Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2022

21-09-2021

Super-Hydrophobic Nanostructured Silica Coating on Aluminum Substrate for Moist Air Condensation

Authors: Deepak Kumar Sharma, Basant Singh Sikarwar, Sumant Upadhyay, Ranjit Kumar, D. K. Avasthi, Mukesh Ranjan, Sanjeev Kumar Srivastava, K. Muralidhar

Published in: Journal of Materials Engineering and Performance | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present work, nanostructured functionalized silica is coated on an aluminum (Al) substrate by the spray pyrolysis method to create a stable and effective super-hydrophobic substrate for water harvesting via moist air. Substrate characterization reveals that (1) major diffraction peaks corresponding to crystoballite SiO2 (C-SiO2), quartz (Q-SiO2), Al2O3, and Al2SiO5 are to be found at SiO2/Al interface; (2) strong chemically bonded methyl functionalized silica is confirmed on the Al surface by Fourier-transform infrared spectroscopy (FT-IR) and x-ray photoelectron spectrometry (XPS) shows the presence of Al-O-Si bond at the interface; and (3) the equilibrium contact angle of the water droplet on the coated substrate is measured to be 156° ± 5° with a hysteresis of 10° ± 3°. The coating is found to be stable for more than 365 days in a humid atmosphere. Finally, moist air condensation experiments confirm substantial augmentation of condensate collected ranging from 188 ml/m2-h over an untreated aluminum substrate to 750 ml/m2-h over the coated substrate. Hence, it is concluded that nanostructured silica-coated Al substrate is highly effective for enhancing the condensation of water vapor from a moist air environment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B.S. Sikarwar, S. Khandekar, S. Agrawal, S. Kumar and K. Muralidhar, Dropwise Condensation Studies on Multiple Scales, Heat Transf. Eng., 2012, 33, p 301–341. CrossRef B.S. Sikarwar, S. Khandekar, S. Agrawal, S. Kumar and K. Muralidhar, Dropwise Condensation Studies on Multiple Scales, Heat Transf. Eng., 2012, 33, p 301–341. CrossRef
2.
go back to reference J.-W. Lee, D.-Y. Ji, K.-Y. Lee and W. Hwang, A Study of Droplet-Behavior Transition on Superhydrophobic Surfaces for Efficiency Enhancement of Condensation Heat Transfer, ACS Omega, 2020, 5, p 27880–27885. CrossRef J.-W. Lee, D.-Y. Ji, K.-Y. Lee and W. Hwang, A Study of Droplet-Behavior Transition on Superhydrophobic Surfaces for Efficiency Enhancement of Condensation Heat Transfer, ACS Omega, 2020, 5, p 27880–27885. CrossRef
3.
go back to reference A. Khaskhoussi, L. Calabrese and E. Proverbio, Superhydrophobic Self-Assembled Silane Monolayers on Hierarchical 6082 Aluminum Alloy for Anti-Corrosion Applications, Appl. Sci. MDPI, 2020, 10, p 1–15. A. Khaskhoussi, L. Calabrese and E. Proverbio, Superhydrophobic Self-Assembled Silane Monolayers on Hierarchical 6082 Aluminum Alloy for Anti-Corrosion Applications, Appl. Sci. MDPI, 2020, 10, p 1–15.
4.
go back to reference B.S. Sikarwar, S. Khandekar and K. Muralidhar, Simulation of Flow and Heat Transfer in a Liquid Drop Sliding Underneath a Hydrophobic Surface, Int. J. Heat Mass Transf., 2013, 57, p 786–811. CrossRef B.S. Sikarwar, S. Khandekar and K. Muralidhar, Simulation of Flow and Heat Transfer in a Liquid Drop Sliding Underneath a Hydrophobic Surface, Int. J. Heat Mass Transf., 2013, 57, p 786–811. CrossRef
5.
