Skip to main content
Top
Published in: Polymer Science, Series D 1/2022

01-03-2022

Synthesis of Polymethyl-Methacrylate–Collagen-Graft Copolymer Using a Complex Oxide RbTe1.5W0.5O6 Photocatalyst

Authors: L. L. Semenycheva, V. O. Chasova, D. G. Fukina, A. V. Koryagin, N. B. Valetova, E. V. Suleimanov

Published in: Polymer Science, Series D | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Synthesis of polymethyl-methacrylate–collagen graft copolymer was carried out upon initiation of the process by radicals formed by irradiation with visible light (λ = 400–700 nm) of the complex oxide RbTe1.5W0.5O6 at a temperature of 25°C. The characteristics of the new polymer material were obtained by the methods of elemental and physicochemical analyzes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N. Iqbal, A. S. Khan, A. Asif, M. Yar, J. W. Haycock, and I. U. Rehman, “Recent concepts in biodegradable polymers for tissue engineering paradigms: A critical review,” Int. Mater. Rev. 64 (2), 91–126 (2018).CrossRef N. Iqbal, A. S. Khan, A. Asif, M. Yar, J. W. Haycock, and I. U. Rehman, “Recent concepts in biodegradable polymers for tissue engineering paradigms: A critical review,” Int. Mater. Rev. 64 (2), 91–126 (2018).CrossRef
2.
go back to reference A. A. Ivanov, O. P. Popova, T. I. Danilova, and A. V. Kuznetsova, “Strategy of the selection and use of scaffolds in bioengineering,” Usp. Sovrem. Biol. 139 (2), 196–205 (2019). A. A. Ivanov, O. P. Popova, T. I. Danilova, and A. V. Kuznetsova, “Strategy of the selection and use of scaffolds in bioengineering,” Usp. Sovrem. Biol. 139 (2), 196–205 (2019).
3.
go back to reference Q. Huang, Y. Zou, M. C. Arno, S. Chen, T. Wang, J. Gao, A. P. Dove, and J. Du, “Hydrogel scaffolds for differentiation of adipose-derived stem cells,” Chem. Soc. Rev. 46 (20), 6255–6275 (2017).CrossRef Q. Huang, Y. Zou, M. C. Arno, S. Chen, T. Wang, J. Gao, A. P. Dove, and J. Du, “Hydrogel scaffolds for differentiation of adipose-derived stem cells,” Chem. Soc. Rev. 46 (20), 6255–6275 (2017).CrossRef
4.
go back to reference S. Chen, Y. Li, L. Xie, S. Liu, Y. Fan, C. Fang, X. Zhang, J. Quan, and L. Zuo, “Thermosensitive chitosan-collagen composite hydrogel loaded with basic fibroblast growth factor retards ventricular remodeling after myocardial infarction in mice,” Chin. J. Tissue Eng. Res. 25 (16), 2472–2478 (2021). S. Chen, Y. Li, L. Xie, S. Liu, Y. Fan, C. Fang, X. Zhang, J. Quan, and L. Zuo, “Thermosensitive chitosan-collagen composite hydrogel loaded with basic fibroblast growth factor retards ventricular remodeling after myocardial infarction in mice,” Chin. J. Tissue Eng. Res. 25 (16), 2472–2478 (2021).
5.
go back to reference D. Zhang, X. Wu, J. Chen, and K. Lin, “The development of collagen based composite scaffolds for bone regeneration,” Bioact. Mater. 3, 129–138 (2018).CrossRef D. Zhang, X. Wu, J. Chen, and K. Lin, “The development of collagen based composite scaffolds for bone regeneration,” Bioact. Mater. 3, 129–138 (2018).CrossRef
6.
go back to reference T. Al Kayal, P. Losi, and S. A. Pierozzi, “New method for fibrin-based electrospun/sprayed scaffold fabrication,” Sci. Rep. 10 (1), 5111 (2020).CrossRef T. Al Kayal, P. Losi, and S. A. Pierozzi, “New method for fibrin-based electrospun/sprayed scaffold fabrication,” Sci. Rep. 10 (1), 5111 (2020).CrossRef
7.
