Skip to main content
Top
Published in: Journal of Computational Electronics 1/2015

01-03-2015

Structural and electronic properties of zigzag graphene nanoribbon decorated with copper cluster

Authors: M. Berahman, M. H. Sheikhi, A. Zarifkar, H. Nadgaran

Published in: Journal of Computational Electronics | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Using density functional theory, zigzag graphene nanoribbon (Z-GNR) saturated with hydrogen atoms decorated with copper clusters containing one, two and three copper atoms has been studied. It is shown that the cluster of copper, despite the number of copper atoms, tends to occupy the edge sites of Z-GNR. The quality and quantity of copper–carbon bonds, possible diffusion path and charge transfers are discussed in detail. It has been shown that in decorated Z-GNR with copper clusters, “d” and “s” orbital of copper joint with “p” orbital of carbon create a stable and strong bond. We show that copper in its individual form, transfers electrical charge to Z-GNR. In case of two and three copper atoms in a cluster, two different stable structures, stand and sleep-modes, are introduced. Based on number of copper atoms in a cluster and the modes that cluster stabilized on Z-GNR, the Fermi state in the decorated Z-GNR can shift to lower or higher energies. We also study the transformation from sleep to stand-mode and demonstrate that it is highly unlikely that any conversion happens at low temperatures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
We check the activity of these structures for Hydrogen Sulfide. Stand-modes, in both cluster containing two and three atoms of copper, show more activity toward \(\hbox {H}_{2}\hbox {S}\).
 