go back to reference J.E. Castillo, J.A. Weibel and S. Garimella, The Effect of Relative Humidity on Dropwise Condensation Dynamics, Int. J. Heat Mass Transf., 2015, 80, p 759–766. CrossRef J.E. Castillo, J.A. Weibel and S. Garimella, The Effect of Relative Humidity on Dropwise Condensation Dynamics, Int. J. Heat Mass Transf., 2015, 80, p 759–766. CrossRef
6.
go back to reference V. Baghel, B.S. Sikarwar and K. Muralidhar, Dropwise Condensation from Moist Air Over a Hydrophobic Metallic Substrate, Appl. Therm. Eng., 2020, 181, p 1–17. CrossRef V. Baghel, B.S. Sikarwar and K. Muralidhar, Dropwise Condensation from Moist Air Over a Hydrophobic Metallic Substrate, Appl. Therm. Eng., 2020, 181, p 1–17. CrossRef
7.
go back to reference D. Attinger, C. Frankiewicz, A.R. Betz, T.M. Schutzius, R. Ganguly, A. Das, C.-J. Kim, and C.M. Megaridis, Surface Engineering for Phase Change Heat Transfer: A Review, MRS Energy Sustain., 2014, 1, p 1–40.CrossRef D. Attinger, C. Frankiewicz, A.R. Betz, T.M. Schutzius, R. Ganguly, A. Das, C.-J. Kim, and C.M. Megaridis, Surface Engineering for Phase Change Heat Transfer: A Review, MRS Energy Sustain., 2014, 1, p 1–40.CrossRef
8.
go back to reference V. Baghel and B.S. Sikarwar, Moist Air Condensation on Inclined Hydrophobic Metallic Surfaces: Simulation & Experiments, in: J.o.P.C. Series (Ed.) 5th International Workshop on Heat/Mass Transfer Advances for Energy Conservation and Pollution Control, IOP Publishing, Novosibirsk, Russia (2019), pp. 1–7. V. Baghel and B.S. Sikarwar, Moist Air Condensation on Inclined Hydrophobic Metallic Surfaces: Simulation & Experiments, in: J.o.P.C. Series (Ed.) 5th International Workshop on Heat/Mass Transfer Advances for Energy Conservation and Pollution Control, IOP Publishing, Novosibirsk, Russia (2019), pp. 1–7.
9.
go back to reference B. Bhushan, Design of Water Harvesting Towers and Projections for Water Collection From Fog and Condensation, Philos. Trans. R. Soc. A, 2020, 378, p 1–37. B. Bhushan, Design of Water Harvesting Towers and Projections for Water Collection From Fog and Condensation, Philos. Trans. R. Soc. A, 2020, 378, p 1–37.
10.
go back to reference B.E. Fil, G. Kini and S. Garimella, A Review of Dropwise Condensation: Theory, Modeling, Experiments, and Applications, Int. J. Heat Mass Transf., 2020, 160, p 1–21. B.E. Fil, G. Kini and S. Garimella, A Review of Dropwise Condensation: Theory, Modeling, Experiments, and Applications, Int. J. Heat Mass Transf., 2020, 160, p 1–21.
11.
go back to reference K. Liu and L. Jiang, Metallic Surfaces with Special Wettability, Nanoscale, 2011, 3, p 1–14. CrossRef K. Liu and L. Jiang, Metallic Surfaces with Special Wettability, Nanoscale, 2011, 3, p 1–14. CrossRef
12.
go back to reference S.P. Dalawai, M.A.S. Aly, S.S. Latthe, R. Xing, R.S. Sutar, S. Nagappan, C.-S. Ha and K.K. Sadasivuni, Recent Advances in Durability of Superhydrophobic Self-Cleaning Technology: A Critical Review, Prog. Org. Coat., 2020, 138, p 105381–105396. CrossRef S.P. Dalawai, M.A.S. Aly, S.S. Latthe, R. Xing, R.S. Sutar, S. Nagappan, C.-S. Ha and K.K. Sadasivuni, Recent Advances in Durability of Superhydrophobic Self-Cleaning Technology: A Critical Review, Prog. Org. Coat., 2020, 138, p 105381–105396. CrossRef
13.