go back to reference M. N. Egorikhina, D. Ya. Aleinik, Yu. P. Rubtsova, G. Ya Levin, I. N. Charykova, L. L. Semenycheva, M. L. Bugrova, and E. A. Zakharychev, “Hydrogel scffolds based on blood plasma cryoprecipitate and collagen derived from various sources: structural, mechanical and biological characteristics,” Bioact. Mater. 4 (1), 334–345 (2019).CrossRef M. N. Egorikhina, D. Ya. Aleinik, Yu. P. Rubtsova, G. Ya Levin, I. N. Charykova, L. L. Semenycheva, M. L. Bugrova, and E. A. Zakharychev, “Hydrogel scffolds based on blood plasma cryoprecipitate and collagen derived from various sources: structural, mechanical and biological characteristics,” Bioact. Mater. 4 (1), 334–345 (2019).CrossRef
8.
go back to reference M. Ashokkumar and P. M. Ajayan, “Materials science perspective of multifunctional materials derived from collagen,” Int. Mater. Rev. 66 (3), 160–187 (2020).CrossRef M. Ashokkumar and P. M. Ajayan, “Materials science perspective of multifunctional materials derived from collagen,” Int. Mater. Rev. 66 (3), 160–187 (2020).CrossRef
9.
go back to reference M. Castilho, G. Hochleitner, W. Wilson, B. van Rietbergen, P. D. Dalton, J. Groll, J. Malda, and K. Ito, “Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds,” Sci. Rep. 8 (1), 1–10 (2018).CrossRef M. Castilho, G. Hochleitner, W. Wilson, B. van Rietbergen, P. D. Dalton, J. Groll, J. Malda, and K. Ito, “Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds,” Sci. Rep. 8 (1), 1–10 (2018).CrossRef
10.
go back to reference V. M. Oliveira, C. R. Assis, B. A. M. Costa, R. C. A. Neri, F. T. D. Monte, H. M. S. C. V. Freitas, R. C. P. França, J. F. Santos, R. S. Bezerra, and A. L. F. Porto, “Physical, biochemical, densitometric and spectroscopic techniques for characterization collagen from alternative sources: A review based on the sustainable valorization of aquatic by-products,” J. Mol. Struct. 1224, 129023 (2021).CrossRef V. M. Oliveira, C. R. Assis, B. A. M. Costa, R. C. A. Neri, F. T. D. Monte, H. M. S. C. V. Freitas, R. C. P. França, J. F. Santos, R. S. Bezerra, and A. L. F. Porto, “Physical, biochemical, densitometric and spectroscopic techniques for characterization collagen from alternative sources: A review based on the sustainable valorization of aquatic by-products,” J. Mol. Struct. 1224, 129023 (2021).CrossRef
11.
go back to reference M. Toledano, M. Toledano-Osorio, A. Carrasco-Carmona, C. Vallecillo, C. D. Lynch, M. T. Osorio, and R. Osorio, “State of the art on biomaterials for soft tissue augmentation in the oral cavity. Part I: Natural polymers-based biomaterials,” Polymers 12 (8), 1850 (2020).CrossRef M. Toledano, M. Toledano-Osorio, A. Carrasco-Carmona, C. Vallecillo, C. D. Lynch, M. T. Osorio, and R. Osorio, “State of the art on biomaterials for soft tissue augmentation in the oral cavity. Part I: Natural polymers-based biomaterials,” Polymers 12 (8), 1850 (2020).CrossRef
12.
go back to reference H.-J. Jiang, J. Xu, Z.-Y. Qiu, X.-L. Ma, Z.-Q. Zhang, X.-X. Tan, Y. Cui, and F.-Z. Cui, “Mechanical properties and cytocompatibility improvement of vertebroplasty PMMA bone cements by incorporating mineralized collagen,” Materials 8, 2616–2634 (2015).CrossRef H.-J. Jiang, J. Xu, Z.-Y. Qiu, X.-L. Ma, Z.-Q. Zhang, X.-X. Tan, Y. Cui, and F.-Z. Cui, “Mechanical properties and cytocompatibility improvement of vertebroplasty PMMA bone cements by incorporating mineralized collagen,” Materials 8, 2616–2634 (2015).CrossRef
13.
go back to reference M. Vedhanayagam, S. Ananda, B. U. Nair, and K. J. Sreeram, “Polymethyl Methacrylate (PMMA) grafted collagen scaffold reinforced by PdO-TiO2 nanocomposites,” Mater. Sci. Eng., C 108, 110378 (2019).CrossRef M. Vedhanayagam, S. Ananda, B. U. Nair, and K. J. Sreeram, “Polymethyl Methacrylate (PMMA) grafted collagen scaffold reinforced by PdO-TiO2 nanocomposites,” Mater. Sci. Eng., C 108, 110378 (2019).CrossRef
14.
