Skip to main content
Top
Published in: Physics of Metals and Metallography 4/2020

01-04-2020 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Structure, Phase Composition, and Mechanical Properties of Biocompatible Titanium Alloys of Different Types

Authors: A. G. Illarionov, A. G. Nezhdanov, S. I. Stepanov, G. Muller-Kamskii, A. A. Popov

Published in: Physics of Metals and Metallography | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The structure and phase composition of biocompatible titanium alloys of composition (wt %) Ti–10Zr–1.2Nb–1.5Al, Ti–6Al–4V (ELI), Ti–15Mo, and Ti–36.1Nb–3.8Zr–2.4Ta–1.9Sn have been studied in a hot-deformed state using scanning electron microscopy and X-ray diffraction analysis. The analysis of mechanical tensile properties has been performed depending on the structure and the aluminum strength equivalent of the alloys. The elasticity moduli of the alloys have been determined using tensile tests, dynamic mechanical analysis, and microindentation; the comparability of values within the error of 3–7% has been established. The nonmonotonic character of the change of the elasticity modulus upon heating to 550°C is explained in terms of the occurrence of processes of stress relaxation and recovery in the Ti–10Zr–1.2Nb–1.5Al, and Ti–6Al–4V ELI alloys and based on the precipitation of the high-modulus ω phase in the Ti–15Mo alloy. For the Ti–36.1Nb–3.8Zr–2.4Ta–1.9Sn alloy, the realization of the elinvar effect has been demonstrated. A correlation of the rate of change in the elasticity modulus with the heating temperature and the ratio of α and β phases in the structure of the alloys has been established.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Niinomi, “Mechanical properties of biomedical titanium alloys,” Mater. Sci. Eng., A 243, 231–236 (1998).CrossRef M. Niinomi, “Mechanical properties of biomedical titanium alloys,” Mater. Sci. Eng., A 243, 231–236 (1998).CrossRef
2.
go back to reference M. Yu. Kollerov, V. S. Spektor, S. V. Skvortsova, A. M. Mamonov, D. E. Gusev, and G. V. Gurtovaya, “Problems and prospectives of application of titanium alloys in medicine,” Titan, No. 2, 42–53 (2015). M. Yu. Kollerov, V. S. Spektor, S. V. Skvortsova, A. M. Mamonov, D. E. Gusev, and G. V. Gurtovaya, “Problems and prospectives of application of titanium alloys in medicine,” Titan, No. 2, 42–53 (2015).
3.
go back to reference D. Banerjee and J. C. Williams, “Perspectives on titanium science and technology,” Acta Mater. 61, 844–879 (2013).CrossRef D. Banerjee and J. C. Williams, “Perspectives on titanium science and technology,” Acta Mater. 61, 844–879 (2013).CrossRef
4.
go back to reference K. Wang, “The use of titanium for medical applications in the USA,” Mater. Sci. Eng., A 213, 134–137 (1996).CrossRef K. Wang, “The use of titanium for medical applications in the USA,” Mater. Sci. Eng., A 213, 134–137 (1996).CrossRef
5.
go back to reference A. G. Illarionov, N. V. Shchetnikov, S. M. Illarionova and A. A. Popov, “Effect of heating temperature on the formation of structure and phase composition of a biocompatible alloy Ti–6AL–4V–ELI subjected to equal-channel angular pressing,” Phys. Met. Metallogr. 118, 272–278 (2017).CrossRef A. G. Illarionov, N. V. Shchetnikov, S. M. Illarionova and A. A. Popov, “Effect of heating temperature on the formation of structure and phase composition of a biocompatible alloy Ti–6AL–4V–ELI subjected to equal-channel angular pressing,” Phys. Met. Metallogr. 118, 272–278 (2017).CrossRef
6.
go back to reference A. Biesiekierski, J. Wang, M. Abdel-Hady Gepreel, and C. Wena, “A new look at biomedical Ti-based shape memory alloys,” Acta Biomater. 8, 1661–1669 (2012).CrossRef A. Biesiekierski, J. Wang, M. Abdel-Hady Gepreel, and C. Wena, “A new look at biomedical Ti-based shape memory alloys,” Acta Biomater. 8, 1661–1669 (2012).CrossRef
7.
go back to reference V. V. Tetyukhin, N. Yu. Tarenkova, I. Yu. Puzakov, and M. A. Kornilova, RF Patent No. 2479657 (2013). V. V. Tetyukhin, N. Yu. Tarenkova, I. Yu. Puzakov, and M. A. Kornilova, RF Patent No. 2479657 (2013).
8.