go back to reference S. Parvate, P. Dixit and S. Chattopadhyay, Superhydrophobic Surfaces: Insights from Theory and Experiment, J. Phys. Chem. B, 2020, 124, p 1323–1360. CrossRef S. Parvate, P. Dixit and S. Chattopadhyay, Superhydrophobic Surfaces: Insights from Theory and Experiment, J. Phys. Chem. B, 2020, 124, p 1323–1360. CrossRef
14.
go back to reference S. Ghaffari, M. Aliofkhazraei, G.B. Darband, A. Zakeri and E. Ahmadi, Review of Superoleophobic Surfaces: Evaluation, Fabrication Methods, and Industrial Applications, Surfaces and Interfaces, 2019, 17, p 100340. CrossRef S. Ghaffari, M. Aliofkhazraei, G.B. Darband, A. Zakeri and E. Ahmadi, Review of Superoleophobic Surfaces: Evaluation, Fabrication Methods, and Industrial Applications, Surfaces and Interfaces, 2019, 17, p 100340. CrossRef
15.
go back to reference B. Bhushan, Y.C. Jung and K. Koch, Micro-, Nano- and Hierarchical Structures for Superhydrophobicity, Self-Cleaning and Low Adhesion, Philos. Trans. A Math. Phys. Eng. Sci., 2009, 367, p 1631–1672. B. Bhushan, Y.C. Jung and K. Koch, Micro-, Nano- and Hierarchical Structures for Superhydrophobicity, Self-Cleaning and Low Adhesion, Philos. Trans. A Math. Phys. Eng. Sci., 2009, 367, p 1631–1672.
16.
go back to reference Z. Yuan, X. Wang, J. Bin, C. Peng, S. Xing, M. Wang, J. Xiao, J. Zeng, Y. Xie, X. Xiao, X. Fu, H. Gong and D. Zhao, A Novel Fabrication of a Superhydrophobic Surface with Highly Similar Hierarchical Structure of the Lotus Leaf on a Copper Sheet, Appl. Surf. Sci., 2013, 285, p 205–210. CrossRef Z. Yuan, X. Wang, J. Bin, C. Peng, S. Xing, M. Wang, J. Xiao, J. Zeng, Y. Xie, X. Xiao, X. Fu, H. Gong and D. Zhao, A Novel Fabrication of a Superhydrophobic Surface with Highly Similar Hierarchical Structure of the Lotus Leaf on a Copper Sheet, Appl. Surf. Sci., 2013, 285, p 205–210. CrossRef
17.
go back to reference W. Barthlott and C. Neinhuis, Purity of the Sacred Lotus, or Escape From Contamination in Biological Surfaces, Planta, 1996, 202, p 1–8. CrossRef W. Barthlott and C. Neinhuis, Purity of the Sacred Lotus, or Escape From Contamination in Biological Surfaces, Planta, 1996, 202, p 1–8. CrossRef
18.
go back to reference V. Baghel, B.S. Sikarwar, D.K. Sharma and D.K. Avasthi, A Correlation of Metallic Surface Roughness With Its Hydrophobicity for Dropwise Condensation, Mater. Today Proc., 2020, 21, p 1446–1452. CrossRef V. Baghel, B.S. Sikarwar, D.K. Sharma and D.K. Avasthi, A Correlation of Metallic Surface Roughness With Its Hydrophobicity for Dropwise Condensation, Mater. Today Proc., 2020, 21, p 1446–1452. CrossRef
19.
go back to reference Z. Gong, J. Wang, L. Wu, X. Wang, G. Lü and L. Liao, Fabrication of Super Hydrophobic Surfaces on Copper by Solution-immersion, Chin. J. Chem. Eng., 2013, 21, p 920–926. CrossRef Z. Gong, J. Wang, L. Wu, X. Wang, G. Lü and L. Liao, Fabrication of Super Hydrophobic Surfaces on Copper by Solution-immersion, Chin. J. Chem. Eng., 2013, 21, p 920–926. CrossRef
20.
