Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 12/2020

07-05-2020

Structural features and energy harvester device applications of textured 0.675 PMN–0.325 PT piezoceramics

Authors: Ayse Berksoy-Yavuz, Umut Savacı, Servet Turan, Sedat Alkoy, Ebru Mensur-Alkoy

Published in: Journal of Materials Science: Materials in Electronics | Issue 12/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the current study, textured lead magnesium niobate–lead titanate solid solution with composition 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 (0.675PMN–0.325PT) has been fabricated with 0.7 mol% manganese (Mn) doping to enhance the soft character and the figure of merit (FOM). Random and textured PMN–PT plates were prepared by tape casting where 1 vol% plate-like barium titanate (BaTiO3) single-crystal templates were added to induce texture. A detailed structural investigation using scanning/transmission electron microscopy (STEM) and precession electron diffraction techniques has been conducted to establish the orientational relationship between the PMN–PT matrix and the BT templates. The FOM of textured and doped PMN–PT was found to increase for almost fourfold compared to random undoped case. Characterization of the energy harvesting (EH) performance of unimorph EH devices indicated an over twofold increase in the output power of the doped and textured case in comparison to the undoped and random PMN–PT ceramics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference T. Yildirim, M.H. Ghayesh, W. Li, G. Alici, A review on performance enhancement techniques for ambient vibration energy harvesters. Renew. Sustain. Energy Rev. 71, 435–449 (2017)CrossRef T. Yildirim, M.H. Ghayesh, W. Li, G. Alici, A review on performance enhancement techniques for ambient vibration energy harvesters. Renew. Sustain. Energy Rev. 71, 435–449 (2017)CrossRef
2.
go back to reference P.D. Mitcheson, T.C. Green, E.M. Yeatman, A.S. Holmes, Architectures for vibration-driven micropower generators. J. Microelectromech. Syst. 13(3), 429–440 (2004)CrossRef P.D. Mitcheson, T.C. Green, E.M. Yeatman, A.S. Holmes, Architectures for vibration-driven micropower generators. J. Microelectromech. Syst. 13(3), 429–440 (2004)CrossRef
3.
go back to reference S. Roundy, P.K. Wright, J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26(11), 1131–1144 (2003)CrossRef S. Roundy, P.K. Wright, J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26(11), 1131–1144 (2003)CrossRef
4.
go back to reference H. Liu, C. Lee, T. Kobayashi, C.J. Tay, C. Quan, A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz. Microsyst. Technol. 18, 497–506 (2012)CrossRef H. Liu, C. Lee, T. Kobayashi, C.J. Tay, C. Quan, A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz. Microsyst. Technol. 18, 497–506 (2012)CrossRef
5.
go back to reference M. Safaei, H.A. Sodano, S.R. Anton, A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018). Smart Mater. Struct. 18, 113001 (2019)CrossRef M. Safaei, H.A. Sodano, S.R. Anton, A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018). Smart Mater. Struct. 18, 113001 (2019)CrossRef
6.
go back to reference S. Priya, Advances in energy harvesting using low profile piezoelectric transducers. J. Electroceram. 19(1), 167–184 (2007)CrossRef S. Priya, Advances in energy harvesting using low profile piezoelectric transducers. J. Electroceram. 19(1), 167–184 (2007)CrossRef
7.
go back to reference Y. Sun, Y. Chang, J. Wu, Y. Liu, L. Jin, S. Zhang, B. Yanga, W. Cao, Ultrahigh energy harvesting properties in textured lead-free piezoelectric composites. J. Mater. Chem. A 7, 3603–3611 (2019)CrossRef Y. Sun, Y. Chang, J. Wu, Y. Liu, L. Jin, S. Zhang, B. Yanga, W. Cao, Ultrahigh energy harvesting properties in textured lead-free piezoelectric composites. J. Mater. Chem. A 7, 3603–3611 (2019)CrossRef