go back to reference B. Carrion, M. F. Souzanchi, V. T. Wang, G. Tiruchinapally, A. Shikanov, A. J. Putnam, and R. M. Coleman, “The synergistic effects of matrix stiffness and composition on the response of chondroprogenitor cells in a 3 D precondensation microenvironment,” Adv. Healthcare Mater. 5 (10), 1192–1202 (2016).CrossRef B. Carrion, M. F. Souzanchi, V. T. Wang, G. Tiruchinapally, A. Shikanov, A. J. Putnam, and R. M. Coleman, “The synergistic effects of matrix stiffness and composition on the response of chondroprogenitor cells in a 3 D precondensation microenvironment,” Adv. Healthcare Mater. 5 (10), 1192–1202 (2016).CrossRef
15.
go back to reference J. L. A. Del Barrio, F. Arnalich-Montiel, M. Chiesa, N. Garagorri, N. Briz, J. Fernandez-Delgado, M. S.‑T. Valls, C. C. Botella, I. García-Tuñón, L. Bataille, A. Rodriguez, F. Arnalich-Montiel, J L. Gómez Ribelles, C. M. Antolinos-Turpín, J. A. Gómez-Tejedor, et al., “Biointegration of corneal macroporous membranes based on poly(ethyl acrylate) copolymers in an experiental animal model,” J. Biomed. Mater. Res., Part A 103 (3), 1106–1118 (2015). J. L. A. Del Barrio, F. Arnalich-Montiel, M. Chiesa, N. Garagorri, N. Briz, J. Fernandez-Delgado, M. S.‑T. Valls, C. C. Botella, I. García-Tuñón, L. Bataille, A. Rodriguez, F. Arnalich-Montiel, J  L. Gómez Ribelles, C. M. Antolinos-Turpín, J. A. Gómez-Tejedor, et al., “Biointegration of corneal macroporous membranes based on poly(ethyl acrylate) copolymers in an experiental animal model,” J. Biomed. Mater. Res., Part A 103 (3), 1106–1118 (2015).
16.
go back to reference O. Bas, E. M. De-Juan-Pardo, M. P. Chhaya, F. M. Wunner, J. E. Jeon, T. J. Klein, and D. W. Hutmacher, “Enhancing structural integrity of hydrogels by using highly organized melt electrospun fibre constructs,” Eur. Polym. J. 72, 451–463 (2015).CrossRef O. Bas, E. M. De-Juan-Pardo, M. P. Chhaya, F. M. Wunner, J. E. Jeon, T. J. Klein, and D. W. Hutmacher, “Enhancing structural integrity of hydrogels by using highly organized melt electrospun fibre constructs,” Eur. Polym. J. 72, 451–463 (2015).CrossRef
17.
go back to reference S. Fujisawa and Y. Kadoma, “Tri-n-butylborane/water complex-mediated copolymerization of methyl methacrylate with proteinaceous materials and proteins: A review,” Polymers 2, 575– 595 (2010).CrossRef S. Fujisawa and Y. Kadoma, “Tri-n-butylborane/water complex-mediated copolymerization of methyl methacrylate with proteinaceous materials and proteins: A review,” Polymers 2, 575– 595 (2010).CrossRef
18.
go back to reference Y. L. Kuznetsova, E. A. Morozova, A. S. Vavilova, A. V. Markin, O. N. Smirnova, N. S. Zakharycheva, D. V. Lyakaev, and L. L. Semenycheva, “Synthesis of biodegradable grafted copolymers of gelatin and polymethyl methacrylate,” Polym. Sci. Ser. D 13, 453–459 (2020).CrossRef Y. L. Kuznetsova, E. A. Morozova, A. S. Vavilova, A. V. Markin, O. N. Smirnova, N. S. Zakharycheva, D. V. Lyakaev, and L. L. Semenycheva, “Synthesis of biodegradable grafted copolymers of gelatin and polymethyl methacrylate,” Polym. Sci. Ser. D 13, 453–459 (2020).CrossRef
19.
go back to reference Y. L. Kuznetsova, K. S. Sustaeva, A. S. Vavilova, A. V. Markin, D. V. Lyakaev, A. V. Mitin, and L. L. Semenycheva, “Tributylborane in the synthesis of graft-copolymers of gelatin and acrylamide,” J. Organomet. Chem. 924, 121431 (2020).CrossRef Y. L. Kuznetsova, K. S. Sustaeva, A. S. Vavilova, A. V. Markin, D. V. Lyakaev, A. V. Mitin, and L. L. Semenycheva, “Tributylborane in the synthesis of graft-copolymers of gelatin and acrylamide,” J. Organomet. Chem. 924, 121431 (2020).CrossRef
20.