go back to reference A.O. Ijaola, E.A. Bamidele, C.J. Akisin, I.T. Bello, A.T. Oyatobo, A. Abdulkareem, P.K. Farayibi and E. Asmatulu, Wettability Transition for Laser Textured Surfaces: A Comprehensive Review, Surf. Interfaces, 2020, 21, p 1–90. A.O. Ijaola, E.A. Bamidele, C.J. Akisin, I.T. Bello, A.T. Oyatobo, A. Abdulkareem, P.K. Farayibi and E. Asmatulu, Wettability Transition for Laser Textured Surfaces: A Comprehensive Review, Surf. Interfaces, 2020, 21, p 1–90.
21.
go back to reference D.-M. Chun, C.-V. Ngo and K.-M. Lee, Fast Fabrication of Superhydrophobic Metallic surface Using Nanosecond Laser Texturing and low-Temperature Annealing, CIRP Ann. Manuf. Technol., 2016, 65, p 519–522. CrossRef D.-M. Chun, C.-V. Ngo and K.-M. Lee, Fast Fabrication of Superhydrophobic Metallic surface Using Nanosecond Laser Texturing and low-Temperature Annealing, CIRP Ann. Manuf. Technol., 2016, 65, p 519–522. CrossRef
22.
go back to reference U. Eduok, R. Suleiman, M. Khaled and R. Akid, Enhancing Water Repellency and Anticorrosion Properties of a Hybrid Silica Coating on Mild Steel, Prog. Org. Coat., 2016, 93, p 97–108. CrossRef U. Eduok, R. Suleiman, M. Khaled and R. Akid, Enhancing Water Repellency and Anticorrosion Properties of a Hybrid Silica Coating on Mild Steel, Prog. Org. Coat., 2016, 93, p 97–108. CrossRef
23.
go back to reference T. Bharathidasan and S. Sathiyanaryanan, Self-Replenishing Superhydrophobic Durable Polymeric Nanocomposite Coatings for Heat Exchanger Channels in Thermal Management Applications, Prog. Organ. Coat., 2020, 148, p 105828. CrossRef T. Bharathidasan and S. Sathiyanaryanan, Self-Replenishing Superhydrophobic Durable Polymeric Nanocomposite Coatings for Heat Exchanger Channels in Thermal Management Applications, Prog. Organ. Coat., 2020, 148, p 105828. CrossRef
24.
go back to reference R. Sun, J. Zhao, Z. Li, J. Mo, Y. Pan and D. Luo, Preparation of Mechanically Durable Superhydrophobic Aluminum Surface by Sandblasting and Chemical Modification, Prog. Org. Coat., 2019, 133, p 77–84. CrossRef R. Sun, J. Zhao, Z. Li, J. Mo, Y. Pan and D. Luo, Preparation of Mechanically Durable Superhydrophobic Aluminum Surface by Sandblasting and Chemical Modification, Prog. Org. Coat., 2019, 133, p 77–84. CrossRef
25.
go back to reference H. Wang, D. Dai and X. Wu, Fabrication of Superhydrophobic Surfaces on Aluminum, Appl. Surf. Sci., 2008, 254, p 5599–5601. CrossRef H. Wang, D. Dai and X. Wu, Fabrication of Superhydrophobic Surfaces on Aluminum, Appl. Surf. Sci., 2008, 254, p 5599–5601. CrossRef
26.
go back to reference S.M. Emarati and M. Mozammel, Fabrication of Superhydrophobic Titanium Dioxide Coating on AISI 316L Stainless Steel by Electrophoretic Deposition and Using Trimethoxy(Propyl)Silane Modification, Surf. Eng., 2018, 35, p 456–465. CrossRef S.M. Emarati and M. Mozammel, Fabrication of Superhydrophobic Titanium Dioxide Coating on AISI 316L Stainless Steel by Electrophoretic Deposition and Using Trimethoxy(Propyl)Silane Modification, Surf. Eng., 2018, 35, p 456–465. CrossRef
27.