8.
go back to reference S. Priya, Criterion for material selection in design of bulk piezoelectric energy harvesters. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 2610–2612 (2010)CrossRef S. Priya, Criterion for material selection in design of bulk piezoelectric energy harvesters. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 2610–2612 (2010)CrossRef
9.
go back to reference Y. Yan, K.H. Cho, S. Priya, Templated grain growth of 〈001〉-textured 0.675Pb(Mg1/3Nb2/3)O3–0325PbTiO3 piezoelectric ceramics for magnetic field sensors. J. Am. Ceram. Soc. 94, 1784 (2011)CrossRef Y. Yan, K.H. Cho, S. Priya, Templated grain growth of 〈001〉-textured 0.675Pb(Mg1/3Nb2/3)O3–0325PbTiO3 piezoelectric ceramics for magnetic field sensors. J. Am. Ceram. Soc. 94, 1784 (2011)CrossRef
10.
go back to reference S.E. Park, T.R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82(4), 1804–1811 (1997)CrossRef S.E. Park, T.R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82(4), 1804–1811 (1997)CrossRef
11.
go back to reference Y. Yan, Y.U. Wang, S. Priya, Electromechanical behavior of [001]-textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. Appl. Phys. Lett. 100, 192905 (2012)CrossRef Y. Yan, Y.U. Wang, S. Priya, Electromechanical behavior of [001]-textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. Appl. Phys. Lett. 100, 192905 (2012)CrossRef
12.
go back to reference S.F. Poterala, S. Trolier-McKinstry, R.J. Meyer, G.L. Messing, Processing, texture quality, and piezoelectric properties of 〈001〉C textured (1–x)Pb(Mg1/3Nb2/3)TiO3−xPbTiO3 ceramics. J. Appl. Phys. 110, 014105 (2011)CrossRef S.F. Poterala, S. Trolier-McKinstry, R.J. Meyer, G.L. Messing, Processing, texture quality, and piezoelectric properties of 〈001〉C textured (1–x)Pb(Mg1/3Nb2/3)TiO3−xPbTiO3 ceramics. J. Appl. Phys. 110, 014105 (2011)CrossRef
13.
go back to reference S. Kwon, E.M. Sabolsky, G.L. Messing, S. Trolier-McKinstry, High strain, 〈001〉 textured 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 ceramics: templated grain growth and piezoelectric properties. J. Am. Ceram. Soc. 88(2), 312–317 (2005)CrossRef S. Kwon, E.M. Sabolsky, G.L. Messing, S. Trolier-McKinstry, High strain, 〈001〉 textured 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 ceramics: templated grain growth and piezoelectric properties. J. Am. Ceram. Soc. 88(2), 312–317 (2005)CrossRef
14.
go back to reference E.M. Sabolsky, A.R. James, S. Kwon, S. Trolier-McKinstry, G.L. Messing, Piezoelectric properties of 〈001〉 textured Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics. Appl. Phys. Lett. 78, 2551 (2001)CrossRef E.M. Sabolsky, A.R. James, S. Kwon, S. Trolier-McKinstry, G.L. Messing, Piezoelectric properties of 〈001〉 textured Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics. Appl. Phys. Lett. 78, 2551 (2001)CrossRef
15.
go back to reference A. Berksoy-Yavuz, E. Mensur-Alkoy, Electrical properties and impedance spectroscopy of crystallographically textured 0.675[Pb(Mg1/3Nb2/3)O3]-0.325[PbTiO3] ceramics. J. Mater. Sci. Mater. Electron. 29, 13310–13320 (2018)CrossRef A. Berksoy-Yavuz, E. Mensur-Alkoy, Electrical properties and impedance spectroscopy of crystallographically textured 0.675[Pb(Mg1/3Nb2/3)O3]-0.325[PbTiO3] ceramics. J. Mater. Sci. Mater. Electron. 29, 13310–13320 (2018)CrossRef
16.