2
We have checked this claim for cluster containing four copper atoms and it is correct.
 
Literature
1.
go back to reference Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419–425 (2013)CrossRef Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419–425 (2013)CrossRef
2.
go back to reference Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, D., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, D., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef
3.
go back to reference Yazyev, O.V.: A guide to the design of electronic properties of graphene nanoribbons. Acc. Chem. Res. 46(10), 2319–2328 (2013)CrossRef Yazyev, O.V.: A guide to the design of electronic properties of graphene nanoribbons. Acc. Chem. Res. 46(10), 2319–2328 (2013)CrossRef
4.
go back to reference Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRef Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRef
5.
go back to reference Duttaa, S., Pati, S.K.: Novel properties of graphene nanoribbons: a review. J. Mater. Chem. 20, 8207–8223 (2010)CrossRef Duttaa, S., Pati, S.K.: Novel properties of graphene nanoribbons: a review. J. Mater. Chem. 20, 8207–8223 (2010)CrossRef
6.
go back to reference Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef
7.
go back to reference Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)CrossRef Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)CrossRef
8.
go back to reference Berahman, M., Sanaee, M., Ghayour, R.: A theoretical investigation on the transport properties of overlapped graphene nanoribbons. Carbon 75, 411–419 (2014)CrossRef Berahman, M., Sanaee, M., Ghayour, R.: A theoretical investigation on the transport properties of overlapped graphene nanoribbons. Carbon 75, 411–419 (2014)CrossRef
9.
go back to reference Subrahmanyam, K.S., Manna, A.K., Pati, S.K.: A study of graphene decorated with metal nanoparticles. Chem. Phys. Lett. 497, 70–75 (2010)CrossRef Subrahmanyam, K.S., Manna, A.K., Pati, S.K.: A study of graphene decorated with metal nanoparticles. Chem. Phys. Lett. 497, 70–75 (2010)CrossRef
10.
go back to reference Li, W., He, Y., Wang, L., Ding, G., Zhang, Z.Q., Lortz, R.W., Sheng, P., Wang, N.: Electron localization in metal-decorated graphene. Phys. Rev. B 84, 045431 (2011)CrossRef Li, W., He, Y., Wang, L., Ding, G., Zhang, Z.Q., Lortz, R.W., Sheng, P., Wang, N.: Electron localization in metal-decorated graphene. Phys. Rev. B 84, 045431 (2011)CrossRef
11.
go back to reference Wu, M., Burton, J.D., Tsymbal, E.Y., Zeng, X.C., Jena, P.: Hydroxyl-decorated graphene systems as candidates for organic metal-free ferroelectrics, multiferroics, and high-performance proton battery cathode materials. Phys. Rev. B 87, 081406(R) (2013)CrossRef Wu, M., Burton, J.D., Tsymbal, E.Y., Zeng, X.C., Jena, P.: Hydroxyl-decorated graphene systems as candidates for organic metal-free ferroelectrics, multiferroics, and high-performance proton battery cathode materials. Phys. Rev. B 87, 081406(R) (2013)CrossRef
12.
go back to reference Li, Y., Pathak, B., Nisar, J., Qian, Z., Ahuja, R.: Metal-decorated graphene oxide for ammonia adsorption. Europhys. Lett. 103, 28007 (2013)CrossRef Li, Y., Pathak, B., Nisar, J., Qian, Z., Ahuja, R.: Metal-decorated graphene oxide for ammonia adsorption. Europhys. Lett. 103, 28007 (2013)CrossRef
13.
go back to reference Gutés, A., Hsia, B., Sussman, A., Mickelson, W., Zettl, A., Carraro, C., Maboudian, R.: Graphene decoration with metal nanoparticles: towards easy integration for sensing applications. Nanoscale 4, 438–440 (2012)CrossRef Gutés, A., Hsia, B., Sussman, A., Mickelson, W., Zettl, A., Carraro, C., Maboudian, R.: Graphene decoration with metal nanoparticles: towards easy integration for sensing applications. Nanoscale 4, 438–440 (2012)CrossRef
14.
go back to reference Tjoa, V., Jun, W., Dravid, V., Mhaisalkar, S., Mathews, N.: Hybrid graphene-metal nanoparticle systems: electronic properties and gas interaction. J. Mater. Chem. 21, 15593–15599 (2011)CrossRef Tjoa, V., Jun, W., Dravid, V., Mhaisalkar, S., Mathews, N.: Hybrid graphene-metal nanoparticle systems: electronic properties and gas interaction. J. Mater. Chem. 21, 15593–15599 (2011)CrossRef
15.
go back to reference Zhang, C.X., He, C., Yu, Z., Zhang, K.W., Sun, L.Z., Zhong, J.: Transport properties of zigzag graphene nanoribbons decorated by carboxyl group chains. J. Phys. Chem. C 115(44), 21893–21898 (2011)CrossRef Zhang, C.X., He, C., Yu, Z., Zhang, K.W., Sun, L.Z., Zhong, J.: Transport properties of zigzag graphene nanoribbons decorated by carboxyl group chains. J. Phys. Chem. C 115(44), 21893–21898 (2011)CrossRef
16.
go back to reference Berahman, M., Sheikhi, M.H., Zarifkar, A., Gebauer, R., Taheri, M., Asad, M.: H\(_{2}\)S Gas Sensor Based on Thin Film Graphene Nanoribbons Decorated with Copper: A First Principles Studies. Ultrafine Grained and Nano-Structured Materials, Tehran (2013) Berahman, M., Sheikhi, M.H., Zarifkar, A., Gebauer, R., Taheri, M., Asad, M.: H\(_{2}\)S Gas Sensor Based on Thin Film Graphene Nanoribbons Decorated with Copper: A First Principles Studies. Ultrafine Grained and Nano-Structured Materials, Tehran (2013)
17.
go back to reference Gorjizadeh, N., Kawazoe, Y.: Chemical functionalization of graphene nanoribbons. J. Nanomater. 2010, 513501 (2010) Gorjizadeh, N., Kawazoe, Y.: Chemical functionalization of graphene nanoribbons. J. Nanomater. 2010, 513501 (2010)
18.
go back to reference Cao, C., Wu, M., Jiang, J., Cheng, H.P.: Transition metal adatom and dimer adsorbed on graphene: induced magnetization and electronic structures. Phys. Rev. B 81, 205424 (2010)CrossRef Cao, C., Wu, M., Jiang, J., Cheng, H.P.: Transition metal adatom and dimer adsorbed on graphene: induced magnetization and electronic structures. Phys. Rev. B 81, 205424 (2010)CrossRef