go back to reference M. Psarski, J. Marczak, J. Grobelny and G. Celichowski, Superhydrophobic Surface by Replication of LaserMicromachined Pattern in Epoxy/Alumina Nanoparticle Composite, J. Nanomater., 2014, 2014, p 11. CrossRef M. Psarski, J. Marczak, J. Grobelny and G. Celichowski, Superhydrophobic Surface by Replication of LaserMicromachined Pattern in Epoxy/Alumina Nanoparticle Composite, J. Nanomater., 2014, 2014, p 11. CrossRef
28.
go back to reference N. Tasaltin, D. Sanli, A. Jonáš, A. Kiraz and C. Erkey, Preparation and Characterization of Superhydrophobic Surfaces Based on Hexamethyldisilazane-Modified Nanoporous Alumina, Nanoscale Res. Lett., 2011, 4, p 487–495. CrossRef N. Tasaltin, D. Sanli, A. Jonáš, A. Kiraz and C. Erkey, Preparation and Characterization of Superhydrophobic Surfaces Based on Hexamethyldisilazane-Modified Nanoporous Alumina, Nanoscale Res. Lett., 2011, 4, p 487–495. CrossRef
29.
go back to reference S. Zheng, C. Li, Q. Fu, M. Li, W. Hu, Q. Wang, M. Du, X. Liu and Z. Chen, Fabrication of Self-Cleaning Superhydrophobic Surface on Aluminum Alloys with Excellent Corrosion Resistance, Surf. Coat. Technol., 2015, 276, p 341–348. CrossRef S. Zheng, C. Li, Q. Fu, M. Li, W. Hu, Q. Wang, M. Du, X. Liu and Z. Chen, Fabrication of Self-Cleaning Superhydrophobic Surface on Aluminum Alloys with Excellent Corrosion Resistance, Surf. Coat. Technol., 2015, 276, p 341–348. CrossRef
30.
go back to reference B. Subeshan, A. Usta and R. Asmatulu, Deicing and Self-Cleaning of Plasma-Treated Superhydrophobic Coatings on the Surface of Aluminum Alloy Sheets, Surf. Interfaces, 2020, 18, p 100429. CrossRef B. Subeshan, A. Usta and R. Asmatulu, Deicing and Self-Cleaning of Plasma-Treated Superhydrophobic Coatings on the Surface of Aluminum Alloy Sheets, Surf. Interfaces, 2020, 18, p 100429. CrossRef
31.
go back to reference M. Amiriafshar, M. Rafieazad, X. Duan and A. Nasiri, Fabrication and Coating Adhesion Study of Superhydrophobic Stainless Steel Surfaces: The Effect of Substrate Surface Roughness, Surf. Interfaces, 2020, 20, p 100526. CrossRef M. Amiriafshar, M. Rafieazad, X. Duan and A. Nasiri, Fabrication and Coating Adhesion Study of Superhydrophobic Stainless Steel Surfaces: The Effect of Substrate Surface Roughness, Surf. Interfaces, 2020, 20, p 100526. CrossRef
32.
go back to reference C.N. Niu, J.Y. Han, S.P. Hu, D.Y. Chao, X.G. Song, M.M.R. Howlader and J. Cao, Fast and Environmentally Friendly Fabrication of Superhydrophilic-Superhydrophobic Patterned Aluminum Surfaces, Surf. Interfaces, 2021, 22, p 100830. CrossRef C.N. Niu, J.Y. Han, S.P. Hu, D.Y. Chao, X.G. Song, M.M.R. Howlader and J. Cao, Fast and Environmentally Friendly Fabrication of Superhydrophilic-Superhydrophobic Patterned Aluminum Surfaces, Surf. Interfaces, 2021, 22, p 100830. CrossRef
33.