go back to reference D. G. Fukina, E. V. Suleimanov, A. V. Boryakov, S. Yu. Zubkov, A. V. Koryagin, N. S. Volkova, and A. P. Gorshkov, “Structure analysis and electronic properties of \({\text{ATe}}_{{0.5}}^{{4 + }}{\text{Te}}_{{1.5 - x}}^{{6 + }}{\text{M}}_{x}^{{6 + }}{{{\text{O}}}_{6}}\) (A = Rb, Cs, M6+= Mo, W) solid solutions with β-pyrochlore structure,” J. Solid State Chem. 293, 121787 (2020).CrossRef D. G. Fukina, E. V. Suleimanov, A. V. Boryakov, S. Yu. Zubkov, A. V. Koryagin, N. S. Volkova, and A. P. Gorshkov, “Structure analysis and electronic properties of \({\text{ATe}}_{{0.5}}^{{4 + }}{\text{Te}}_{{1.5 - x}}^{{6 + }}{\text{M}}_{x}^{{6 + }}{{{\text{O}}}_{6}}\) (A = Rb, Cs, M6+= Mo, W) solid solutions with β-pyrochlore structure,” J. Solid State Chem. 293, 121787 (2020).CrossRef
21.
go back to reference RF Patent no. 2567171, Byull. Izobret. No. 31 (2015). RF Patent no. 2567171, Byull. Izobret. No. 31 (2015).
22.
go back to reference D. G. Fukina, E. V. Suleimanov, G. K. Fukin, et al., “Crystal structure features of the mixed-valence tellurium β-pyrochlores: CsTe1.625W0.375O6 and RbTe1.5W0.5O6,” J. Solid State Chem. 286, 121276 (2020).CrossRef D. G. Fukina, E. V. Suleimanov, G. K. Fukin, et al., “Crystal structure features of the mixed-valence tellurium β-pyrochlores: CsTe1.625W0.375O6 and RbTe1.5W0.5O6,” J. Solid State Chem. 286, 121276 (2020).CrossRef
23.
go back to reference V. Oliveira, C. Assis, M. Costa, et al., “Physical, biochemical, densitometric and spectroscopic techniques for characterization collagen from alternative sources: A review based on the sustainable valorization of aquatic by-products,” J. Mol. Struct. 1224, 129023 (2021). V. Oliveira, C. Assis, M. Costa, et al., “Physical, biochemical, densitometric and spectroscopic techniques for characterization collagen from alternative sources: A review based on the sustainable valorization of aquatic by-products,” J. Mol. Struct. 1224, 129023 (2021).
24.
go back to reference G. Zengin, A. C. A. Zengin, E. Kılıc, et al., “Characterization of collagen derived products prepared by use of alkali and dairy by-product,” Environ. Eng. Manage. J. 18 (11), 2355–2362 (2019).CrossRef G. Zengin, A. C. A. Zengin, E. Kılıc, et al., “Characterization of collagen derived products prepared by use of alkali and dairy by-product,” Environ. Eng. Manage. J. 18 (11), 2355–2362 (2019).CrossRef
25.
go back to reference N. Grassie and G. Scott, Polymer Degradation and Stabilisation (Cambridge University Press, Cambridge, 1985). N. Grassie and G. Scott, Polymer Degradation and Stabilisation (Cambridge University Press, Cambridge, 1985).
26.
go back to reference V. A. Kabanov, “Radical Coordination Polymerization,” J. Polym. Sci. Polym. Symp. 18 (67), 17–34 (1980). V. A. Kabanov, “Radical Coordination Polymerization,” J. Polym. Sci. Polym. Symp. 18 (67), 17–34 (1980).
27.
go back to reference P. E. Matkovskii, Radical Stages in the Reactions of Complex Organometallic and Metallocene Catalysts and Their Role in Polymerization (Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 2003) [in Russian]. P. E. Matkovskii, Radical Stages in the Reactions of Complex Organometallic and Metallocene Catalysts and Their Role in Polymerization (Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 2003) [in Russian].
Metadata
Title
Synthesis of Polymethyl-Methacrylate–Collagen-Graft Copolymer Using a Complex Oxide RbTe1.5W0.5O6 Photocatalyst
Authors
L. L. Semenycheva
V. O. Chasova
D. G. Fukina
A. V. Koryagin
N. B. Valetova
E. V. Suleimanov
Publication date
01-03-2022
Publisher
Pleiades Publishing
Published in
Polymer Science, Series D / Issue 1/2022
Print ISSN: 1995-4212
Electronic ISSN: 1995-4220
DOI
https://doi.org/10.1134/S1995421222010166

Other articles of this Issue 1/2022

Polymer Science, Series D 1/2022 Go to the issue

Premium Partners