go back to reference A. Berksoy-Yavuz, E. Mensur-Alkoy, Enhanced soft character of crystallographically textured Mn-doped binary 0.675[Pb(Mg1/3Nb2/3)O3]–0.325[PbTiO3] ceramics. J. Electron. Mater. 47, 6557–6566 (2018)CrossRef A. Berksoy-Yavuz, E. Mensur-Alkoy, Enhanced soft character of crystallographically textured Mn-doped binary 0.675[Pb(Mg1/3Nb2/3)O3]–0.325[PbTiO3] ceramics. J. Electron. Mater. 47, 6557–6566 (2018)CrossRef
17.
go back to reference A. Berksoy-Yavuz, Fabrication, characterization and energy harvesting application of crystallographic textured (Pb(Mg1/3Nb2/3)O3)-(PbTiO3). PhD dissertation, Gebze Technical University, Kocaeli, Turkey (2018) A. Berksoy-Yavuz, Fabrication, characterization and energy harvesting application of crystallographic textured (Pb(Mg1/3Nb2/3)O3)-(PbTiO3). PhD dissertation, Gebze Technical University, Kocaeli, Turkey (2018)
18.
go back to reference D. Liu, Y. Yan, H. Zhou, Synthesis of micron-scale platelet BaTiO3. J. Am. Ceram. Soc. 90(4), 1323–1326 (2007)CrossRef D. Liu, Y. Yan, H. Zhou, Synthesis of micron-scale platelet BaTiO3. J. Am. Ceram. Soc. 90(4), 1323–1326 (2007)CrossRef
19.
go back to reference F.K. Lotgering, Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I. J. Inorg. Nucl. Chem. 9, 113–123 (1959)CrossRef F.K. Lotgering, Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I. J. Inorg. Nucl. Chem. 9, 113–123 (1959)CrossRef
20.
go back to reference K. Uchino, L.E. Cross, R.E. Newnham, S. Nomura, Electrostrictive effects in non-polar perovskites. Phase Transit. 1(4), 333–342 (1980)CrossRef K. Uchino, L.E. Cross, R.E. Newnham, S. Nomura, Electrostrictive effects in non-polar perovskites. Phase Transit. 1(4), 333–342 (1980)CrossRef
21.
go back to reference Y. Yan, K.H. Cho, S. Priya, Role of secondary phase in high power piezoelectric PMN-PZT ceramics. J. Am. Ceram. Soc. 94(12), 4138–4141 (2011)CrossRef Y. Yan, K.H. Cho, S. Priya, Role of secondary phase in high power piezoelectric PMN-PZT ceramics. J. Am. Ceram. Soc. 94(12), 4138–4141 (2011)CrossRef
22.
go back to reference J.W. Yi, W.Y. Shih, W.H. Shih, Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers. J. Appl. Phys. 91(3), 1680–1686 (2002)CrossRef J.W. Yi, W.Y. Shih, W.H. Shih, Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers. J. Appl. Phys. 91(3), 1680–1686 (2002)CrossRef
23.
go back to reference H. Li, C. Tian, Z.D. Deng, Energy harvesting from low frequency applications using piezoelectric materials. Appl. Phys. Rev. 1, 041301 (2014)CrossRef H. Li, C. Tian, Z.D. Deng, Energy harvesting from low frequency applications using piezoelectric materials. Appl. Phys. Rev. 1, 041301 (2014)CrossRef
24.
go back to reference T. Ha, J.X.J. Zhang, N. Lu, Thickness ratio and d33 effects on flexible piezoelectric unimorph energy conversion. Smart Mater. Struct. 25, 035037 (2016)CrossRef T. Ha, J.X.J. Zhang, N. Lu, Thickness ratio and d33 effects on flexible piezoelectric unimorph energy conversion. Smart Mater. Struct. 25, 035037 (2016)CrossRef
25.
go back to reference X. Gao, W.H. Shih, W.Y. Shih, Induced voltage of piezoelectric unimorph cantilevers of different nonpiezoelectric/piezoelectric length ratios. Smart Mater. Struct. 18, 125018 (2009)CrossRef X. Gao, W.H. Shih, W.Y. Shih, Induced voltage of piezoelectric unimorph cantilevers of different nonpiezoelectric/piezoelectric length ratios. Smart Mater. Struct. 18, 125018 (2009)CrossRef
Metadata
Title
Structural features and energy harvester device applications of textured 0.675 PMN–0.325 PT piezoceramics
Authors
Ayse Berksoy-Yavuz
Umut Savacı
Servet Turan
Sedat Alkoy
Ebru Mensur-Alkoy
Publication date
07-05-2020
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 12/2020
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03510-8

Other articles of this Issue 12/2020

Journal of Materials Science: Materials in Electronics 12/2020 Go to the issue