go back to reference R. Parin, A. Martucci, M. Sturaro, S. Bortolin, M. Bersani, F. Carraro and D.D. Col, Nano-Structured Aluminum Surfaces for Dropwise Condensation, Surf. Coat. Technol., 2018, 348, p 1–12. CrossRef R. Parin, A. Martucci, M. Sturaro, S. Bortolin, M. Bersani, F. Carraro and D.D. Col, Nano-Structured Aluminum Surfaces for Dropwise Condensation, Surf. Coat. Technol., 2018, 348, p 1–12. CrossRef
34.
go back to reference A. Kim, C. Lee, H. Kim and J. Kim, Simple Approach to Superhydrophobic Nanostructured Al for Practical Anti-Frosting Application based on Enhanced Self-Propelled Jumping Droplets, ACS Appl. Mater. Interfaces, 2015, 7, p 7026–7213. A. Kim, C. Lee, H. Kim and J. Kim, Simple Approach to Superhydrophobic Nanostructured Al for Practical Anti-Frosting Application based on Enhanced Self-Propelled Jumping Droplets, ACS Appl. Mater. Interfaces, 2015, 7, p 7026–7213.
35.
go back to reference J. Li, Z. Zhao, Y. Zhang, B. Xiang, X. Tang and H. She, Facile Fabrication of Superhydrophobic Silica Coatings with Excellent Corrosion Resistance and Liquid Marbles, J. Sol-Gel Sci Technol., 2016, 80, p 208–214. CrossRef J. Li, Z. Zhao, Y. Zhang, B. Xiang, X. Tang and H. She, Facile Fabrication of Superhydrophobic Silica Coatings with Excellent Corrosion Resistance and Liquid Marbles, J. Sol-Gel Sci Technol., 2016, 80, p 208–214. CrossRef
36.
go back to reference Y. Zhou, Y. Ma, C. Qi, L. Shen, Q. Fu, Y. Sun and Y. Liu, Superhydrophobic Surface Based on Nano-Engineering for Enhancing the Durability of Anticorrosion, Surf. Eng., 2020, 37, p 288–298. CrossRef Y. Zhou, Y. Ma, C. Qi, L. Shen, Q. Fu, Y. Sun and Y. Liu, Superhydrophobic Surface Based on Nano-Engineering for Enhancing the Durability of Anticorrosion, Surf. Eng., 2020, 37, p 288–298. CrossRef
37.
go back to reference N.V. Motlagh, J. Sargolzaei and N. Shahtahmassebi, Super-Liquid-Repellent Coating on the Carbon Steel Surface, Surf. Coat. Technol., 2013, 235, p 241–249. CrossRef N.V. Motlagh, J. Sargolzaei and N. Shahtahmassebi, Super-Liquid-Repellent Coating on the Carbon Steel Surface, Surf. Coat. Technol., 2013, 235, p 241–249. CrossRef
38.
go back to reference S. Adera, L. Naworski, A. Davitt, N.K. Mandsberg, A. Shneidman, J. Alvarenga and J. Aizenberg, Enhanced Condensation Heat Transfer Using Porous Silica Inverse Opal Coatings on Copper Tubes, Sci. Rep., 2021, 11, 10675.CrossRef S. Adera, L. Naworski, A. Davitt, N.K. Mandsberg, A. Shneidman, J. Alvarenga and J. Aizenberg, Enhanced Condensation Heat Transfer Using Porous Silica Inverse Opal Coatings on Copper Tubes, Sci. Rep., 2021, 11, 10675.CrossRef
39.
go back to reference W. Kraus and G. Nolze, POWDER CELL—A Program for the Representation and Manipulation Of Crystal Structures and Calculation of the Resulting X-Ray Powder Patterns, J. Appl. Cryst., 1996, 29, p 301–303. CrossRef W. Kraus and G. Nolze, POWDER CELL—A Program for the Representation and Manipulation Of Crystal Structures and Calculation of the Resulting X-Ray Powder Patterns, J. Appl. Cryst., 1996, 29, p 301–303. CrossRef
41.