19.
go back to reference Wu, M., Liu, E.N., Ge, M.Y., Jiang, J.Z.: Stability, electronic, and magnetic behaviors of Cu adsorbed graphene: a first-principles study. Appl. Phys. Lett. 94, 102505 (2009)CrossRef Wu, M., Liu, E.N., Ge, M.Y., Jiang, J.Z.: Stability, electronic, and magnetic behaviors of Cu adsorbed graphene: a first-principles study. Appl. Phys. Lett. 94, 102505 (2009)CrossRef
20.
go back to reference Krasheninnikov, A.V., Lehtinen, P.O., Foster, A.S., Pyykkö, P., Nieminen, R.M.: Embedding transition-metal atoms in graphene: structure, bonding, and magnetism. Phys. Rev. Lett. 102, 126807 (2009)CrossRef Krasheninnikov, A.V., Lehtinen, P.O., Foster, A.S., Pyykkö, P., Nieminen, R.M.: Embedding transition-metal atoms in graphene: structure, bonding, and magnetism. Phys. Rev. Lett. 102, 126807 (2009)CrossRef
21.
go back to reference Ning, Z., Chen, Z., Du, X., Ran, R., Dong, W., Chen, C.: Nickel Dimers Adsorbed on Graphene: First-Principles Study. J. Supercond. Nov. Magn. 26(12), 3515–3522 (2013)CrossRef Ning, Z., Chen, Z., Du, X., Ran, R., Dong, W., Chen, C.: Nickel Dimers Adsorbed on Graphene: First-Principles Study. J. Supercond. Nov. Magn. 26(12), 3515–3522 (2013)CrossRef
22.
go back to reference Sevinçli, H., Topsakal, M., Durgun, E., Ciraci, S.: Electronic and magnetic properties of 3d transition-metal atom adsorbed graphene and graphene nanoribbons. Phys. Rev. B 77, 195434 (2008)CrossRef Sevinçli, H., Topsakal, M., Durgun, E., Ciraci, S.: Electronic and magnetic properties of 3d transition-metal atom adsorbed graphene and graphene nanoribbons. Phys. Rev. B 77, 195434 (2008)CrossRef
23.
go back to reference Rigo, V.A., Miwa, R.H., da Silva, A.J.R., Fazzio, A.: Mn dimers on graphene nanoribbons: ab initio study. J. Appl. Phys. 109, 053715 (2011)CrossRef Rigo, V.A., Miwa, R.H., da Silva, A.J.R., Fazzio, A.: Mn dimers on graphene nanoribbons: ab initio study. J. Appl. Phys. 109, 053715 (2011)CrossRef
24.
go back to reference Yu, G., Lu, X., Jiang, L., Gao, W., Zheng, Y.: Structural, electronic and magnetic properties of transition-metal embedded zigzag-edged graphene nanoribbons. J. Phys. D 46, 375303 (2013)CrossRef Yu, G., Lu, X., Jiang, L., Gao, W., Zheng, Y.: Structural, electronic and magnetic properties of transition-metal embedded zigzag-edged graphene nanoribbons. J. Phys. D 46, 375303 (2013)CrossRef
25.
go back to reference Longo, R.C., Carrete, J., Ferrer, J., Gallego, L.J.: Structural, magnetic, and electronic properties of Ni\(_{n}\) and Fe\(_{n}\) nanostructures (\(n\) = 1–4) adsorbed on zigzag graphene nanoribbons. Phys. Rev. B 81, 115418 (2010)CrossRef Longo, R.C., Carrete, J., Ferrer, J., Gallego, L.J.: Structural, magnetic, and electronic properties of Ni\(_{n}\) and Fe\(_{n}\) nanostructures (\(n\) = 1–4) adsorbed on zigzag graphene nanoribbons. Phys. Rev. B 81, 115418 (2010)CrossRef
26.
go back to reference Asad, A., Berahman, M., Sheikhi, M.H., Pour, M.F.: Hydrogen sulfide gas sensor based on thin film carbon nanotubes/graphene nanoribbons. IR Patent No. 75,680 Asad, A., Berahman, M., Sheikhi, M.H., Pour, M.F.: Hydrogen sulfide gas sensor based on thin film carbon nanotubes/graphene nanoribbons. IR Patent No. 75,680
27.
go back to reference Weia, M., Chena, L., Lunb, N., Suna, Y., Lia, D., Pana, H.: Electronic and magnetic properties of copper-family-element atom adsorbed graphene nanoribbons with zigzag edges. Solid State Commun. 151(20), 1440–1443 (2011)CrossRef Weia, M., Chena, L., Lunb, N., Suna, Y., Lia, D., Pana, H.: Electronic and magnetic properties of copper-family-element atom adsorbed graphene nanoribbons with zigzag edges. Solid State Commun. 151(20), 1440–1443 (2011)CrossRef
28.
go back to reference Berahman, M., Sheikhi, M.H.: Transport properties of zigzag graphene nanoribbon decorated with copper clusters. J. Appl. Phys. 116, 09370 (2014)CrossRef Berahman, M., Sheikhi, M.H.: Transport properties of zigzag graphene nanoribbon decorated with copper clusters. J. Appl. Phys. 116, 09370 (2014)CrossRef
29.
go back to reference Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., et al.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. 21, 395502 (2009) Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., et al.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. 21, 395502 (2009)
30.
go back to reference Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981) Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981)
31.
go back to reference Troullier, N., Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43 (1993) Troullier, N., Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43 (1993)
32.
go back to reference Baishya, K., Idrobo, J.C., Öğüt, S., Yang, M., Jackson, K.A., Jellinek, J.: First-principles absorption spectra of Cun (n = 2–20) clusters. Phys. Rev. B 83, 245402 (2011)CrossRef Baishya, K., Idrobo, J.C., Öğüt, S., Yang, M., Jackson, K.A., Jellinek, J.: First-principles absorption spectra of Cun (n = 2–20) clusters. Phys. Rev. B 83, 245402 (2011)CrossRef
Metadata
Title
Structural and electronic properties of zigzag graphene nanoribbon decorated with copper cluster
Authors
M. Berahman
M. H. Sheikhi
A. Zarifkar
H. Nadgaran
Publication date
01-03-2015
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 1/2015
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-014-0650-4

Other articles of this Issue 1/2015

Journal of Computational Electronics 1/2015 Go to the issue