go back to reference M. Niinomi, “Mechanical biocompatibilities of titanium alloys for biomedical applications,” J. Mech. Behav. Biomed. Mater. 1, 30–42 (2008).CrossRef M. Niinomi, “Mechanical biocompatibilities of titanium alloys for biomedical applications,” J. Mech. Behav. Biomed. Mater. 1, 30–42 (2008).CrossRef
9.
go back to reference W. F. Ho, “A comparison of tensile properties and corrosion behavior of cast Ti–7.5Mo with c.p. Ti, Ti–15Mo and Ti–6Al–4V alloys,” J. Alloys Compd. 464, 580–583 (2008).CrossRef W. F. Ho, “A comparison of tensile properties and corrosion behavior of cast Ti–7.5Mo with c.p. Ti, Ti–15Mo and Ti–6Al–4V alloys,” J. Alloys Compd. 464, 580–583 (2008).CrossRef
10.
go back to reference M. Geeta, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopedic implants – A review,” Prog. Mater. Sci. 54, 397–425 (2009).CrossRef M. Geeta, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopedic implants – A review,” Prog. Mater. Sci. 54, 397–425 (2009).CrossRef
11.
go back to reference A. G. Illarionov, S. V. Grib, S. M. Illarionova and A. A. Popov, “Relationship between structure, phase composition, and physicomechanical properties of quenched Ti–Nb alloys,” Phys. Met. Metallogr. 120, 150–156 (2019).CrossRef A. G. Illarionov, S. V. Grib, S. M. Illarionova and A. A. Popov, “Relationship between structure, phase composition, and physicomechanical properties of quenched Ti–Nb alloys,” Phys. Met. Metallogr. 120, 150–156 (2019).CrossRef
12.
go back to reference Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, and Y. Li, “New developments of Ti-based alloys for biomedical applications,” Materials 7, 1709–1800 (2014).CrossRef Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, and Y. Li, “New developments of Ti-based alloys for biomedical applications,” Materials 7, 1709–1800 (2014).CrossRef
13.
go back to reference S. Guo, Q. Meng, X. Zhao, Q. Wet, H. Xu, “Design and fabrication of metastable β-type titanium alloy with ultralow elastic modulus and high strength,” Sci. Rep. 5, 14688 (2015).CrossRef S. Guo, Q. Meng, X. Zhao, Q. Wet, H. Xu, “Design and fabrication of metastable β-type titanium alloy with ultralow elastic modulus and high strength,” Sci. Rep. 5, 14688 (2015).CrossRef
14.
go back to reference V. A. Sheremetyev, S. D. Prokoshkin, V. Brailovski, S. M. Dubinskiy, A. V. Korotitskiy, M. R. Filonov, and M. I. Petrzhik, “Investigation of the structure stability and superelastic behavior of thermomechanically treated Ti–Nb–Zr and Ti–Nb–Ta shape-memory alloys,” Phys. Met. Metallogr. 116, 413–422 (2015).CrossRef V. A. Sheremetyev, S. D. Prokoshkin, V. Brailovski, S. M. Dubinskiy, A. V. Korotitskiy, M. R. Filonov, and M. I. Petrzhik, “Investigation of the structure stability and superelastic behavior of thermomechanically treated Ti–Nb–Zr and Ti–Nb–Ta shape-memory alloys,” Phys. Met. Metallogr. 116, 413–422 (2015).CrossRef
15.
go back to reference K. Wouters, P. Gijsenbergh, and R. Puers, “Comparison of methods for the mechanical characterization of polymers for MEMS applications,” J. Micromech. Microeng. 21, 115027 (2011).CrossRef K. Wouters, P. Gijsenbergh, and R. Puers, “Comparison of methods for the mechanical characterization of polymers for MEMS applications,” J. Micromech. Microeng. 21, 115027 (2011).CrossRef
16.
go back to reference N. C. Sheth, Y. V. Rathod, P. R. Shenoi, D. D. Shori, R. T. Khode, and A. P. Khadse, “Evaluation of new technique of sterilization using biological indicator,” J. Conservative Dent. 20, 346–350 (2017).CrossRef N. C. Sheth, Y. V. Rathod, P. R. Shenoi, D. D. Shori, R. T. Khode, and A. P. Khadse, “Evaluation of new technique of sterilization using biological indicator,” J. Conservative Dent. 20, 346–350 (2017).CrossRef
17.
go back to reference U. Tsvikker, Titanium and Its Alloys (Mir, Moscow, 1979) [in Russian]. U. Tsvikker, Titanium and Its Alloys (Mir, Moscow, 1979) [in Russian].
18.
go back to reference D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Mater. 122, 448–511 (2017).CrossRef D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Mater. 122, 448–511 (2017).CrossRef
19.
go back to reference A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, Properties (VILS–MATI, Moscow, 2009) [in Russian] A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, Properties (VILS–MATI, Moscow, 2009) [in Russian]