go back to reference H. Shelton, T. Bi, E. Zurek, J. Smith and P. Dera, The Ideal Crystal Structure of Cristobalite X-I: A Bridge in SiO Densification, J. Phys. Chem. C, 2018, 122, p 17446. CrossRef H. Shelton, T. Bi, E. Zurek, J. Smith and P. Dera, The Ideal Crystal Structure of Cristobalite X-I: A Bridge in SiO Densification, J. Phys. Chem. C, 2018, 122, p 17446. CrossRef
44.
go back to reference K. Persson, Materials Data on Al2SiO5 (SG:62) by Materials Project, in, United States (2014). K. Persson, Materials Data on Al2SiO5 (SG:62) by Materials Project, in, United States (2014).
45.
go back to reference B. Zhang, W. Xu, Q. Zhu, Y. Li and B. Hou, Ultrafast one step construction of non-fluorinated superhydrophobic aluminum surfaces with remarkable improvement of corrosion resistance and anti-contamination, J Colloid Interface Sci, 2018, 532, p 201–209. CrossRef B. Zhang, W. Xu, Q. Zhu, Y. Li and B. Hou, Ultrafast one step construction of non-fluorinated superhydrophobic aluminum surfaces with remarkable improvement of corrosion resistance and anti-contamination, J Colloid Interface Sci, 2018, 532, p 201–209. CrossRef
46.
go back to reference N.S. Saleema, D.K.D. Gallant, R.W. Paynter and X.-G. Chen, Chemical Nature of Superhydrophobic Aluminum Alloy Surfaces Produced via a One-Step Process Using Fluoroalkyl-Silane in a Base Medium, ACS Appl. Mater. Interfaces, 2011, 12, p 4775–4781. CrossRef N.S. Saleema, D.K.D. Gallant, R.W. Paynter and X.-G. Chen, Chemical Nature of Superhydrophobic Aluminum Alloy Surfaces Produced via a One-Step Process Using Fluoroalkyl-Silane in a Base Medium, ACS Appl. Mater. Interfaces, 2011, 12, p 4775–4781. CrossRef
47.
go back to reference D.K. Sharma, R. Kumar, D.K. Avasthi and B.S. Sikarwar, Self Assembly of Super-hydrophobic Nanotextured Methyl Functionalized Silica on Copper and Aluminium Surfaces for Moist Air Condensation, Colloids Surf. A, 2020, 605, p 1–8. CrossRef D.K. Sharma, R. Kumar, D.K. Avasthi and B.S. Sikarwar, Self Assembly of Super-hydrophobic Nanotextured Methyl Functionalized Silica on Copper and Aluminium Surfaces for Moist Air Condensation, Colloids Surf. A, 2020, 605, p 1–8. CrossRef
48.
go back to reference B.V. Crist, XPS XI BE Lookup Table in: B.L. Table (Ed.), XPS Library, Salem, Oregon United States (2019). B.V. Crist, XPS XI BE Lookup Table in: B.L. Table (Ed.), XPS Library, Salem, Oregon United States (2019).
49.
go back to reference R.-C. Feng, Q.-Q. Sun, P. Zhou, W. Yang, P.-F. Wang and D.W. Zhang, High-Performance Bilayer Flexible Resistive Random Access Memory Based on Low-Temperature Thermal Atomic Layer Deposition, Nanoscale Res. Lett., 2013, 92, p 1–7. R.-C. Feng, Q.-Q. Sun, P. Zhou, W. Yang, P.-F. Wang and D.W. Zhang, High-Performance Bilayer Flexible Resistive Random Access Memory Based on Low-Temperature Thermal Atomic Layer Deposition, Nanoscale Res. Lett., 2013, 92, p 1–7.
