009) A 220nW neural amplifier for multi-channel neural recording systems. In: IEEE international symposium circuits and systems (ISCAS), pp 1257–1260 Kim J, Chae M, Liu W (2009) A 220nW neural amplifier for multi-channel neural recording systems. In: IEEE international symposium circuits and systems (ISCAS), pp 1257–1260
23.
go back to reference Chae M, Liu W, Sivaprakasam M (2008) Design optimization for integrated neural recording systems. IEEE J Solid-State Circ 43(9):1931–1939 Chae M, Liu W, Sivaprakasam M (2008) Design optimization for integrated neural recording systems. IEEE J Solid-State Circ 43(9):1931–1939
24.
go back to reference Chae MS, Yang Z, Yuce M, Hoang L, Liu W (2009) A 128-Channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans Neural Syst Rehabil Eng 17(4):312–321CrossRef Chae MS, Yang Z, Yuce M, Hoang L, Liu W (2009) A 128-Channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans Neural Syst Rehabil Eng 17(4):312–321CrossRef
25.
go back to reference Mollazadeh M, Murari K, Cauwenberghs G, Thakor N (2009) Micropower CMOS integrated low-noise amplification, filtering, and digitization of multimodal neuropotentials. IEEE Trans Biomed Circ Syst 3(1):1–10CrossRef Mollazadeh M, Murari K, Cauwenberghs G, Thakor N (2009) Micropower CMOS integrated low-noise amplification, filtering, and digitization of multimodal neuropotentials. IEEE Trans Biomed Circ Syst 3(1):1–10CrossRef
26.
go back to reference Lee EKF, Matei E, Lam A, Li T (2006) A 1V 420 \(\mu \)W 32-channel cortical signal interface. In: Proceedings custom integrated circuit conference(CICC), pp 277–280 Lee EKF, Matei E, Lam A, Li T (2006) A 1V 420 \(\mu \)W 32-channel cortical signal interface. In: Proceedings custom integrated circuit conference(CICC), pp 277–280
27.
go back to reference Olsson RH, Wise KD (2005) A three-dimensional neural recording microsystem with implantable data compression circuitry. IEEE J Solid State Circ 40(12):2796–2804CrossRef Olsson RH, Wise KD (2005) A three-dimensional neural recording microsystem with implantable data compression circuitry. IEEE J Solid State Circ 40(12):2796–2804CrossRef
28.
go back to reference Perelman Y, Ginosar R (2007) An integrated system for multichannel neuronal recording with spike/LFP separation, integrated A/D conversion and threshold detection. IEEE Trans Biomed Eng 54(1):130–137CrossRef Perelman Y, Ginosar R (2007) An integrated system for multichannel neuronal recording with spike/LFP separation, integrated A/D conversion and threshold detection. IEEE Trans Biomed Eng 54(1):130–137CrossRef
29.
go back to reference Sodagar AM, Perlin GE, Yao Y, Najafi K, Wise KD (2009) An implantable 64-channel wireless microsystem for single unit neural recording. IEEE J Solid State Circ 44(9):2591–2604 Sodagar AM, Perlin GE, Yao Y, Najafi K, Wise KD (2009) An implantable 64-channel wireless microsystem for single unit neural recording. IEEE J Solid State Circ 44(9):2591–2604
30.
go back to reference Aziz JNY et al (2009) 256-channel neural recording and delta compression microsystem with 3D electrodes. IEEE J Solid State Circ 44(3):995–1005 Aziz JNY et al (2009) 256-channel neural recording and delta compression microsystem with 3D electrodes. IEEE J Solid State Circ 44(3):995–1005
31.
go back to reference Chen F, Chandrakasan AP, Stojanović VM (2012) Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors. IEEE J Solid State Circ 47(3):744–756CrossRef Chen F, Chandrakasan AP, Stojanović VM (2012) Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors. IEEE J Solid State Circ 47(3):744–756CrossRef
32.
go back to reference Majidzadeh V, Schmid A, Leblebici Y (2010) Low-distortion switched-capacitor even-driven analog to digital converter. Electron Lett 46(20):1372–1374CrossRef Majidzadeh V, Schmid A, Leblebici Y (2010) Low-distortion switched-capacitor even-driven analog to digital converter. Electron Lett 46(20):1372–1374CrossRef
33.
go back to reference Xu W, Luo Z, Sonkulase S (2009) Fully digital BPSK demodulator and multilevel LSK back telemetry for biomedical implant transceivers. IEEE Trans Circ Syst II 56(9):714–718 Xu W, Luo Z, Sonkulase S (2009) Fully digital BPSK demodulator and multilevel LSK back telemetry for biomedical implant transceivers. IEEE Trans Circ Syst II 56(9):714–718
34.
go back to reference Ghovanloo M, Alturi S (2007) A wide-band power-efficient inductive wireless link for implantable microelectronic devices using multiple carriers. IEEE Trans Circ Syst I 54(10):2211–2221CrossRef Ghovanloo M, Alturi S (2007) A wide-band power-efficient inductive wireless link for implantable microelectronic devices using multiple carriers. IEEE Trans Circ Syst I 54(10):2211–2221CrossRef
35.
go back to reference Silay KM, Dehollain C, Declercq M (2008) Orthogonally oriented coils for minimization of cross-coupling in cortical implants. In: Proceedings biomedical circuits and systems (BioCAS), pp 119–112 Silay KM, Dehollain C, Declercq M (2008) Orthogonally oriented coils for minimization of cross-coupling in cortical implants. In: Proceedings biomedical circuits and systems (BioCAS), pp 119–112
36.
go back to reference Mohseni P, Najafi K, Eliades SJ, Wang X (2005) Wireless multichannel biopotential recording using an integrated FM telemetry circuit. IEEE Trans Neural Syst Rehabil Eng 13(3):263–271 Mohseni P, Najafi K, Eliades SJ, Wang X (2005) Wireless multichannel biopotential recording using an integrated FM telemetry circuit. IEEE Trans Neural Syst Rehabil Eng 13(3):263–271
37.
go back to reference Harrison RR (2007) A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J Solid State Circ 42(1):123–133CrossRef Harrison RR (2007) A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J Solid State Circ 42(1):123–133CrossRef
38.
go back to reference Abdelhalim K, Genov R (2011) 915-MHz wireless 64-channel neural recording SoC with programmable mixed-Signal FIR filters. In: Proceedings European solid state circuit conference, pp 223–226 Abdelhalim K, Genov R (2011) 915-MHz wireless 64-channel neural recording SoC with programmable mixed-Signal FIR filters. In: Proceedings European solid state circuit conference, pp 223–226
39.
go back to reference Gao H, Walker RM, Nuyujukian P, Mikanawa KA, Shenoy KV, Murmann B, Meng TH (2012)HermesE: A 96-channel full data rate direct neural interface in 0.13 \(\mu \)m CMOS. IEEE J Solid State Circ 47(4):1043–1055 Gao H, Walker RM, Nuyujukian P, Mikanawa KA, Shenoy KV, Murmann B, Meng TH (2012)HermesE: A 96-channel full data rate direct neural interface in 0.13 \(\mu \)m CMOS. IEEE J Solid State Circ 47(4):1043–1055
Metadata
Title
State of the Art
Authors
Vahid Majidzadeh Bafar
Alexandre Schmid
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-6702-1_2