20.
go back to reference O. P. Shaboldo, Ya. M. Vitorskii, V. V. Sagaradze, N. L. Pecherkina and M. A. Skotnikova, “Formation of the structure and properties of β-type titanium alloy upon thermomechanical treatment,” Phys. Met. Metallogr. 118, 75–80 (2017).CrossRef O. P. Shaboldo, Ya. M. Vitorskii, V. V. Sagaradze, N. L. Pecherkina and M. A. Skotnikova, “Formation of the structure and properties of β-type titanium alloy upon thermomechanical treatment,” Phys. Met. Metallogr. 118, 75–80 (2017).CrossRef
21.
go back to reference T. Saito, T. Furuta, J.-H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Noraka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, and T. Sakuma, “Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism,” Science 18, 464–467 (2003).CrossRef T. Saito, T. Furuta, J.-H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Noraka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, and T. Sakuma, “Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism,” Science 18, 464–467 (2003).CrossRef
22.
go back to reference A. G. Illarionov, Yu. N. Loginov, S. I. Stepanov, S. M. Illarionova, and P. S. Radaev, “Variation of the structure-and-phase condition and physical and mechanical properties of cold-deformed leaded brass under heating,” Metalloved. Term. Obr. Mater., No. 4, 39–45 (2019). A. G. Illarionov, Yu. N. Loginov, S. I. Stepanov, S. M. Illarionova, and P. S. Radaev, “Variation of the structure-and-phase condition and physical and mechanical properties of cold-deformed leaded brass under heating,” Metalloved. Term. Obr. Mater., No. 4, 39–45 (2019).
23.
go back to reference I. Obinata and K. Nishimura, “On the recrystallization of cold-rolled commercially pure Ti,” J. Inst. Met. 84, 97–101 (1955). I. Obinata and K. Nishimura, “On the recrystallization of cold-rolled commercially pure Ti,” J. Inst. Met. 84, 97–101 (1955).
24.
go back to reference P. Zháňal, P. Harcuba, M. Hájek, B. Smola, J. Stráský, J. Šmilauerová, J. Veselý, and M. Janeček, “Evolution of ω phase during heating of metastable β titanium alloy Ti–15Mo,” J. Mater. Sci. 53, 837–845 (2018).CrossRef P. Zháňal, P. Harcuba, M. Hájek, B. Smola, J. Stráský, J. Šmilauerová, J. Veselý, and M. Janeček, “Evolution of ω phase during heating of metastable β titanium alloy Ti–15Mo,” J. Mater. Sci. 53, 837–845 (2018).CrossRef
25.
go back to reference D. L. Moffat and U. R. Kattner, “The stable and metastable Ti-Nb phase diagrams,” Metall. Trans. A 19, 2389–2397 (1988).CrossRef D. L. Moffat and U. R. Kattner, “The stable and metastable Ti-Nb phase diagrams,” Metall. Trans. A 19, 2389–2397 (1988).CrossRef
26.
go back to reference Y. Wang, J. Gao, H. Wu, S. Yang, X. Ding, D. Wang, and J. Gao, “Strain glass transition in a multifunctional β-type Ti alloy,” Sci. Rep. 4, 1–5 (2014). Y. Wang, J. Gao, H. Wu, S. Yang, X. Ding, D. Wang, and J. Gao, “Strain glass transition in a multifunctional β-type Ti alloy,” Sci. Rep. 4, 1–5 (2014).
27.
go back to reference S. L. Demakov, S. I. Stepanov, A. G. Illarionov and M. A. Ryzhkov, “Thermal-expansion anisotropy of orthorhombic martensite in the two-phase (α + β) titanium alloy,” Phys. Met. Metallogr. 118, 264–271 (2017).CrossRef S. L. Demakov, S. I. Stepanov, A. G. Illarionov and M. A. Ryzhkov, “Thermal-expansion anisotropy of orthorhombic martensite in the two-phase (α + β) titanium alloy,” Phys. Met. Metallogr. 118, 264–271 (2017).CrossRef
28.
go back to reference S. G. Glazunov and V. N. Moiseev, StructuralTitanium Allots (Metallurgiya, Moscow, 1974) [in Russian]. S. G. Glazunov and V. N. Moiseev, StructuralTitanium Allots (Metallurgiya, Moscow, 1974) [in Russian].
Metadata
Title
Structure, Phase Composition, and Mechanical Properties of Biocompatible Titanium Alloys of Different Types
Authors
A. G. Illarionov
A. G. Nezhdanov
S. I. Stepanov
G. Muller-Kamskii
A. A. Popov
Publication date
01-04-2020
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 4/2020
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20040055

Other articles of this Issue 4/2020

Physics of Metals and Metallography 4/2020 Go to the issue