50.
go back to reference R. Aghaei and A. Eshaghi, Optical and Superhydrophilic Properties of Nanoporous Silica-Silica Nanocomposite Thin Film, J. Alloys Compd., 2017, 699, p 112–118. CrossRef R. Aghaei and A. Eshaghi, Optical and Superhydrophilic Properties of Nanoporous Silica-Silica Nanocomposite Thin Film, J. Alloys Compd., 2017, 699, p 112–118. CrossRef
51.
go back to reference K. Meera, C.S. Yang and C.K. Choi, Bonding Structure and Electrical Properties of SiOC(-H) Films Deposited with a Methyltrimethoxysilane Precursor by Using Inductively Coupled Plasma Chemical Vapor Deposition, J. Korean Phys. Soc., 2006, 48, p 1713–1718. K. Meera, C.S. Yang and C.K. Choi, Bonding Structure and Electrical Properties of SiOC(-H) Films Deposited with a Methyltrimethoxysilane Precursor by Using Inductively Coupled Plasma Chemical Vapor Deposition, J. Korean Phys. Soc., 2006, 48, p 1713–1718.
52.
go back to reference F.S. Ohuchi, S. Ghose, M.H. Engelhard and D.R. Baer, Chemical Bonding and Electronic Structures of the Al2SiO5 Polymorphs, Andalusite, Sillimanite, and Kyanite: X-ray Photoelectron- and Electron Energy Loss Spectroscopy Studies, Am. Miner., 2006, 91, p 740–746. CrossRef F.S. Ohuchi, S. Ghose, M.H. Engelhard and D.R. Baer, Chemical Bonding and Electronic Structures of the Al2SiO5 Polymorphs, Andalusite, Sillimanite, and Kyanite: X-ray Photoelectron- and Electron Energy Loss Spectroscopy Studies, Am. Miner., 2006, 91, p 740–746. CrossRef
53.
go back to reference M. Biesinger, X-ray Photoelectron Spectroscopy (XPS) Reference Pages, Surface Science Western. M. Biesinger Ed., Biesinger, Mark, 2009 M. Biesinger, X-ray Photoelectron Spectroscopy (XPS) Reference Pages, Surface Science Western. M. Biesinger Ed., Biesinger, Mark, 2009
54.
go back to reference K. Liu, Z. Huang, A. Hemmatifar, D.I. Oyarzun, J. Zhou and J.G. Santiago, Self-Cleaning Porous Surfaces for Dry Condensation, ACS Appl. Mater. Interfaces, 2018, 8, p 26759–26764. CrossRef K. Liu, Z. Huang, A. Hemmatifar, D.I. Oyarzun, J. Zhou and J.G. Santiago, Self-Cleaning Porous Surfaces for Dry Condensation, ACS Appl. Mater. Interfaces, 2018, 8, p 26759–26764. CrossRef
55.
go back to reference H. Kim, S.R. Rao, E.A. Kapustin, L. Zhao, S. Yang, O.M. Yaghi and E.N. Wang, Adsorption-Based Atmospheric Water Harvesting Device for Arid Climates, Nat. Commun., 2018, 9, p 1191. CrossRef H. Kim, S.R. Rao, E.A. Kapustin, L. Zhao, S. Yang, O.M. Yaghi and E.N. Wang, Adsorption-Based Atmospheric Water Harvesting Device for Arid Climates, Nat. Commun., 2018, 9, p 1191. CrossRef
Metadata
Title
Super-Hydrophobic Nanostructured Silica Coating on Aluminum Substrate for Moist Air Condensation
Authors
Deepak Kumar Sharma
Basant Singh Sikarwar
Sumant Upadhyay
Ranjit Kumar
D. K. Avasthi
Mukesh Ranjan
Sanjeev Kumar Srivastava
K. Muralidhar
Publication date
21-09-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06254-6

Other articles of this Issue 2/2022

Journal of Materials Engineering and Performance 2/2022 Go to the issue

Premium Partners